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Lattice Vibrations in the Frenkel-Kontorova Model. Ⅰ. Phonon 
Dispersion, Number Density, and Energy  

Qingping Meng*, Lijun Wu, David O. Welch, and Yimei Zhu* 

Brookhaven National Laboratory, Upton, New York 11973, USA 

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the 

Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms 

subjected to an on-site potential, using the technique of thermodynamic Green’s functions 

based on quantum field-theoretical methods. General expressions were deduced for the 

phonon frequency-wave-vector dispersion relations, number density, and energy of the FK 

model system. As the application of the theory, we investigated in detail cases of linear 

chains with various periods of the on-site potential of the FK model. Some unusual but 

interesting features for different amplitudes of the on-site potential of the FK model are 

discussed. In the commensurate structure, the phonon spectrum always starts at a finite 

frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the 

incommensurate structure, the phonon spectrum starts from zero frequency but at a non-

zero wave vector; there are some modes inside these gap regions, but their density is very 

low. In our approximation, the energy of a higher-order commensurate state of the one-

dimensional system at finite temperature may become indefinitely close to the energy of an 

incommensurate state. This finding implies that the higher-order incommensurate-

commensurate transitions are continuous ones, and that the phase transition may exhibit a 

“devil’s staircase” behavior at a finite temperature.  

PACS numbers: 63.20.-e; 63.20.D-; 63.70.+h  
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I. Introduction 

Recent investigations revealed that materials consisting of two interpenetrating 

incommensurate sub-lattices, such as NaxCoO2 [1], Ca3Co4O9 [2, 3], and Bi2−xPbxSr2Co2Oy [2, 4], 

have very good thermoelectric properties. One reason for this is that these materials have very 

low lattice thermal conductivity [3]. To understand their lattice thermal conductivity, we need to 

know the lattice vibrational properties of two inter-penetrating sublattices. Some insights into 

this problem might be obtained from a studing the Frenkel-Knotorova (FK) model. 

The FK model describes a chain of classical particles coupled to their neighbors, and subjected 

to a periodic on-site potential. This model has received much attention because of its relevance to 

a wide variety of physical problems. The FK model originally was proposed to model 

dislocations in epitaxial monolayers [5, 6], but its surprising ability to describe many physically 

important phenomena, such as the dynamics of absorbed layers of atoms on crystal surfaces [7, 

8], charge-density waves [9, 10], ferro- or antiferro-magnetics [11], and superionic conductors 

[12], has attracted much attention from physicists working in solid-state physics.  

Some simple classical models have been analyzed that describe an atomic chain with nearest-

neighbor interactions and subjected to a periodic on-site potential [13~19]. For them, phonon 

dispersion, the dynamic structural factors of crystals with incommensurate lattices, were studied 

at the long-wavelength limit. If the effects of lattice discreteness are neglected, the long-

wavelength limit transitions to the continuum-limit approximation, and the nonlinear differential 

equations of motion are obtained for these classical models. For the FK model, this 

approximation leads to the exactly integrable sine-Gordon equation that possesses many 

interesting properties and allows exact solutions describing different types of nonlinear 

excitations [20]. However, the FK model inherently is discrete and not exactly integrable [20]. 
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Therefore, this simple approximation will engender some deviations. For example, Sutherland 

[21, 22] found that the phonon spectrum separates simply into two branches in the continuum-

limit approximation. The lower branch represents the collective modes of lattice dislocations, 

while the upper one corresponds to renormalized phonons [13, 23]. Following standard 

procedures in the theory of lattice dynamics, the phonon spectrum may include multiple branches 

[7, 23]. Thus, the FK model at the simplest continuum limit intrinsically may be too simple, and 

misleading in some cases.  

    Typically, the FK model utilizes an on-site potential to describe the interaction between two 

interpenetrating sub-lattices. Classical theories have revealed some of the static- and dynamic-

characteristics of lattice vibrations in such systems [13~23]. However, classical theories mainly 

give the results using a long-wavelength approximation, and temperature effects are not 

considered in any of the classical theories; indeed, and the discussion of lattice vibrations at low 

temperature is beyond the scope of the classical theory.  

    The present work was motivated by our desire to understand the thermodynamic properties of 

materials with two interpenetrating sub-lattices. The formulation of thermodynamic Green’s 

functions leads naturally to the evaluation of the energy of a system via correlation functions; we 

have not identified any previous publication wherein the description of the energy of an FK 

model system has been evaluated quantum mechanically. In section Ⅱ, we deduce an expression 

for the correlation function resulting from the FK model, using thermodynamic Green’s 

functions. From this correlation function, we obtained the phonon dispersion, the phonon number 

density, and the energy of the system. In section Ⅲ, we first use the general formulae deduced in 

section Ⅱ to calculate the properties of some low-order commensurate states, and then, from 

these results, we extend the calculation to commensurate states of any order, and to the 
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incommensurate state. A detailed discussion of these findings is given; Section Ⅳ contains our 

summary and conclusions.  

Ⅱ. General Formalism 

A. The Hamiltonian 

    We consider a system consisting of a lattice of atoms with harmonic vibrations that interact 

with an external perturbing potential, i.e., the FK model. The total crystal Hamiltonian can be 

written as 

    10 HHH +=                                                                                                                           (2.1) 

where 0H  is the harmonic Hamiltonian of the unperturbed lattice given by 

    ( )∑∑ +++ +=⎟
⎠
⎞

⎜
⎝
⎛ +=

kj
kjkjkjkjkj

kj
kjkjkj BBAAaaH ωω hh

4
1

2
1

0                                                            (2.2) 

1H  is the perturbation Hamiltonian arising from the external on-site potentials of the FK model, 

and kjω  is the frequency of a phonon with wave vector k  and polarization index j . Hereafter, 

we use k  to represent the pair of variables k  and j . kA  and kB  are phonon operators that we 

define in terms of the usual phonon creation- and destruction-operators, +
ka  and ka : 

+
−

+
− =+= kkkk AaaA  and +

−
+
− −=−= kkkk BaaB . 

