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We studied the lattice vibrations of two inter-penetrating atomic sublattices via the
Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms
subjected to an on-site potential, using the technique of thermodynamic Green’s functions
based on quantum field-theoretical methods. General expressions were deduced for the
phonon frequency-wave-vector dispersion relations, number density, and energy of the FK
model system. As the application of the theory, we investigated in detail cases of linear
chains with various periods of the on-site potential of the FK model. Some unusual but
interesting features for different amplitudes of the on-site potential of the FK model are
discussed. In the commensurate structure, the phonon spectrum always starts at a finite
frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the
incommensurate structure, the phonon spectrum starts from zero frequency but at a non-
zero wave vector; there are some modes inside these gap regions, but their density is very
low. In our approximation, the energy of a higher-order commensurate state of the one-
dimensional system at finite temperature may become indefinitely close to the energy of an
incommensurate state. This finding implies that the higher-order incommensurate-
commensurate transitions are continuous ones, and that the phase transition may exhibit a

“devil’s staircase” behavior at a finite temperature.

PACS numbers: 63.20.-¢; 63.20.D-; 63.70.-+h



I. Introduction

Recent investigations revealed that materials consisting of two interpenetrating
incommensurate sub-lattices, such as Na,CoO, [1], Ca3Co409 [2, 3], and Bi,-,Pb,Sr,C0,0, [2, 4],
have very good thermoelectric properties. One reason for this is that these materials have very
low lattice thermal conductivity [3]. To understand their lattice thermal conductivity, we need to
know the lattice vibrational properties of two inter-penetrating sublattices. Some insights into
this problem might be obtained from a studing the Frenkel-Knotorova (FK) model.

The FK model describes a chain of classical particles coupled to their neighbors, and subjected
to a periodic on-site potential. This model has received much attention because of its relevance to
a wide variety of physical problems. The FK model originally was proposed to model
dislocations in epitaxial monolayers [5, 6], but its surprising ability to describe many physically
important phenomena, such as the dynamics of absorbed layers of atoms on crystal surfaces [7,
8], charge-density waves [9, 10], ferro- or antiferro-magnetics [11], and superionic conductors
[12], has attracted much attention from physicists working in solid-state physics.

Some simple classical models have been analyzed that describe an atomic chain with nearest-
neighbor interactions and subjected to a periodic on-site potential [13~19]. For them, phonon
dispersion, the dynamic structural factors of crystals with incommensurate lattices, were studied
at the long-wavelength limit. If the effects of lattice discreteness are neglected, the long-
wavelength limit transitions to the continuum-limit approximation, and the nonlinear differential
equations of motion are obtained for these classical models. For the FK model, this
approximation leads to the exactly integrable sine-Gordon equation that possesses many
interesting properties and allows exact solutions describing different types of nonlinear

excitations [20]. However, the FK model inherently is discrete and not exactly integrable [20].



Therefore, this simple approximation will engender some deviations. For example, Sutherland
[21, 22] found that the phonon spectrum separates simply into two branches in the continuum-
limit approximation. The lower branch represents the collective modes of lattice dislocations,
while the upper one corresponds to renormalized phonons [13, 23]. Following standard
procedures in the theory of lattice dynamics, the phonon spectrum may include multiple branches
[7, 23]. Thus, the FK model at the simplest continuum limit intrinsically may be too simple, and
misleading in some cases.

Typically, the FK model utilizes an on-site potential to describe the interaction between two
interpenetrating sub-lattices. Classical theories have revealed some of the static- and dynamic-
characteristics of lattice vibrations in such systems [13~23]. However, classical theories mainly
give the results using a long-wavelength approximation, and temperature effects are not
considered in any of the classical theories; indeed, and the discussion of lattice vibrations at low
temperature is beyond the scope of the classical theory.

The present work was motivated by our desire to understand the thermodynamic properties of
materials with two interpenetrating sub-lattices. The formulation of thermodynamic Green’s
functions leads naturally to the evaluation of the energy of a system via correlation functions; we
have not identified any previous publication wherein the description of the energy of an FK

model system has been evaluated quantum mechanically. In section II, we deduce an expression
for the correlation function resulting from the FK model, using thermodynamic Green’s
functions. From this correlation function, we obtained the phonon dispersion, the phonon number
density, and the energy of the system. In section Ill, we first use the general formulae deduced in
section II to calculate the properties of some low-order commensurate states, and then, from

these results, we extend the calculation to commensurate states of any order, and to the



incommensurate state. A detailed discussion of these findings is given; Section IV contains our

summary and conclusions.

Il . General Formalism

A. The Hamiltonian
We consider a system consisting of a lattice of atoms with harmonic vibrations that interact
with an external perturbing potential, i.e., the FK model. The total crystal Hamiltonian can be
written as
H=H,+H, (2.1)

where H is the harmonic Hamiltonian of the unperturbed lattice given by

+ 1 1 + +
H, = ;hwkj(akjakj +5j - Z;ha)kj (454, +B:B,) 2.2)
g g

H, is the perturbation Hamiltonian arising from the external on-site potentials of the FK model,

and @, is the frequency of a phonon with wave vector k£ and polarization index ;. Hereafter,
we use k to represent the pair of variables £ and j. 4, and B, are phonon operators that we
define in terms of the usual phonon creation- and destruction-operators, @, and a,:
A, =a,+a’, =A4", and B, =a, —a’, =—B’,.

We can write the external on-site potential of the FK model as

H, =ZI:VO[1—cos(g-Xl)] (2.3)

where g is the wave vector of the periodic external potential, and X, is the position of an atom,

. . . . 2r ) ) . .
[, of the linear chain. For one dimension, g = 7 , where b is the period of the on-site potential;



x, =al+u,, a is the lattice constant of the linear chain; / is an integer; and u, describes a
deviation from the lattice’s original equilibrium position. ¥, is the amplitude of the on-site
potential of the FK model. Assuming that u, is small and only considering the one-dimensional

case, H, can be written to the fourth-order in the deviations from the original equilibrium

positions as follows:

H = ZI:VO{I—cos(gla)[l—l(gul P (g )4}+sm(gza){gu, e )}} (2.4)

2! 4!