    We can write the external on-site potential of the FK model as 

    ( )[ ]∑ ⋅−=
l

VH lxgcos101                                                                                                        (2.3) 

where g  is the wave vector of the periodic external potential, and lx  is the position of an atom, 

l , of the linear chain. For one dimension, 
b

g π2= , where b  is the period of the on-site potential; 
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ll ualx += , a  is the lattice constant of the linear chain; l  is an integer; and lu  describes a 

deviation from the lattice’s original equilibrium position. 0V  is the amplitude of the on-site 

potential of the FK model. Assuming that lu  is small and only considering the one-dimensional 

case, 1H  can be written to the fourth-order in the deviations from the original equilibrium 

positions as follows: 

    ( ) ( ) ( ) ( ) ( )∑
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +−−=

l
llll guguglaguguglaVH 342

01 !3
1sin

!4
1

!2
11cos1                       (2.4) 

Using 

( ) k
k

k

l Aikla
Nm

u ∑⎟
⎠
⎞

⎜
⎝
⎛= exp1

2 2
1

2
1

ω

h                                                                                              (2.5) 

and ignoring the constant term in 1H , 1H  is 

    
( ) ( ) ( )

( )∑

∑∑∑
+

++=

4321

4321

321

321

21

21

1

1

,,,
43214

,,
3213

,
212111

,,,,

,,,

kkkk
kkkk

kkk
kkk

kk
kk

k
k

AAAAkkkkC

AAAkkkCAAkkCAkCH
                                   (2.6) 

where, for a one-dimensional Bravais crystal of N  atoms, each of mass m , 

( ) ( ) ( )[ ]gkgk
m
N

b
VikC k −Δ−+Δ⎟

⎠
⎞

⎜
⎝
⎛−= −

112
12

1

0
11 12

ωπ h                                                                 (2.7a) 

( ) ( ) ( ) ( )[ ]gkkgkk
mb

VkkC kk −+Δ+++Δ= −
21212

1

2
0

2

212 212
, ωωπ h                                                  (2.7b) 

( ) ( ) ( ) ( )[ ]gkkkgkkk
m

Nb

VikkkC kkk −++Δ−+++Δ⎟
⎠
⎞

⎜
⎝
⎛= −

3213212
12

3

2
1

3

0
3

3213 3212
3

2,, ωωωπ h              (2.7c) 
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( ) ( )
( ) ( )[ ]gkkkkgkkkk

Nbm
VkkkkC kkkk

−+++Δ+++++Δ×

−= −

43214321

2
1

42
0

24

43214 432112
,,, ωωωωπ h

                                     (2.7d) 

with ( ) 1=Δ k  for 0=k ; otherwise ( ) 0=Δ k . 

B. Thermodynamic Green’s function and time-correlation functions 

    To evaluate some necessary correlation functions, we need to know the thermodynamic 

Green’s function for this model: 

    ( ) ( ) ( ) ( ) ( ) ( )[ ]','',' tAtAttitAtAttG kqkqqk
++ −−==− θ                                                          (2.8) 

( )tθ  is the step function. The time correlation function is 

    ( ) ( ) ( )tAtAttQ qkkq '' +=−                                                                                                         (2.9) 

The brackets L  represent the thermodynamic average over a canonical ensemble. Namely, for 

any operator O  

    H

H

Tre
OTreO β

β

−

−

=  

where 
TkB

1=β , Bk  is the Boltzmann constant, and T  is the absolute temperature.  

    We define the Fourier transforms ( )ωqkG~  and ( )ωkqJ  of the Green’s function and the time 

correlation function as follows: 

   ( ) ( ) ( )∫
∞

∞−

−−=− ωω ω deGttG tti
qkqk

'~'                                                                                           (2.10) 

and, 

    ( ) ( ) ( )∫
∞

∞−

−−=− ωω ω deJttQ tti
kqkq

''                                                                                           (2.11) 

( )ωkqJ  is the spectral-density function and is related to the Green’s function by 
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    ( ) ( ) ( )εω
ωβ

ω iGJ qkkq +
−

−= ~Im
1exp

2
h

                                                                              (2.12) 

where 0→ε  is implied. 

Following Pathak’s method [24], and the detailed presentation in Supplemental Material [25], 

the correlation functions can be obtained  

( ) ( ) ( ) ( ) ( )∫
∞

∞−

−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++== ωω

ωω
ω

ω
ω

ω
ω ω deJtaatQ ti

kq
qkqk

qkkq

2
1 1

4
10                                       (2.13a) 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++== ωω

ωω
ω

ω
ω

ω
ω ωωβ deeJtaatQ ti

qk
qkqk

qkkq
h

2
2 1

4
10                                 (2.13b) 

C.  Calculation of the thermodynamic Green’s function 

    As discussed above, Green’s function must be known to calculate the correlation functions. 

We used Zubarev’s method [26] for obtaining them in this paper. From the equation of motion 

for an operator ( )tO  

    ( ) ( )[ ]HtO
t
tOi ,=

∂
∂

h ,  

the equation of motion for the Green’s function ( )', ttG kq −  is 

    ( )1
qkq

qk G
t

G
i ω=

∂
∂

                                                                                                                   (2.14a) 

and, 

    

( )
( ) ( )

( ) ( )∑∑

∑
++ −+−+

−++−=
∂

∂

321

321

21

21

1

1

,,,,8,,,6

,4'2

3214213

12

1

kkk
kkkk

kk
kkk

k
kkqkqqk

qk

AAAAqkkkCAAAqkkC

GqkCGtt
t

G
i ωδδ hhh

       (2.14b) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]','','1 tAtBttitAtBttG kqkqqk
++ −−==− θ .  
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    To obtain  qkG , we employed some approximations. For example, the last term of right side in 

Eq. (2.14b) was decoupled according to relation [24, 26]  

    bcadbdaccdababcd ++= .                                                                            (2.15)  

To discover the Green’s function, ( ) ( )',
2121

1 tAAA kkkkkk
+=Γ , contained in the third term of the 

right-hand side in Eq. (2.14b), we need other new Green’s functions ( ) ( )',
2121

2 tAAB kkkkkk
+=Γ , 

( ) ( )',
2121

3 tABA kkkkkk
+=Γ , ( ) ( )',

2121

4 tABB kkkkkk
+=Γ , as is apparent from the following equations 

of motion  

    
( )

( ) ( )32
1

212211

21
kkkkkkkk

kkk

t
i Γ+Γ=

∂
Γ∂

ωω                                                                                               (2.16a) 

    

( )
( ) ( ) ( ) ( ) ( )

( )

( )∑

∑

∑

+

+

−+

−+

Γ−+−+Γ+Γ=
∂

Γ∂

'
3

'
2

'
1

2
'
3

'
2

'
1

'
2

'
1

2'
2

'
1

'
1

2
'
12211212

21

,,,,8

,,,6

,42

1
'
3

'
2

'
14

1
'
2

'
13

1
1

'
1211

14
2

kkk
kkkkk

kk
kkkk

k
kkkkkkkkkkkkk

kkk

AAAAAkkkkC

AAAAkkkC

kkCGkC
t

i ωω hhh

                           (2.16b) 

 

( )
( ) ( ) ( ) ( ) ( )

( )

( )∑

∑

∑

+

+

−+

−+

Γ−+−+Γ+Γ=
∂

Γ∂

'
3

'
2

'
1

'
3

'
2

'
11

'
2

'
1

'
2

'
11

'
1

'
111212211

21

,,,,8

,,,6

,42

2
'
3

'
2

'
14

2
'
2

'
13

1
2

'
1221

14
3

kkk
kkkkk

kk
kkkk

k
kkkkkkkkkkkkk

kkk

AAAAAkkkkC

AAAAkkkC

kkCGkC
t

i ωω hhh

                              (2.16c) 
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( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( )∑

∑

∑∑

∑∑

+

+

++

−+

−+

−+−+

Γ−+Γ−+

−+−+Γ+Γ=
∂

Γ∂

'
3

'
2

'
1

2'
3

'
2

'
1

'
3

'
2

'
1

'
3

'
2

'
11

'
2

'
1

2
'
2

'
1'

2
'
1

'
2

'
11

'
1

'
11'

1
2

'
1

12212211

21

,,,,8

,,,,8

,,,6,,,6

,4,4

22

1
'
3

'
2

'
14

2
'
3

'
2

'
14

1
'
2

'
132

'
2

'
13

2
2

'
12

3
1

'
12

1
21

1
11

23
4

kkk
kkkkk

kkk
kkkkk

kk
kkkk

kk
kkkk

k
kkk

k
kkk

kkkkkkkkkkkk
kkk

ABAAAkkkkC

AAAABkkkkC

ABAAkkkCAAABkkkC

kkCkkC

GkCGkC
t

i ωω hhh

      (2.16d) 

    To solve Eq. (2.16) to obtain these Green’s functions, we neglected the five-operator Green’s 

functions; and the four-operator Green functions can be decoupled as sums of the products of the 

two-operator correlation functions, and the two-operator Green’s functions. Using Fourier 

transforms, and kkk AAN += , Eqs. (2.15) and (2.16) become 

    ( )1
,,

~~
kqqkq GG ωω =                                                                                                                     (2.17a) 

    

( ) ( ) ( ) ( )

( )∑

∑∑

−−+

Γ−+−++=

21

12

21

21

1
1

,2214

1
213,12,

1
,

~,,,24

~,,6~,4~~

kk
kkk

kk
kkk

k
kkkqq

qk
kq

GNqkkkC

qkkCGqkCGG ω
π
δ

ω h
h

h

                          (2.17b) 