Using

u, =[ h jzzilexp(ikza)Ak (2.5)

2Nm) 5

w;

and ignoring the constant term in H,, H, is

H = ch (kl )AkI + Zcz (k1=k2 )Akl Akz + ZC3 (k1=k2ak3 )Akl Akz Ak_;
ky

ky .k ky ko k
1-42 1-42-13 (2.6)
+ ZC4(k19k29k39k49)Ak1Aszk3Ak4
Fey ok ey kg
where, for a one-dimensional Bravais crystal of N atoms, each of mass m ,
1
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2m
hV, 1
G, (k1 Jk, ) = 2—b20(a)k| @, ) 2 [A(k1 +hk, + g)+ A(kl +k, - g)] (2.7b)
3 3
27V, ( h )2 1
C,(ky ey Ky )= 2220 (E) (0, @, o, )2 (A + &, +ky+g) = Alk, +k, +k, - g)] (2.7¢)
3p°N?
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12m2p*N TR (2.7d)
x[Alk, +k, +ky +k, +g)+Alk, +k, +k, +k, — g)]

C4(k1,k2,k3,k4)=

with A(k)=1 for k =0 ; otherwise A(k)=0.

B. Thermodynamic Green’s function and time-correlation functions

To evaluate some necessary correlation functions, we need to know the thermodynamic

Green’s function for this model:

G, (i—1)= <<Aq (1), 4 (z')>> =-i6(t )[4, (0).4; (")) (2.8)
6(t) is the step function. The time correlation function is

O, (=)= (47 (¢)4,(2)) (2.9)
The brackets < . > represent the thermodynamic average over a canonical ensemble. Namely, for

any operator O

Tre ™0
(0)= Tre Bl

1 . .
where f=——, k, is the Boltzmann constant, and 7 is the absolute temperature.
B

We define the Fourier transforms CN}qk (w) and J k (w) of the Green’s function and the time

correlation function as follows:

Gult=1)=[ Gul@e ™ do (2.10)
and,
O (t=1)=] " J, (@™ dew (2.11)

J i (w) is the spectral-density function and is related to the Green’s function by



2 ~ .
—WIquk(a)+ls) (212)

Jiq (a)):

where € — 0 is implied.

Following Pathak’s method [24], and the detailed presentation in Supplemental Material [25],

the correlation functions can be obtained

ol 2
00(1)={a; O, (1) =~ [ | 1+-2+ 2+ 21, (@)™ “dev (2.132)
! ! 4° o o ool
o 2
02(0)=(a, 00 (O) == [| 1+ L+ L+ 2 |; (@) de (2.13b)
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C. Calculation of the thermodynamic Green’s function
As discussed above, Green’s function must be known to calculate the correlation functions.
We used Zubarev’s method [26] for obtaining them in this paper. From the equation of motion

for an operator O(t)

ihag—t(t) =[0(),H],

the equation of motion for the Green’s function G, (t—1) is

i—% =g G (2.14a)

and,

oGW
ih at‘fk =2n8(t—1')8, +hw,G, +4) C,(k,—q)G,,
ki

q

(2.14b)
+ 6ZC3 (k1 K, ’_q)<<Ak1 Ak2 A >> +8 z C, (k1 Ky ks >_9)<<Akl Ak2 Ak3 A >>

kyky kykyky

where G1)(e—1)=((B, (¢). 47 (¢)) = —i6(e - (X[B, (). 45 ().



To obtain G, , we employed some approximations. For example, the last term of right side in

gk >
Eq. (2.14b) was decoupled according to relation [24, 26]

(abed ) = (ab)(cd )+ (ac)(bd) +(ad )(bc) . (2.15)
To discover the Green’s function, 1",{(,2 i <<A A, At )>>, contained in the third term of the

right-hand side in Eq. (2.14b), we need other new Green’s functions F,fzk) i <<B 4, LA (t )>>

Fk(k . <<A B, A (¢ )>>, Fk(k . <<B B, At )>>, as is apparent from the following equations

of motion

(1)

kkok

=0, r,ﬁf,}zk +a, r,ﬁfk)zk (2.16a)

ore '
ih—2% =, T, +ha, T, +2C, (- k)G, , +4.C, K}~k )T

at 2 Kk 1 KR 2 s V™ ko
1

i 62 C,(k k), )<<Akl, A A A >> (2.16b)

+8' C,lk1k K - k)<A A A 4 A+>>

oy
kkoks

ar‘()
zh%—ha}klr,ffk)zk+ha)k21",fll,32k+2Cl( )Gy +4).C, (k &, )r®

ky

+6ZC ke Kk )< (44,4, 47) > 2.16¢)

kkk

+8 Y Cullkikiko ) (4,4, 4. 4,47 )

Kkok;



or®
ih% = ha)k r;?k{k + ha)k rlgzk)k + 2C1 (_ kl )ngll + 2C1 (_ k2 )G,gl,){

+4Zc (k) kkk+42c (k) —k )r,fzkk

+6ZC k. k. —k )< B A4, A+ >+6203(k;,k'2,—k1)<<Ak,Ak,Bkz,A;>> (2.16d)
ki b

+8 Y Cull ki ko ) (B, 4, 4,4, 47))

knkoky

83 €[k Kk k)<A 4, A,B, A+>>

Kkoks

To solve Eq. (2.16) to obtain these Green’s functions, we neglected the five-operator Green’s

functions; and the four-operator Green functions can be decoupled as sums of the products of the

two-operator correlation functions, and the two-operator Green’s functions. Using Fourier

transforms, and N, =(4, 4, ), Egs. (2.15) and (2.16) become
k k Tk

Nq,k qéél,l)c
h ~q(l,l)c = (kl > Q) +6ZC (kl ky—q klk)2
7[ K ki ks
+243°¢, (k1 ,kz,—kz,—q)Nkz G

kl kZ
and,
o — . 7@ T6)
a)rklkzk =, Fklkzk + @, Fk,kzk

hh?) =na, T, +1e, T, +2C,(- k)G, +4.C, k)&, T

: Kk,k
kl

+63Cylky~ky~k, N, G, s +123°C (k. ~k, .~k N, G,

, ky = ke
ky

heh8), =ha, T, +hao, T, +2C,(-k,)G, , + 420 (k; ~k,

kkk
ky

+63Cylky—ky e, N Gy + 12y¢, (& ~k, )N, G,

ky

(2.17a)

(2.17b)

(2.18a)

(2.18b)

(2.18¢)
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+43C, (k —k, kkk+4ZC(k1, ke, JECL
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+6ZC(kl, kI, )N, Gkk+122C(k1, k- k)<A+ >€;

ky

D. The number density of phonons

(2.18d)