and,  

    ( ) ( ) ( )321
21221121

~~~
kkkkkkkkkkk Γ+Γ=Γ ωωω                                                                                                (2.18a) 

    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )∑∑

∑

−−+−−+

Γ−+−+Γ+Γ=Γ

'
1

'
12

'
1

2'
1

'
1

2
'
1221121221

~,,12~,,6

~,4~2~~~

12
'
131

'
1

'
13

1
1

'
1211

142

k
kkk

k
kkk

k
kkkkkkkkkkkkkkkk

GNkkkCGNkkkC

kkCGkCωωω hhh

                            (2.18b) 

    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )∑∑

∑

−−+−−+

Γ−+−+Γ+Γ=Γ

'
1

'
11'

1

1'
1

'
1

'
11121221121

~,,12~,,6

~,4~2~~~

21
'
132

'
1

'
13

1
2

'
1221

143

k
kkk

k
kkk

k
kkkkkkkkkkkkkkkk

GNkkkCGNkkkC

kkCGkCωωω hhh

                            (2.18c) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )∑∑

∑∑

∑∑

+

+

−−+−−+

−−+−−+

Γ−+Γ−+

−+−+Γ+Γ=Γ

'
1

'
122'

1

2
'
1

'
1

'
111'

1

1
'
1

'
1

'
11'

1
2

'
1

1221221121

~,,12~,,6

~,,12~,,6

~,4~,4

~2~2~~~

12
'
13

1
1

'
1

'
13

21
'
13

1
2

'
1

'
13

2
2

'
12

3
1

'
12

1
21

1
11

234

k
kkkk

k
kkk

k
kkkk

k
kkk

k
kkk

k
kkk

kkkkkkkkkkkkkkk

GBAkkkCGNkkkC

GABkkkCGNkkkC

kkCkkC

GkCGkCωωω hhh

                          (2.18d) 

D. The number density of phonons 

    From these correlation functions, we calculated the number density of phonons from equations 

(2.13a) with qk =  and 'tt = : 

     ( )∫
∞

∞−

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== ωω

ω
ω dJaan kk

k
kkk

2

1
4
1

                                                                               (2.19) 

E. The energy of the system 

    The energy of the system is given by the thermal average of the Hamiltonian 

    4321 VVVVaaHE
k

kkk ++++== ∑ +ωh                                                                     (2.20) 

The usual zero-point energy of the harmonic crystal was ignored, and 

    ( )∑=
k

kAkCV 11                                                                                                              (2.21a) 

    ( )∑=
21

21
,

2122 ,
kk

kk AAkkCV                                                                                                (2.21b) 

    ( )∑=
321

321
,,

32133 ,,
kkk

kkk AAAkkkCV                                                                                     (2.21c) 

    ( )∑=
4321

4321
,,,

432144 ,,,
kkkk

kkkk AAAAkkkkCV                                                                         (2.21d) 

Following Pathak’s method [24], the energy of system can be simplified as follows: 
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( ) 4322

2

32123
4
1 VVVdJE

k
kk

kk
k −−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= ∑ ∫

∞

∞−

ωω
ω
ω

ω
ωωh                                        (2.22) 

where 2V , 3V  can be obtained from Green’s function ( )ωqkG~  and  ( ) ( )ω1
132

~
kkkΓ ; 4V  are 

evaluated using the decoupling approximation in Eq. (2.15) and ( )ωqkG~ . The detailed processes 

are presented in Supplemental Material [25].  

Ⅲ. Applications 

    In this section, we apply our results detailed in the section Ⅱ to obtain the properties of 

various cases of the periodic FK models. 

A. ba =  

    In this case, the period of the FK potential equals that of the lattice chain, i.e., g  is the 

reciprocal lattice vector. The 1C  and 3C  terms in the FK model vanish, and we get the following: 

    ( ) ( ) ( )212
1

2
0

2

212 21
, kk

ma
VkkC kk +Δ= −ωωπ h                                                                                  (3.1) 

    ( ) ( ) ( )43212
1

42
0

24

43214 43216
,,, kkkk

Nam
VkkkkC kkkk +++Δ−= −ωωωωπ h                                         (3.2) 

For this case, solving Eqs. (2.17) for kqG ,
~  yields 

    
1

22,
~

M
G

q

qqk
kq −−

=
ωω
ω

π
δ

                                                                                                       (3.3) 

where, 

    ∑ +−=
1

11

1

144
42

0
4

2
0

2

1
k

kk
k

AA
Nam
V

ma
VM

ω
ππ h                                                                                   (3.4) 
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( )2
1

1M  is the shift of frequency due to the FK potential. Letting ( ) ( )2
1

1
21~ Mkk += ωω , we obtain the 

spectral-density function from Eq. (2.12) 

    ( ) ( )

( )( ) ( )( )
1

~~
~

11

1 −
+−−= ωβ

ωωδωωδ
ω
ωω

he
J kk

k

k
kk                                                                                    (3.5) 

    Using Eq. (3.5), we then get 

    ( ) ( )

( )

2

~
coth~

1

1
k

k

k
kkkkk dJAAN ωβ

ω
ωωω h=== ∫

∞

∞−

+                                                                    (3.6) 

    The number density of phonons is 

    ( ) ( )

( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∫

∞

∞−

2
2

~
coth

~
~4

11
4
1 11

1

2

k

k

k

k

k
kk

k
k dJn ωβ

ω
ω

ω
ωωω

ω
ω h                                          (3.7) 

    The energy of the system then becomes 

    42 VVnE
k

kk ++=∑ ωh                                                                                                      (3.8) 

   Using a similar method as that detailed in section Ⅱ E, 4V  is 

  ( ) 22

2

4 2
11

8
1 VdJV

k
kk

k
k∑ ∫ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

∞

∞−

ωω
ω
ωωh                                                                           (3.9) 

2V  is obtained from Eqs. (2.9), (2.11), and (2.21b) 

    ( )∑ ∫
∞

∞−

=
k

kk
k

dJ
ma

VV ωω
ω

π 1
2

0
2

2
h                                                                                            (3.10) 

Then, 

    
( )

( ) ( )

( )

∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−=

k

k

kkk

k

k

k
k

k
k ma

VE
2

~
coth~

8
~

~3
8
1

2
1 1

12
0

2

1

1 ωβ
ωω

π
ω
ω

ω
ωωω h

hh                                  (3.11) 

If 01 =M , i.e., if we ignore the action of the FK on-site potential, we readily find that 

12 += kk nN , while kn  and E  become the results of the harmonic approximation from Eq. (3.7) 
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and Eq. (3.11). If 01 ≠M , a shift of frequency will result. In Eq. (3.4), the first term depends 

only on the amplitude of the FK on-site potential; the second term also will depend on the 

temperature.  

    The phonon dispersion for ba =  is 

    ( ) ( )2
1

1