From these correlation functions, we calculated the number density of phonons from equations

(2.13a) with k=g and ¢t=1¢":

—oco

n={ata)=1 | (1 +£]2Jkk ()

E. The energy of the system

The energy of the system is given by the thermal average of the Hamiltonian
E=(H) =2 no{aia, )+ () + () +(75)+ (V)
The usual zero-point energy of the harmonic crystal was ignored, and

(V)= ;CI (k) 4,)
<V2> = Zcz (kl kK, )<AkI Ak2 >

ky ko

<V3> = Z (68 (kl Ky ks )<Ak, Ak2 Ak3 >

ky ko ks

<V4> = ZC4 (k19k2:k3ak4 )<Ak1 Akz Ak3 Ak4 >

kl ak2 »k3 ’k4

Following Pathak’s method [24], the energy of system can be simplified as follows:

10

(2.19)

(2.20)

(2.21a)

(2.21b)

(2.21¢)

(2.21d)
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E= Z;ha)ki(s%wwﬁk—ljjkk (@)dew—(V,)=2(v,)=3(1,) (2.22)

where <V2>, <V3> can be obtained from Green’s function (N?qk (w) and ﬁg){}h (w); <V4> are

evaluated using the decoupling approximation in Eq. (2.15) and éqk (w). The detailed processes

are presented in Supplemental Material [25].

IIl. Applications

In this section, we apply our results detailed in the section II to obtain the properties of

various cases of the periodic FK models.

A.a=b
In this case, the period of the FK potential equals that of the lattice chain, i.e., g is the

reciprocal lattice vector. The C, and C, terms in the FK model vanish, and we get the following:

ThY,

1
C, (ko ky ) =22 (o0, @0, )2 Ak, + k) G.1)
ma
*hv, ul
¢, (k1 Ky ks ke, ) = _T(a)k1 o, 0, @, ) 2 A(kl +hy ik tk, ) (3.2)
6m-a’N

For this case, solving Eqgs. (2.17) for (N}q’k yields

~ 0 w
qk q
S S R 33
o w-e - M, 3-3)
where,
4V, Ar'nV, < 1/ .
' ma® mPa*N ;C()kl <Ak1Ak1> G4

11



1 1
(M, )2 is the shift of frequency due to the FK potential. Letting @ = (a),f +M, )5 , we obtain the

spectral-density function from Eq. (2.12)

_ o do-a")-dw+a")

Ju\w)= 3.5
kk( ) 5)}9) oo _| (3.5)
Using Eq. (3.5), we then get
N, =(44,)= ijk ©=-"2coth 'Bhg)k (3.6)

The number density of phonons is

. 2 ~(1) (1)
ST CUT) PV S T WOV 6
4°0 o 4\ & o 2

The energy of the system then becomes

E=Ynhan, +(V,)+{V,) (3.8)

Using a similar method as that detailed in section I E, (V,) is

ZJ"I ( j w(@ )dw—%<V2> (3.9)

k —o

(V,) is obtained from Egs. (2.9), (2.11), and (2.21b)

)= ”W 1 kak (3.10)

k

1) 2 ~(1)
=_—Zha)k+ Zhw{w)" ¢ G, 57 Vi(l)jcoth(’ghg)" ] (3.11)

, a),ﬁ) ma“ @, o,
If M,=0, ie., if we ignore the action of the FK on-site potential, we readily find that

N, =2n, +1, while n, and E become the results of the harmonic approximation from Eq. (3.7)

12



and Eq. (3.11). If M, #0, a shift of frequency will result. In Eq. (3.4), the first term depends

only on the amplitude of the FK on-site potential; the second term also will depend on the

temperature.

The phonon dispersion for a =b is

1

@ =} + M, P (3.12)

When we continue only up to the quadratic term of the on-site potential, Eq. (3.12) becomes

1
simple because M, is a constant. Then, the frequency spectrum has a finite value (M | )5 at k=0

, consistent with some previous results [7, 13, 23]. The unperturbed normal mode frequencies for

the linear chain are given by

(K
w, sm(gj‘ (3.13)

), =

where @, is the largest frequency. As an example, Fig.1 shows the results of the dispersion of a
monatomic linear chain with @ =5 calculated using Egs. (3.12) and (3.13). In this figure, we

used the normalized frequency, i.e., let @, =1. We also took the amplitude of the on-site

2
0

2
ma

potential to be =0.1 in the calculating of Fig. 1.

If the quartic term is retained, and the sum in Eq. (3.4) is replaced by an integral, Eq. (3.12)

becomes an integral equation (see Eq. (3.4), (3.6) and (3.12)) that can be written as

- Am’V, 2m°hVy = @,
@) = ap + 200 21y (v Koy PO (3.14)
ma m-a ~

For high temperatures, Eq. (3.14) can be written approximately as [25]

@") = a7 + 4”22/0 [1- 2(B)] (3.15)
ma

13
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2 217 \ 2 2 2
where y(B)= 7h @+i(4” Voj (a)f+4ﬁ VOJ . We replaced the @" within the

ma’| 6 ph g g
. (k
a)Lsmz :

ma ma
Using Eq. (3.15), the effect of temperature can be estimated. For this example, we take

2

integral sign in the right side of Eq. (3.14) by (5)21))2 =w, + 4z IZ/O ,and @, =
ma

®, ~2x10"sec™, atomic mass m ~ 5x10 kg, lattice constant a ~0.2nm, V, ~0.5¢V , and

2

then Vzo =~0.1w; . At T =300K , we obtain 7(8)~0.01. In this case, the effect of temperature

ma

is very small. But if ¥, ~0.05¢V , y(8)~0.15, then the effect of temperature cannot be ignored.
If the temperature is high enough, or ¥, is small enough, then the frequency from Eq. (3.15) may

become imaginary, and the crystal will become unstable.