21~ Mkk += ωω                                                                                                                  (3.12) 

When we continue only up to the quadratic term of the on-site potential, Eq. (3.12) becomes 

simple because 1M  is a constant. Then, the frequency spectrum has a finite value ( )2
1

1M  at 0=k

, consistent with some previous results [7, 13, 23]. The unperturbed normal mode frequencies for 

the linear chain are given by  

    ⎟
⎠
⎞

⎜
⎝
⎛=

2
sin k

Lk ωω                                                                                                                    (3.13) 

where Lω  is the largest frequency. As an example, Fig.1 shows the results of the dispersion of a 

monatomic linear chain with ba =  calculated using Eqs. (3.12) and (3.13). In this figure, we 

used the normalized frequency, i.e., let 1=Lω . We also took the amplitude of the on-site 

potential to be 1.02
0

2

=
ma

Vπ  in the calculating of Fig. 1. 

    If the quartic term is retained, and the sum in Eq. (3.4) is replaced by an integral, Eq. (3.12) 

becomes an integral equation (see Eq. (3.4), (3.6) and (3.12)) that can be written as 

    ( )( ) ( )

( )

∫−−+=
π

π

ωβ
ω

ππωω
2

~
coth~

24~
1

142
0

3

2
0

2
221 k

k
kk

dk
am
V

ma
V hh                                                              (3.14) 

For high temperatures, Eq. (3.14) can be written approximately as [25] 

    ( )( ) ( )[ ]βχπωω −+= 14~
2

0
2

221

ma
V

kk                                                                                             (3.15) 
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where ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

−−
2
1

2
0

2
2

2
1

2
0

2

2

2 442
6 ma

V
ma

V
ma L

πωπ
β

βπβχ
h

hh . We replaced the ( )1~
kω  within the 

integral sign in the right side of Eq. (3.14) by ( )( ) 2
0

2
221 4~

ma
V

kk
πωω += , and ⎟

⎠
⎞

⎜
⎝
⎛=

2
sin k

Lk ωω .  

    Using Eq. (3.15), the effect of temperature can be estimated. For this example, we take 

113 sec102~ −×Lω , atomic mass kgm 25105~ −× , lattice constant nma 2.0~ , eVV 5.0~0 , and 

then 2
2
0

2

1.0 Lma
V ωπ ≈ . At KT 300= , we obtain ( ) 01.0~βχ . In this case, the effect of temperature 

is very small. But if eVV 05.0~0 , ( ) 15.0~βχ , then the effect of temperature cannot be ignored. 

If the temperature is high enough, or 0V  is small enough, then the frequency from Eq. (3.15) may 

become imaginary, and the crystal will become unstable.  

    For 0→T , substituting 
( )

( )( )∑
∞

=

−+=
1

1
1

~exp21
2

~
coth

n
k

k n ωβωβ
h

h
 into Eq. (3.14), and using 

Laplace’s method [27] to calculate the integral in Eq. (3.14) (the detailed processing is shown in 

Supplemental Material [25]), we have 

    ( )( ) ( )( )212
2
1

2
0

22
1

0
3

2

2
0

2
221 444~

kkLkk ma
VK

m
V

mama
V ωωωπππωω Δ+=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−+=

−
h                      (3.16) 

where ( )xK  is the complete elliptic integral of the first kind. We will use similar methods to 

detail the number density and energy. Since ( )
kk ωω ≠1~  from Eq. (3.16), the number density of 

phonons does not vanish at absolute zero. It is 

    
( )( )

4

41

16 k

k
kn

ω
ωΔ=                                                                                                                         (3.17) 
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Using 113 sec102~ −×Lω , atomic mass kgm 25105~ −× , lattice constant nma 2.0~ , eVV 2.0~0 , 

and then 2
2
0

2

04.0 Lma
V ωπ ≈ , we find that %01.0~kn . This percentage corresponds to about 1020 

vibrations per mole. 

    The zero-point energy is 

    
( )( )∑∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

k k

k

kkk
k ma

V
ma

VE
ω
ω

ω
π

ω
πω

21

22
0

2

2
0

2

0
418

8
1

2
1 hh

h                                                    (3.18) 

B. 
2
ba =  

    For this case, the wave vector of the on-site potential, 
a

g π= ,  is half that of the reciprocal 

lattice vector. The difference between 
a

k π+  and 
a

k π−  is a reciprocal lattice vector, meaning 

that ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ +

a
kf

a
kf ππ  for any function of the lattice. Therefore, the contribution of 1C  and 

3C  terms in the perturbation Hamiltonian vanish, and 

     ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+Δ= −

a
kk

ma
VkkC kk

πωωπ
212

1

2
0

2

212 214
, h

                                                                    (3.19a) 

    ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+++Δ−= −

a
kkkk

Nam
VkkkkC kkkk

πωωωωπ
43212

1

42
0

24

43214 432196
,,, h

                          (3.19b) 

Eq. (2.17b) becomes 

    ( )
k

a
qq

a
qk

kk
k

kqq
qk

kq GAA
Nam

V
ma

VGG
,

2
1

42
0

4

2
0

2

,
1
,

~1
42

~~

2

22

2

ππ ωω
ω

ππω
π

δ
ω

+

−

+

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++= ∑h                    (3.20) 
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Substituting 
a

qq π+→  in the subscript of Eqs. (3.20a) and (2.17a), we obtain another two 

equations that are represented in Appendix A.   

    Combining Eqs. (2.17a), (3.20), (A.1) and (A.2), we obtain 

       1

222
2

22

1

22
2
1

2

,
1~

−

+

−

+++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

a
qq

a
q

a
qqk

a
qqqk

kq

M

M
G

π

πππ

ωωωω

ωωωωδωδ

π
                                                       (3.21) 

where, 

    ∑ +−=
2

22

2

1
4 42

0
4

2
0

2

2
k

kk
k

AA
Nam

V
ma

VM
ω

ππ h                                                                                 (3.22) 

We define 

    ( ) ( )ωω
ωω ππ

π a
q

a
q

a
q

i
++

+

Γ−Δ=
− 22

1
                                                                                         (3.23) 

Here, 

    ( ) 22

1

a
qa

q
P

π
π ωω

ω
+

+ −
=Δ                                                                                                       (3.24a) 

    ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Γ

++

22

a
q

a
q ππ ωωπδω                                                                                                   (3.24b) 

where P  denotes the principal value. From Eq. (3.21) and (2.12), the spectral-density function is 

    ( )
( )

4
2

2

2

2
2

22

22
2
1

22

1

2

MM

M

e

M
J

a
q

a
qq

q
a

qqk
a

qqqk
a

q

kq

ππ

ππ

ωβ

π

ωω

ωωωωδωδ

π
++

+++

Γ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
−

Γ
=

h
                                                  (3.25) 
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From the spectral-density function, we obtain 

    ∫
∞
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+

Γ+⎟⎟
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⎞
⎜⎜
⎝

⎛
Δ−−

Γ
⋅

−
=

4
2

2

2

2
2

22

2
2

1
12

MM

dM

e
N

a
k

a
kk

a
k

k
k

ππ

π

ωβ

ωω

ω

π
ω

h
                                                   (3.26) 

and the number density of phonons is 

    ∫
∞

∞−

++

+

Γ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−−

Γ
⋅

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

4
2

2

2

2
2

22

2
22

1
11

2
MM

dM

e
n

a
k

a
kk

a
k

k

k
k

ππ

π

ωβ

ωω

ω

ω
ω

π
ω

h
                                       (3.27) 

    kN  and kn  can be simplified when the damping, 
a

k
M π+

Γ2 , is small. At this limit, kqJ  has a 

steep maximum at 
a

kk M πωω
+

Δ+= 2
2

22 . The integrals are evaluated approximately by replacing 

the peak distribution by a Dirac delta function. We then obtain 

    ( )

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

~
coth~

2

2
k

k

k
kN ωβ

ω
ω h                                                                                                   (3.28) 

and,  

    ( )

( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2

2

~
coth

~
~4

1 22

2
k

k

k

k

k
kn ωβ

ω
ω

ω
ω h

                                                                          (3.29) 

where ( )
2
1

2
2

22~
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+=

+
a

kkk M πωω . When kω  is close to ( )2~
kω  we can replace kN  by 12 +kn . We 

use this limit to check the correctness of our derivation. 

    The energy of the system from Eq. (3.8) and (3.9) is 

    
( )

( ) ( )

( )

∑ ∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ Δ
+++−=

+

k k

k

kk

a
k

k

k

k

k
kk

M

ma
VE

2

~
coth~~

~3
8
1

2
1 2

2

2

2
0

2

2

2 ωβ
ωω

π
ω
ω

ω
ωωω

π
h

hh                              (3.30) 
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The phonon dispersion for 
2
ba =  can be determined from 

    ( )( ) ( )( )
1

2222
2

222 ~~
−

+ ⎥
⎦

⎤
⎢
⎣

⎡
−+=

a
kkkk M πωωωω                                                                                      (3.31) 

Solving Eq. (3.31), we then obtain 

    ( )( )
2
1

2

222
2

222222 41
2
1

2
1~

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
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⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
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⎛
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⎠

⎞
⎜⎜
⎝

⎛
+=

−

+++
a

kk
a

kk
a

kkk M πππ ωωωωωωω                                    (3.32) 

    The dispersion relation of the normal modes has two branches. Fig. 2 shows the phonon 

dispersion with normalized frequency 1=Lω  and 1.02
0

2

=
ma

Vπ  when we ignore the quartic term 

from the perturbation. 

The discussed method of the dispersion dependence on temperature is similar to that for ba =

if the quartic term from perturbation is not ignored. 

C. 
3
ba =  

    In this case, the wave vector of the external potential is 
a

g
3
2π= , and the difference between 

a
k

3
2π+  and 

a
k

3
2π−  is not a reciprocal lattice vector. Then, the contribution of the 1C  and 3C  

terms in the perturbation Hamiltonian cannot be neglected. To simplify our calculation, we first 

keep the 1C  and 2C  terms, and ignore the 3C  and 4C  terms. The 1C  term naturally vanishes in 

this case, and so the Eqs. (2.17) can be written as 

    ( )1~~
qkqqk GG ωω =                                                                                                                      (3.33a) 



19 
 

    ( )
k

a
qq

a
qk

a
qq

a
qqkq

qk
qk GGGG

3
2

2
1

3
22

3
2

2
1

3
22

1 ~~~~
ππππ ωωαωωαω

π
δ

ω
+

−

+−

−

− ⎟⎟
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++=                              (3.33b) 

Replacing q  by 
a

q
3
2π−  and 

a
q

3
2π+  in Eqs. (3.33), we obtain four other equations (Eq. 

(B.1)~(B.4)) that are shown in Appendix B. Solving the six equations, the Green’s function is 

    
( )( ) ⎟⎟
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where, 
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From the Green’s function, the spectral-density function is  
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If ⎟⎟
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2 ππππ ϕϕ  is small, we can replace the Breit-Wigner form of the spectral-

density function by a Dirac delta function, and have  
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and the number density is 
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The energy is 
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    If we retain only the 1C  and 2C  terms, the phonon dispersion becomes independent of the 

temperature. From Eq. (3.35f), the dispersion can be calculated: Fig. 3 shows an example. Three 

branches are found in this calculation. 

    Next, we will consider the effect of the terms ( )3213 ,, kkkC  and ( )43214 ,,, kkkkC . Accordingly, 

we must calculate another kind of Green’s functions ( )1
21

~
kkkΓ . The additions are too complicated for 

the calculation if we do not use approximations. First, we assume that the dispersion of phonons 

remains centrosymmetric, i.e., kk −= ωω . Then, ( ) kkGkC
2

~
11 − , and ( )∑ −−

'
1

2'
1

~,, 1
'
1

'
13

k
kkk

GNkkkC  in 

Eq. (2.18) can be ignored. From Figures 1-3, we find that the approximation is reasonable. 

Second, we retain only the linear term of the FK potential in the calculated ( )1
21

~
kkkΓ . In this case, 

some equations can be rewritten. Eq. (3.33b) becomes 
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    Using the same method as above, other equations are obtained, as shown in Appendix B (Eq. 

(B.5) and (B.6)). We first need to know ( )1
21

~
kkkΓ  if we want to obtain qkG~  from Eq. (3.40), From 

Eq. (2.18), we have 
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and, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )kkk
kk

a
k

a
kkkk

a
k

a
kk

k
a

kk
a

kkk
a

kk
a

kkkkkkkkkkkkk

,,~~