(1) o
For T — 0, substituting cothﬂh%:1+22exp(—nﬁhﬁ),ﬁl)) into Eq. (3.14), and using
n=1

Laplace’s method [27] to calculate the integral in Eq. (3.14) (the detailed processing is shown in

Supplemental Material [25]), we have

| 1

- 4r’ 2 2 AV, ) 2

@) =ap + 210 27 ?(&j K (_ 8 Iz/oj o, |=a +(8a]"f (3.16)
ma ma m ma

where K (x) is the complete elliptic integral of the first kind. We will use similar methods to
detail the number density and energy. Since 67),51) # @, from Eq. (3.16), the number density of

phonons does not vanish at absolute zero. It is

_(aa)")
" 6w

(3.17)

14
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Using @, ~2x10"sec™, atomic mass m ~ 5x10 > kg, lattice constant a ~ 0.2nm , V, ~0.2¢V

2

and then 7~ V2° ~0.04w; , we find that n, ~0.01% . This percentage corresponds to about 10%
ma

vibrations per mole.

The zero-point energy is

2 my?
=—Zhwk _z|:87r n, ( 47z2V02jh(Aa)k )] .

ma’ o,

. . . T . .
For this case, the wave vector of the on-site potential, g =—, is half that of the reciprocal
a

. . T T . . . .
lattice vector. The difference between k+— and k—— is a reciprocal lattice vector, meaning
a a

that f (k + zj =f (k —zj for any function of the lattice. Therefore, the contribution of C, and
a a

C, terms in the perturbation Hamiltonian vanish, and

V.4 hV 1 P

Callask,)= W(w" o) 2A[k1 thy _;j (3.19)

'nv, il n’
C4("1”‘2’k3”‘4):‘W(%%%%) R (3.19b)

Eq. (2.17b) becomes
L
~1) _ 9. ~ zv, m'ny 1 2
(1) :Lk 0 _ 0 +

(lx;q,k o + a)qu,k + {2maz amia*N % o, <Ak2 Ak2> a)q%a)q Gq+%,k (3.20)

15



Substituting q%q+z in the subscript of Egs. (3.20a) and (2.17a), we obtain another two
a

equations that are represented in Appendix A.

Combining Egs. (2.17a), (3.20), (A.1) and (A.2), we obtain

~ a* ‘I‘*’a lﬁ'z
gk = = (3.21)
V4
o - Mz{a)2 -’ ”j
4+;
where,
v, x'nvy 1
M, = 0 _ 0 A A 3.22
> ma® 4m2a4N%:a)k < & k2> ( )
We define
1 A .
———=A ,(0)-iT ,(0) (3.23)
w -, g+ g+
‘]+E
Here,
1
A (0)=P—5—— (3.24a)
g+ o -
q+=
r ”(w):ﬂé[a)z—a)z ,,J (3.24b)
q+— q+=

1
2
2 2
2M2rq+£ §qkqu2+5q+”k(a)qwq+”j (a) —a)q)
= - . : (3.25)

qu_”(eﬁhw—l) (a)z ot — M2A
- —
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From the spectral-density function, we obtain

v o Mjrk dw
1) +
N, =—* . ¢ 3.26
== j o ; (3.26)
@ -, —M,jAk o+ rk2 M
and the number density of phonons is
- 2 Mjl“k A0
n, =% (1+ﬁj . (3.27)
27 = ,

V4

o1 ?
[a)z—a),f—MjA ] +I M)
o k=

a a

N, and n, can be simplified when the damping, M zl"k is small. At this limit, J,, has a

w2
+Z
a

.- The integrals are evaluated approximately by replacing

a

steep maximum at @’ = @; +M;A
k+

the peak distribution by a Dirac delta function. We then obtain

~(2)
), Pha
N, =—%-coth x 3.28
=g 25 o
and,
~(2) ~(2)
n, =1 fff;)ﬁ”k coth| PP, (3.29)
4|\ @, , 2

T

a

2
where @& :[a),f +M22Ak J . When w, is close to (7),52) we can replace N, by 2n, +1. We

use this limit to check the correctness of our derivation.
The energy of the system from Eq. (3.8) and (3.9) is

MA
5)152) @, ﬂzVo ’ ey hﬂhE)JEZ)
o 202 e
) X ma- 0,

(3.30)

E:—tha)k+tha)k 3
2% 8%
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The phonon dispersion for a =§ can be determined from

-1
@) =} + Mf[(a”)é”)z - w} (331)

a

Solving Eq. (3.31), we then obtain

-2
(@) = %[a}; + wjﬂj + %(a),f —~ “’ziz ][1 + 4M22(a),f —~ w}f”] ] (3.32)

The dispersion relation of the normal modes has two branches. Fig. 2 shows the phonon

N | =

2
. . . . TV, . .
dispersion with normalized frequency @, =1 and 2 =0.1 when we ignore the quartic term

ma

from the perturbation.

The discussed method of the dispersion dependence on temperature is similar to that for a =b

if the quartic term from perturbation is not ignored.

C. azé
3

: - 2r .
In this case, the wave vector of the external potential is g = Ve and the difference between
a

27

2z . . : o
k+3— and k—3— is not a reciprocal lattice vector. Then, the contribution of the C, and C,
a a

terms in the perturbation Hamiltonian cannot be neglected. To simplify our calculation, we first
keep the C, and C, terms, and ignore the C, and C, terms. The C, term naturally vanishes in
this case, and so the Eqs. (2.17) can be written as

~

oG, =w,GY) (3.33a)

q " gk
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q
3a

~ 0 ~ 2 2
(1) _ “ak
WG —7+ 0,6, +a, wq,le G Lt a)q+2la) G ,,

2z
3a

q
3a

(3.33b)

2 2
Replacing g by q—3—7[ and q+3—7[ in Egs. (3.33), we obtain four other equations (Eq.
a a

(B.1)~(B.4)) that are shown in Appendix B. Solving the six equations, the Green’s function is

gk .
C()q+¢ 271'A 2 +¢ ZIZ'A 2r +1 ¢ ZIZ'F 2 +¢ 27rr 2r
~ g+ = - 9 gt qt— == g
G _ 3 3a 3a 3a 3a 3a 3a 3a
qk
2 ~(3))2 .
10 —(a)q +1i (p+2i1“+2i+(p_zll“_2i
1 3a 4 3a 1 3a 1 3a
where,
N
1 1 1
o, w? - a
_ 274 2 _ 2 _ 2 _
2w =T 0w P e T | O 7O an @0 =0
3q 3, a0 W 2 =W oy, 3q 3q 734
g+ -
L 3a 3a
T
1 1 1
o,w? - a - -
__27q 2 _ 2 2
O 2= O 25, @ 5 = 7| O] =0 2 @ 2p =0
34 73, 5, Wy, —W 300 T34 73,
- R
L 3a 3
-1 -1
_ 2 2 2 2 2 3 2 2
¢ 2 a2 1+((l) _a)q @ 2 @ 2 +2a2 @ 27r_w 2
g+ g+ 9 g+ 9
3a 3a 3a 3a 3a

o - 27V,
> 9ma’
~(3) 2 _ )
( q ) =, _¢q+2iA o9 _ZiA

3a 1 3a 3a

From the Green’s function, the spectr.