~~~~~

213
3

3
2

2
1

3
22

3

3
2

2
1

3
22

2

3
2

2
1

3
22

2

3
2

2
1

3
22

324

211
1

211
1

212
2

212
221121221

Φ+Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γ+Γ=Γ

−

−

−+

−

+

−

−

−+

−

+

ππππ

ππππ

ωωαωωα

ωωαωωαωωω
          (3.41d) 

Using replacement 
a

q
3
2π− → q   and 

a
q

3
2π+ → q , other equations about ( )i

kkk 21

~Γ  are obtained; they 

are listed in Supplemental Material [25]. Solving the system of equations, and only keeping the 

linear terms of the FK on-site potential, ( )1
21

~
kkkΓ   becomes 
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Substituting Eq. (3.42) into Eq. (3.40), and using replacement 
a

q
3
2π− → q   and 

a
q

3
2π+ → q , we 

have three equations about qkG~  and ( )1~
qkG , viz., Eq. (B.7), (B.12) and (B.13) in Appendix B. 

Combining Eq. (3.33a), (B.1), (B.3), (B.7), (B.12) and (B.13), and only keeping the squared 

terms in 2α , 3α , and 4α , then the Green’s function qkG~  can be obtained as follows: 
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where ξ  and ζ  are two functions respectively dependent on vectors k  and q . “Re” and “Im” 

represent their real- and imaginary-parts. The details of ξ  and ζ  are given in Appendix C, and 

their real- and imaginary-parts in the Supplemental Material [25]. From the Green’s function, 

Eqs. (3.43) and (2.12), we obtain the spectral-density function 
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where, ( )( ) ζωω Re~ 223 −= qq . Then, the kN  and the number density are 
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The effects of ( )3213 ,, kkkC  and ( )43214 ,,, kkkkC  are included in ζRe . 

    The energy of the system calculated from Eq. (2.22) is very complicated for 
3
ba = . It is 

represented in Supplemental Material [25]. Undoubtedly, when the cubic term is considered into 

our calculation, it becomes very complicated. However, we emphasize that the cubic term is 

important to thermal conductivity, even though the influence of the cubic term can exist only for 

a third-order state or a higher commensurate one [28]. 
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D. bsa r=  

    rs  is a rational number less than one. In this case, there is an integer n  for which 
a
nsng rπ2=  

is a reciprocal lattice vector. This means ngkqqk GG += ~~ , ngqq += ωω . Ignoring the effect of the 

cubic- and quadratic- terms of the FK model, we have from Eqs. (2.17a) and (2.17b) 
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Using the substitution gqq +→ … ( )gnqq 1−+→ , we obtain a matrix equation 
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(3.48) 

where 2
0

22
mb

Vπα −= . If we require solutions accurate only to the squared terms of α , the solution 

of the equation is 
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The Δ  and Γ  are similar, respectively, to the definition in Eq. (3.24a) and (3.24b). The spectral-

density function can be obtained from the Green’s function 
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where ( )( ) ( ) ( )( )rr
q

r
q 21
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    Next, we use the kqJ  to evaluate some physical properties. First, the correlation function kN  

is  
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The number density of phonons is  

( )

( ) ( )
( )

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
Δ−Δ

−⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑

−

= +++

+++
2

1
2

1
2

1212
2

~
coth

~
~4

1 n

s gsksgk

gsksgk
r

k

k

r
k

r
k

k
kn

ωω
αωβ

ω
ω

ω
ω h                                            (3.53) 

To calculate the energy of the system, we first must evaluate 2V  
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Using Eq. (3.54) and Eq. (2.22) and ignoring 3V  and 4V , the energy of the system is 
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E. bsa i=  

    For this case, is  is an irrational number less than one, meaning that that our system is 

incommensurate, and 
a
sg iπ2= . Any integer multiple of g  is not a reciprocal lattice vector. To 

simplify our calculation, we also ignored the effect of the cubic- and quartic-terms of the FK on-

site potential. Combining Eq. (2.17a) and (2.17b), we obtain 
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Eq. (3.56) can be written in a matrix form 
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where 2
0

22
mb

Vπα −= . In principle, the extent of this set of equations is infinite. We cannot solve 

them accurately, but since we only require accuracy to quadratic terms in α , qkG~  can be written 

as 
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The spectral-density function is obtained from the Green’s function 
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The number density of phonons then is 
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Similar to our description in Section D, the energy of the system is 
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(3.63) 

    We can obtain the respective phonon dispersions of the commensurate- and incommensurate-

structures from the coefficient matrix of Eq. (3.48) and (3.57). If we ignore the effect of the 

cubic- and quartic-terms of the FK on-site potential, the phonon dispersion is independent of 

temperature. Comparing the two coefficient matrices, the only difference between the 

commensurate and incommensurate states is the finite number of coupled wave vectors in the 

former case, and the infinite number in the latter. The normal modes of the commensurate 
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structure will be divided into finite branches and those of the incommensurate structure will be 

infinite branches.  

    To intuitively understand the difference between the phonon dispersions of the commensurate- 

and incommensurate-lattices, we give, in Fig. 4, some calculated examples with close values of 

b
a . For the infinite number of coupled wave vectors in the incommensurate state, we must make 

some approximations to calculate the dispersion of the incommensurate structure. We only keep 

gq 30±  or less from the center of the wave vectors, such that the coefficient matrix of Eq. (3.57) 

becomes a 61×61 dynamical matrix centered about wave vector, q . Figs. 4 (a)~(c) respectively 

show the dispersion for the commensurate case of ab
6
7=  and the incommensurate cases of 

ab 17.1=  and ab 167.1= , with normalized frequency 1=Lω  and the amplitude of the FK on-

site potential 1.02
0

2

=
ma

Vπ . We note (see Figs. 4 (a) and (c)) that the plots become similar when 

the value of 
a
b  for the commensurate- and incommensurate-states are very close, as in the 

present calculation. However, we believe that the plots will be quite different when we increase 

the size of the coefficient matrix of Eq. (3.57).  

Novaco [23] did not realize this problem, i.e., that the dispersion curves of commensurate- and 

incommensurate-states will display large differences if the order of the coefficient matrix of Eq. 

(3.57) is large enough. His results probably were constrained by computing conditions at that 

time. We point out that the approximation of using a simplified truncation to calculate the 

dispersion for the incommensurate state is not sufficient because we cannot judge which of the 

summation limits of ∞→s  in Eq. (3.59) is convergent, i.e., convergence of the infinite matrix. 
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Thus, we reached a different conclusion from Novaco [23], and it is not reasonable to expect to 

find the dynamical structure of an incommensurate state closely resembling that of “nearby” 

commensurate states, provided that both are described in a way that does not explicitly 

distinguish between them. The result obtained will affect the nature of incommensurate-

commensurate phase transition. 

    In addition, our calculation indicates that the commensurate case has a definite gap at zero 

wave vector, while the incommensurate case shows a branch that goes to zero, and the various 

gaps in the commensurate case are true gaps wherein there is zero density of states. In the 

incommensurate case, there exist some gaps similar to those of the commensurate state, but there 

are some modes inside these gaps, although their density is very low. These results are consistent 

with those of Novaco [23]. The phonon density of states shown in Fig. 4 (d)~(f) clearly reveal 

these results.      

    Sutherland [21, 22] studied the dispersion of the incommensurate state in the continuum limit. 

He found that the spectrum separates into two branches. The lower branch represents the 

collective motions of the lattice dislocations, as “acoustical” phonons, and the upper branch 

corresponds to renormalized “optic” phonons [13, 23]. We cannot readily distinguish the two 

phonons in our calculation; perhaps this is a limitation of the continuum limit approximation.   

As mentioned when we keep up only to squared terms of the FK on-site potential model; the 

phonon dispersion is independent of temperature. In this approximation, the number density and 

energy of the system for the commensurate- and incommensurate-state have a simple 

relationship for the dependence on temperature (see Eqs. (3.53), (3.55), (3.62) and (3.63).  
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To discuss incommensurate-commensurate phase transitions, we need to compare the energy 

of incommensurate and commensurate structures. From a mathematical point of view, we always 

can find a rational number that is indefinitely close to an irrational number. Therefore, the energy 

obtained from Eq. (3.55) and (3.63) can be indefinitely close when rational values of b
a  in a 

commensurate state are indefinitely close to an irrational number b
a  in an incommensurate 

state. For this case, the incommensurate-commensurate phase transition is continuous. We 

cannot analytically describe the sum upon s  in Eqs. (3.55) and (3.63), and hence, the 

incommensurate-commensurate phase transition is a continuous transition with an unusual 

nonanalytic nature, described as a “devil’s staircase”. This agrees with Aubry’s result [29], but is 

only valid at zero Kelvin. Here, we need to emphasize, from Eqs. (3.55) and (3.63), that our 

result shows that this devil’s staircase also can exist at finite temperature. In real crystals, b
a  

always is a truncated number with a limited number of decimal places. When we compare a 

commensurate structure of a rational fraction with an incommensurate structure of a truncated 

irrational number, the energy of the commensurate and incommensurate structures will become 

discontinuous. Therefore, it implies that the incommensurate-commensurate phase transition in 

real crystals may be a discontinuous- or first order-one. 

Ⅳ. Summary and Conclusions 

    In this work, we analyzed the lattice vibrations in the FK model using the technique of 

thermodynamic Green’s functions based on field-theoretic methods. We treated the FK model as 

an external on-site potential, and expanded the external-potential into four terms. When the FK 

model potential is considered as a perturbation, we analyzed its solution for the phonon 

dispersion, number of density of phonons, and energy of the system. We first discussed several 
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low-order commensurate states, and found that the cubic terms of the FK on-site potential could 

only affect only the third-order state or higher commensurate ones. When the cubic- and quartic-

terms of the on-site potential are considered, the calculation becomes very complicated. Based 

on the results of these low-order commensurate states, we analyzed the arbitrary orders of 

commensurate states and the incommensurate state were analyzed. When we ignored the terms 

above the quadratic in the displacement in the FK on-site potential, then the phonon dispersion is 

independent of temperature. Therefore, the energy of the system has a simple relation with 

temperature from which, we find that the incommensurate-commensurate phase transition is a 

non-analytic devil’s staircase at finite temperature. 
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Appendix A 

    Using replacement 
a

qq π+→  in the subscript of Eqs. (2.20a) and (3.20), we obtain another 

two equations.  
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Eqs. (2.17a), (3.20), (A.1) and (A.2)  constitute a system of equations. kqG ,
~  can be solved from 

it. 

Appendix B 

1) Only the effects of ( )kC1  and ( )212 ,kkC  are considered 

Using replacement 
a

q
3
2π− → q  in Eqs. (3.33), we have 

    ( )1

3
2

3
2

3
2

~~
k

a
q

a
qk

a
q

GG πππ ωω
−−−

=                                                                                                           (B.1) 

    ( )
qk

a
qqk

a
q

a
q

a
qk

a
q

a
q

k
a

q

k
a

q
GGGG ~~~~ 2

1

3
22

3
2

2
1

3
2

3
22

3
2

3
2

3
2

1

3
2

−

−+

−

−+−−

−

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= ππππππ

π

π ωωαωωαω
π

δ
ω              (B.2) 

and 
a

q
3
2π+ → q  
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2) Including the effects of ( )3213 ,, kkkC  and ( )43214 ,,, kkkkC  

Using replacement 
a

q
3
2π− → q  in Eqs. (3.40), we have 
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Substituting Eq.(3.42) into Eq. (3.40) yields 

( )

k
a

qq
a

q

k
a

qq
a

q

qk
q

q
qk

qk

G
a

qF

G
a

qF

Ga
qF

a
qF

G

3
2

2
1

3
2

2
342

3
2

2
1

3
2

2
342

2
3

2
3

2

1

~
3
2

~
3
2

~3
2

3
2

~

ππ

ππ

ωωπααα

ωωπααα

ω

παπαω

π
δ

ω

+

−

+

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+++

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −−

+=

                                                          (B.7) 

where, 
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From Eq. (B.7), using 
a

q
3
2π−  or substituting 

a
q

3
2π+  for q , two other equations were 
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(C.2) 

Using ( )qF  expression in Eqs. (B.8) and (B.9). The whole representation of ζ ’s and ξ ’s real 

and imaginary parts are shown in Supplemental Material [25]. 
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Fig.1. Phonon dispersion for ba =  without the FK on-site potential (black solid 
line), and including the FK on-site potential (red dashed line). 1=Lω  and 

1.02
0

2

=
ma

Vπ  are used in the calculation. 
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Fig. 2. Phonon dispersion for 
2
ba =  with the FK potential. Two branches are 

shown using a black line and a red line. The parameters used in the calculation 
are same as those in Fig.1. 
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Fig. 3. Phonon dispersion for 
3
ba =  with the FK on-site potential. Three 

branches are shown using black, red and green lines. The parameters used in the 
calculation are same as those in Fig.1. 
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Fig. 4. The phonon dispersions of a commensurate chain (a) with ab
6
7= , that of 

incommensurate chains (b), with ab 17.1= , and (c) with ab 167.1= . The curves (d), 
(e), and (f) on the right correspond to the phonon density of state. The parameters 
used in the calculations are same as those in Fig.1. 
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