2z
3a

al-density function is
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(3.34)

(3.35a)

(3.35b)

(3.35¢)

(3.35d)

(3.35¢)

(3.350)



é A r 1_, ( ) (N(3))2
a) + ¢ 2r + ¢ 2 2 ¢ 2 ¢ 2 27 Q wq ¢ 27[1 2 + ¢ 2/[I 2
2 T e T34 gt~ g+ q- g+ gt -7 4

+— +2=
q}a q}a q}a

(3.36)

9= 49—

If [(p +2i 2 +Q 5, 2”] is small, we can replace the Breit-Wigner form of the spectral-
3a 3a 3a 3a

density function by a Dirac delta function, and have

2 ~(3)

, o Pha

N, =—FK|1- 2 A -A coth k 3.37

k 5)153) a);zl _a)z_zﬂ[ i 27 kz;zj ( B j ( )
3a 3a

3a 3a

and the number density is

2
0,'2 (A or A 2 j 2
w2 ) 50 20
n= - e 1+(“LJ coth[ﬁhw ]— % (3.38)
4, a)q+2l —0 5, , 2 ,
3 3a
The energy is

- - (3.39)

20



If we retain only the C, and C, terms, the phonon dispersion becomes independent of the

temperature. From Eq. (3.35f), the dispersion can be calculated: Fig. 3 shows an example. Three

branches are found in this calculation.

Next, we will consider the effect of the terms C, (k,,k,,k,) and C,(k,.k,,k,,k,). Accordingly,
we must calculate another kind of Green’s functions lN",fll,fz . - The additions are too complicated for
the calculation if we do not use approximations. First, we assume that the dispersion of phonons

remains centrosymmetric, i.e., @, =a_, . Then, C,(-k, )CN}kﬁk, and ZC3 (kl —k, —k, )N o 5ka in
K 1

Eq. (2.18) can be ignored. From Figures 1-3, we find that the approximation is reasonable.

Second, we retain only the linear term of the FK potential in the calculated f‘k(ll,zzk. In this case,

some equations can be rewritten. Eq. (3.33b) becomes

WGV G (o) G s(ata,) ¥
=—toG,tmta) o 0 w Hta) o 0, .

gk 9 qk q 2z i
4 3a "3 " (3.40)

|
e )

klk2 a

Using the same method as above, other equations are obtained, as shown in Appendix B (Eq.

(B.5) and (B.6)). We first need to know f,ffgzk if we want to obtain @k from Eq. (3.40), From

Eq. (2.18), we have

o), =000, +o T, (3.41a)
(2) ) () ) 0 _EN(I)

=0 +o, T, +o| o @ Fk 27 T 00, rk I + @, (k; k. k)

—ia
Y

(3.41b)
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(3.41c¢)
and,
=(4) ) T°3) _EN(Z) _5~(2)
= 1 +0 1, + I + T
ark,kzk a)kz kykyk a)kl kykok Q, wkza)k2+§l k|k2+§—;’k Q, wklwkz—% klkz—%k
(3.414d)

2 2
+a’2(a)k1wk+2”J 1—‘(3)27r +a2[a)klw Zﬂj Fk(3)2ﬂ +q)3(k1’k2’k)
' 34

ky+=—k,k ky—=—— -——k
7342 Y 1342

. 2 2 ) ~ ,
Using replacement g — 3—7[ —¢q and g+ 3—” — ¢ , other equations about I’,fl’,lz , are obtained; they
a a

are listed in Supplemental Material [25]. Solving the system of equations, and only keeping the

linear terms of the FK on-site potential, IN“,S,SZ , becomes

0 { 1 ) 1 }
Kok = > > >
2(a)k o, )2 w (a)kl + @, ) o - (a)kl - a)kz)
r 2 2 2 2 2 2
a —a), +a a +w, —a
X CEMCRy VA, b h N, 20N + N,?))} (3.42)
a)k2 2 a)kl 1 1 2

2 2
Substituting Eq. (3.42) into Eq. (3.40), and using replacement g —3—7[ —q and g+ 3—7[ —q,we
a a

have three equations about qu and (N}S{), viz., Eq. (B.7), (B.12) and (B.13) in Appendix B.

Combining Eq. (3.33a), (B.1), (B.3), (B.7), (B.12) and (B.13), and only keeping the squared

terms in @,, @, , and ¢,, then the Green’s function G 4 can be obtained as follows:
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~

qk

o .
%a)q+Re§+zIm§

-2 2 .
@ — @, +Red +ilm¢

(3.43)

where & and { are two functions respectively dependent on vectors & and ¢ . “Re” and “Im”

represent their real- and imaginary-parts. The details of & and ¢ are given in Appendix C, and

their real- and imaginary-parts in the Supplemental Material [25]. From the Green’s function,

Egs. (3.43) and (2.12), we obtain the spectral-density function

X [5;; @, +Re fj Im{ — (a)2 - (Nq(3))2 )Imf

Ch exp(Brhw)-1 (wz _(@(3))2)2 +(Im¢)

q

where, ((T)q(3))2 = a)j —Re( . Then, the N, and the number density are

)
N, = &Ll +1Re§jcoth ﬁh;)"

)

703 3 &0
o, o, a
n, = ~§3)(1+1R65J l+£ 2 ] cothﬂh 21
20, , ,

[\)
£

The effects of C,(k,,k,,k,) and C,(k,,k,,k,,k,) are included in Re( .

(3.44)

(3.45)

(3.46)

The energy of the system calculated from Eq. (2.22) is very complicated for a =§. It is

represented in Supplemental Material [25]. Undoubtedly, when the cubic term is considered into

our calculation, it becomes very complicated. However, we emphasize that the cubic term is

important to thermal conductivity, even though the influence of the cubic term can exist only for

a third-order state or a higher commensurate one [28].
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D. a=sb

. . . . . . 27ms
s 1s a rational number less than one. In this case, there is an integer n for which ng = -
a
is a reciprocal lattice vector. This means éq éwgk , @, =ad,, . Ignoring the effect of the
cubic- and quadratic- terms of the FK model, we have from Egs. (2.17a) and (2.17b)
~ o P~ o )?~ )
2 2 q q _ gk
(@ -?)G, + a[ ] A a[ - J G =0 (3.47)
g+(n-l)g gtg
Using the substitution ¢ — g+ g ...q — g+ (n—1)g, we obtain a matrix equation
1 1 §qkw
) ) w 2 w 2 ~ T
o -, o — 0 0 o 4 ak
@y Dy (n1)
1 1 6 5q+gka)q+g
a, + ’ 2 2 a)q+g ? qrek
o £ o -w,, o—"=* 0 0 = T
a)q a)q+2g e
S : )
Opsinirg | Dysong | 2 2 G
o ) O 0 o w o - a)q+(n—l)g aH{n—1)gk 5q+()1—1)kwq+(n—l)k
q q+(n-2)
7
(3.48)
27V, : : .
where o =- . If we require solutions accurate only to the squared terms of ¢, the solution

m

of the equation is

5, < L oue o+l —ny)

4
“Tr o -, —a? (6" +6!) G4
where.
1 1
771(’) = §q+gk (a)qwq+g) (Aq+g q+g )+ 5(1 gk ( q q g )E (Aqu - ir‘f*g ) (3503)
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1 1
() _ (©,0,.,, ) (0,0,
"= +2kﬁ( vg T A —il L i, ) +0, 00— P (Af EEAVEE P | DAL 1 DA
q+2g o, -0, g+g T “a+2g q+2g q9-2g 0 -0, -2 9-2g
(3.50b)
2A L —A —irC ., +il
ﬂg,,) _ §qkqu q+sg q+(2s+1 arsg T gils+i)g (3.50¢)
s=1 wq+sg - wq+(3+1)
0" =A,, i,  +A,,, ~iT,, (3.50d)
ez(r) _ ((02 _ a)j )f Agise = Aq+gf+1 lf‘qﬂg + il—‘q+(‘v+1)g (3.50¢)
s=1 a)q+sg - a)q+(s+1)g

The A and I' are similar, respectively, to the definition in Eq. (3.24a) and (3.24b). The spectral-

density function can be obtained from the Green’s function

L2
“ rlexp(Bho)-1]
o im0+ 005, @, + Relom” + o2 (1) = o = (@) Jimlomt + 02 - )]

o - (@) fm [im(g + 60
(3.51)

where (ﬁ)y)) 60 +o Re(9 +6' )

Next, we use the J, to evaluate some physical properties. First, the correlation function N,

1S

=(r n-2

10) n) A

M=qam&q£1azqw ﬁm] (3.52)
)

N(r) 2 - a)

q = q+vg q+ s+1

The number density of phonons is

1 ), ﬁhN & Akﬂ k+ s+l)g
n, :Z[[ﬁ)(’;) + a’;k ]coth }[ - Z K (3.53)

(3 s=1 wkﬂg a)k+(v+1)

To calculate the energy of the system, we first must evaluate <V2>
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<V2> = Z Z aN)(r)Z (Ak—g + Ak+g ) (354)

Using Eq. (3.54) and Eq. (2.22) and ignoring < > and < > the energy of the system is

() o) 2 A
Z o {(3@,{ 0, Jcoth ,th }(1 = krsg ~ k+(s+l J

a)k s=1 a’kﬂé a)k+(s+1)
~( (3.55)
ha COth'Bh
- 2 ; aN)(r) (Ak—é +Ak+é)
e

For this case, s, is an irrational number less than one, meaning that that our system is

. 27, . . . . .
incommensurate, and g =—=. Any integer multiple of g is not a reciprocal lattice vector. To
a

simplify our calculation, we also ignored the effect of the cubic- and quartic-terms of the FK on-

site potential. Combining Eq. (2.17a) and (2.17b), we obtain

1 1
~ o )~ o )~ )
(@ -2 )G, + 0{—"} Gyt a(—"] Gy =L, (3.56)
1) o T

q-g @yg

Eq. (3.56) can be written in a matrix form
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0 1 0 0 0 0 .
2 5!172gkwq 2g
2 2 a)‘lfzg -
o -o,, o 0 0 0 0 V4
a) ~
q9-8
L L a2t 5 o
) 2 ) 2 q—gk"q-g
0 of == -, o —= 0 0 0| & =
Wy ¢ @, =gk
1 1
o, \? o, | ~ 6,
0 0 o) —2 - o — 0 0 Gu |= e
w‘i*g a)‘l+g d
1 1 N
0 0 0 0{ wq+g ]2 wz _wz 0{ a)q+g }2 0 Gq+gk M
qtg
wq wq+2g _ T
@ % Gq+2gk
0 0 0 0 ol _at2g w2 — a);+2g vee 6q+2gkwq+2g
Oy+g T
0 0 0 0 0
(3.57)
27V, . : L
where o =— et In principle, the extent of this set of equations is infinite. We cannot solve
m

them accurately, but since we only require accuracy to quadratic terms in &, G & can be written
as

~ _ 16,0, +on" +a*(n - n?)
“r a)z—a);—az(el(")+92(”)

(3.58)

where 717, 7\, and 6" have same form as 7", 7\”, and 6" in Eq. (3.50a), (3.50b) and

(3.50d), respectively. 773(i) and 02(” are

5qka) z|: q v+1 lr + lr v+1 + AquSg _Aq+2v+l Zf‘qu?g + lr + ?+1 :| (3.593)
(0 a)qf(ﬁl)g W5 ~ Dyi(s41)g

2 2 2
@, - a) (Y+l) a)q+sg - a)q+(v+1)

ol = ((02 2) N |:Aq—sg B Aq—(Hl) B ZT g-sg T irq—(sﬂ)g 4 Aq+sg B A¢1+(S+1) quﬂg + irq+(5+1)g :|
1

(3.59b)
The spectral-density function is obtained from the Green’s function
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2
M= alenplpha) -1
N (0 + 615, , +Relan + o (79 - )+ [a) i))z]lm[anl(i)+a2(772(i)_77§i))]

7 (@} [ + o fimlg? + 69 F

(3.60)

where ( ) a)2 +a Re(ﬁ +92(i)). From the J, , the correlation function N, is obtained:

75(0)
N, ==t coth %)) g Z Burtons | Bavss ~Barten (3.61)
~(z) 2 wz a)z —(1)2 :
W5 q=(s+1)g q+sg g+(s+1)g
The number density of phonons then is
1 @ ) s (s+ A +s -A +(s+
n, =—Hf)(’;)+wk jcothﬂhw } -« Z{ kg e ]; g krlolle } (3.62)
4|\ & 0 2 s=1 a)k sg a)k (s+)g  Dhrsg — a)k+(s+])

Similar to our description in Section D, the energy of the system is

Zh {(3(0,( _ k j th,BhN :| l—a Z k —sg  Ph—(s+l)g + Ak+sg _Ak+(s+l)g
a)k s=1 a)k -sg a)k (s+1)g a)lz+sg _wlir(sﬂ)g

(3.63)

We can obtain the respective phonon dispersions of the commensurate- and incommensurate-
structures from the coefficient matrix of Eq. (3.48) and (3.57). If we ignore the effect of the
cubic- and quartic-terms of the FK on-site potential, the phonon dispersion is independent of
temperature. Comparing the two coefficient matrices, the only difference between the
commensurate and incommensurate states is the finite number of coupled wave vectors in the

former case, and the infinite number in the latter. The normal modes of the commensurate
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structure will be divided into finite branches and those of the incommensurate structure will be

infinite branches.

To intuitively understand the difference between the phonon dispersions of the commensurate-

and incommensurate-lattices, we give, in Fig. 4, some calculated examples with close values of
a e : :
5 For the infinite number of coupled wave vectors in the incommensurate state, we must make

some approximations to calculate the dispersion of the incommensurate structure. We only keep

g £30g or less from the center of the wave vectors, such that the coefficient matrix of Eq. (3.57)

becomes a 61x61 dynamical matrix centered about wave vector, ¢q . Figs. 4 (a)~(c) respectively
. : 7 .
show the dispersion for the commensurate case of bzga and the incommensurate cases of

b=1.17a and b=1.167a, with normalized frequency @, =1 and the amplitude of the FK on-

2

0:
2

ma

site potential

0.1. We note (see Figs. 4 (a) and (c)) that the plots become similar when
b . .

the value of — for the commensurate- and incommensurate-states are very close, as in the
a

present calculation. However, we believe that the plots will be quite different when we increase

the size of the coefficient matrix of Eq. (3.57).

Novaco [23] did not realize this problem, i.e., that the dispersion curves of commensurate- and
incommensurate-states will display large differences if the order of the coefficient matrix of Eq.
(3.57) is large enough. His results probably were constrained by computing conditions at that
time. We point out that the approximation of using a simplified truncation to calculate the
dispersion for the incommensurate state is not sufficient because we cannot judge which of the

summation limits of s — o in Eq. (3.59) is convergent, i.e., convergence of the infinite matrix.
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Thus, we reached a different conclusion from Novaco [23], and it is not reasonable to expect to
find the dynamical structure of an incommensurate state closely resembling that of “nearby”
commensurate states, provided that both are described in a way that does not explicitly
distinguish between them. The result obtained will affect the nature of incommensurate-

commensurate phase transition.

In addition, our calculation indicates that the commensurate case has a definite gap at zero
wave vector, while the incommensurate case shows a branch that goes to zero, and the various
gaps in the commensurate case are true gaps wherein there is zero density of states. In the
incommensurate case, there exist some gaps similar to those of the commensurate state, but there
are some modes inside these gaps, although their density is very low. These results are consistent
with those of Novaco [23]. The phonon density of states shown in Fig. 4 (d)~(f) clearly reveal

these results.

Sutherland [21, 22] studied the dispersion of the incommensurate state in the continuum limit.
He found that the spectrum separates into two branches. The lower branch represents the
collective motions of the lattice dislocations, as “acoustical” phonons, and the upper branch
corresponds to renormalized “optic” phonons [13, 23]. We cannot readily distinguish the two

phonons in our calculation; perhaps this is a limitation of the continuum limit approximation.

As mentioned when we keep up only to squared terms of the FK on-site potential model; the
phonon dispersion is independent of temperature. In this approximation, the number density and
energy of the system for the commensurate- and incommensurate-state have a simple

relationship for the dependence on temperature (see Egs. (3.53), (3.55), (3.62) and (3.63).
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To discuss incommensurate-commensurate phase transitions, we need to compare the energy
of incommensurate and commensurate structures. From a mathematical point of view, we always

can find a rational number that is indefinitely close to an irrational number. Therefore, the energy

obtained from Eq. (3.55) and (3.63) can be indefinitely close when rational values of % ina

commensurate state are indefinitely close to an irrational number % in an incommensurate

state. For this case, the incommensurate-commensurate phase transition is continuous. We
cannot analytically describe the sum upon s in Egs. (3.55) and (3.63), and hence, the
incommensurate-commensurate phase transition is a continuous transition with an unusual
nonanalytic nature, described as a “devil’s staircase”. This agrees with Aubry’s result [29], but is

only valid at zero Kelvin. Here, we need to emphasize, from Egs. (3.55) and (3.63), that our

result shows that this devil’s staircase also can exist at finite temperature. In real crystals, %

always is a truncated number with a limited number of decimal places. When we compare a
commensurate structure of a rational fraction with an incommensurate structure of a truncated
irrational number, the energy of the commensurate and incommensurate structures will become
discontinuous. Therefore, it implies that the incommensurate-commensurate phase transition in

real crystals may be a discontinuous- or first order-one.

IV. Summary and Conclusions

In this work, we analyzed the lattice vibrations in the FK model using the technique of
thermodynamic Green’s functions based on field-theoretic methods. We treated the FK model as
an external on-site potential, and expanded the external-potential into four terms. When the FK
model potential is considered as a perturbation, we analyzed its solution for the phonon

dispersion, number of density of phonons, and energy of the system. We first discussed several
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low-order commensurate states, and found that the cubic terms of the FK on-site potential could
only affect only the third-order state or higher commensurate ones. When the cubic- and quartic-
terms of the on-site potential are considered, the calculation becomes very complicated. Based
on the results of these low-order commensurate states, we analyzed the arbitrary orders of
commensurate states and the incommensurate state were analyzed. When we ignored the terms
above the quadratic in the displacement in the FK on-site potential, then the phonon dispersion is
independent of temperature. Therefore, the energy of the system has a simple relation with
temperature from which, we find that the incommensurate-commensurate phase transition is a

non-analytic devil’s staircase at finite temperature.
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Appendix A

Using replacement g — ¢ +r in the subscript of Egs. (2.20a) and (3.20), we obtain another
a

two equations.

e —w G (A.1)
q+£k q+% q+£,k
S ,
,\,(1) _ q+zk ~
G, = +o G ,
q+;,k w q+; q+;,k
(A.2)
2 4 )
'V, 3rn'hV, 1 2~
+ 0 0N — (474 o o| G
2ma’ 4m2a4N§wk2< f k2>}[ g+ qj ak

Egs. (2.17a), (3.20), (A.1) and (A.2) constitute a system of equations. G .« can be solved from
it.
Appendix B

1) Only the effects of C,(k) and C,(k,,k,) are considered

. 2 .
Using replacement ¢ —3—7[ — ¢ in Egs. (3.33), we have
a

5 —w GO
oG 22, SO _LﬂG Do, (B.1)
q 32 q 3 q 3a
) 27 _% _%
g
GO "5 G G G
oG o =— 4w 2”G e TO| @O 5, @O G . T O a)qa) 27 qu (Bz)
-~k T g——— q———*k g+— q——— g+—k 49—~
3a 3a 3a 3a 3a 3a 3a
2
and g+ ——¢q
(lﬁ 2r =w ZHG(I)Zﬂ' (B3)
q+=—k q+— +——k
a 3a 3a
F() 5"*% . e 5
_ a
WG, = +o ,,G ,, toploo | Gt o, | G, (B.4)
g+==k T g+=— q+—k g+ q9——— q+_— -k
3a 3a 3a 3a 3a 3a 3a

2) Including the effects of C,(k,,k,,k,) and C,(k,,k,,k,.k,)
. 2r .
Using replacement g 34 — ¢ in Egs. (3.40), we have
a
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~ q—z—”k ~ 2 ~
aﬁ(l)hr = 5 tw 27rG 2 +(6¥2+0(4) w 27ra) 2r G 2
CEEVAR (4 LRV Y T3 “3at
1
5
+(a, +a, ) OO 5 G, (B.5)
3a
2 (1) 27
+Za3 Q0.0 5, Fklkzk Ak +k,—g—— _A(kl"'kz_Q)
ks S 3a
and g+——¢q
1
~ q+2—”k ~ _E ~
wG(l)zzz = '+ @ 22G 2n +(0(2+0(4) O 5,0 5 2z
q+§k /4 q+§ q+§k q—g +§ q—gk
1
5
+(o, +a,) OO 3 G, (B.6)
3a
) 27
+ZO{3 @, 0,0 5, kikok A(k1+k2—q)—A ki +k,—q+—
ks Y 3a
Substituting Eq.(3.42) into Eq. (3.40) yields
w, — afF(q —~ iﬂj - afF(q + iﬂj
a)@fllk) =% 4 4 4 5qk
T a)q
1
2 % 2~
+l o, +a, + 0(3F(q ——j o 0 - (B.7)
a 3, q—gk
1
2 ~
+ a, +a, +0(32F(q+2—7[j o 0| G ,,
3a (AW q+§k
where,
Fg)=Y flg.k) — 1 —— 1 (B.8)
k @ _(a)k +a)q—k)z @ _(a)kl _a)q—k)z



2 2 2 2 2 2
o -, +w W+ —a
L bk N LN, 120N+ NE)) (B.9)

q—k

. 2a)ka)q_kt @, ,
3. 1
= _%(%jz (B.10)
and,
_27'ny, ZNk B.11)

YT 8Imla'N T ;k

2 2
From Eq. (B.7), using ¢ —3—” or substituting g + 3—7[ for g, two other equations were
a a

27
o 27, a)2 Zﬁ_F(q-i_?’}_F(q)
AL ) ? G
q*%k T a)q_ZJ ,élk
3a
1
2 2~
+o+o,+Flg+—||w ,,0 ,,| G ,, (B.12)
3a q+§ q—g q+§k

5
+(052+0(4+F(Q))[a)qw 2;;} qu

~ 27y = 3
aﬁ(l)zﬂ = q+3a + +3 e 2
q+§k T ) r q+3—k
(1+§
5
+(a, + o, + F(q)) OO 5 G, (B.13)
3a
2 2
to+to+Flg—— || @ ,,0 ,, 2
3a q*g q 30 q*g
Appendix C
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2 2
w —® 2r
2 q
+o;————| Flg)+F|g+=— (C.1)
o - ,, 3a
3,
(o, +a,) 1 L, o -0, 1 !
M 4 2 2 2 2 2 2 2 2 T2 2
o —-—w ,, o —-—w ,, O, —W ,, | O —W ,, o —-w ,,
3, == g+ 9> +o= -7
a 3a 3a 3a 3a 3a
5 2r 5 5 2 E
q+§;k q—gzk
C()qa) . C()qa) o
ya g T =3
52(0(2+014) > > + 2 2
0 -, - ,,
4 3a 1 3a

s 3a 3a
+_‘Zé 2 2 + 2 2
T -, o -,
g+ -
3a 3a
S O o, > 0 o, 2
7{10) __ 3a a @ ) . 3a a @ )
q q % q V4
, T /2 g5 V4 o 1 1
—(,+a,) 2 2 -~
( 2 4 2 2 2 2 2 2
P Uy -0, O-0,
3 9 g+ -
a 3a 3a 3a

(C.2)
Using F (q) expression in Egs. (B.8) and (B.9). The whole representation of ¢ ’s and &’s real

and imaginary parts are shown in Supplemental Material [25].
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Fig.1. Phonon dispersion for a =5 without the FK on-site potential (black solid

line), and including the FK on-site potential (red dashed line). @, =1 and

v,

ma

>-=0.1 are used in the calculation.
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Fig. 2. Phonon dispersion for a =§ with the FK potential. Two branches are

shown using a black line and a red line. The parameters used in the calculation
are same as those in Fig.1.
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Fig. 3. Phonon dispersion for azg with the FK on-site potential. Three

branches are shown using black, red and green lines. The parameters used in the
calculation are same as those in Fig.1.
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Fig. 4. The phonon dispersions of a commensurate chain (a) with b :%a, that of

incommensurate chains (b), with b=1.17a, and (c) with b =1.167a . The curves (d),
(e), and (f) on the right correspond to the phonon density of state. The parameters
used in the calculations are same as those in Fig.1.



