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Within density-functional theory, we apply an electronic-structure-based thermodynamic theory
to calculate short-ranged order (SRO) in homogeneously disordered substitutional N-component
alloys, and its electronic origin. Using the geometric properties of an (N-1)-simplex that describes
the Gibbs (compositional) space, we derive the analytic transform of the SRO eigenvectors that
provides a unique description of high-temperature SRO in N-component alloys and the incipient
low-temperature long-range order. We apply the electronic-based thermodynamic theory and the
new general analysis to ternaries (A1 Cu-Ni-Zn and A2 Nb-Al-Ti) for validation, and then to quinary
Al-Co-Cr-Fe-Ni high-entropy alloys for predictive assessment.
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I. INTRODUCTION

Multicomponent metallic alloys constitute an impor-
tant, widely used class of technological materials. Prop-
erties of N-component alloys are sensitive to the state
of chemical order in a stable lattice structure. Recently,
so-called high-entropy alloys (HEA) have drawn much at-
tention due to their remarkable properties. HEA consists
of five or more (N ≥ 5) elements with (nearly) equal com-
position of atomic species. If not too large, their alloy
formation enthalpy ∆Ef, dictating ordering (∆Ef < 0)
or phase-segregation (∆Ef > 0), are easily overcome by
the large entropy associated with near-equiatomic com-
positions, stabilizing solid-solutions and suppressing the
formation of (small unit cell) intermetallic phases.1,2

While solid solutions lack chemical long-range or-
der (LRO), they often possess atomic short-range order
(SRO) that reveal the high-temperature, incipient chem-
ical ordering tendency, either clustering or ordering. Of-
ten the SRO is indicative of the low-temperature LRO, al-
beit not guaranteed for first-order transitions. For a sto-
ichiometric N-component alloy, in general, there must be
N− 1 ordering transitions from the homogeneous phase.
Hence, SRO can often be used to predict the expected
LRO.3,4

Notably, SRO can be measured in diffuse-scattering
(x-ray, electron and neutron) experiments by extracting
Warren-Cowley SRO parameters,5–7 αµν(k) at scatter-
ing wavevector k, which are normalized pair (correlation)
probabilities discussed later. For multicomponent alloys,
diffuse scattering intensities are given in terms of Laue
units,3,4,8,9 i.e., cµ(δµν − cν) [fµ − fν ]

2
, by

I(k) =
∑
µ,ν

cµ(δµν − cν) [fµ − fν ]
2
αµν(k) , (1)

with atomic scattering form factors fµ, component labels
(µ, Greek lower-case letters), and compositions cµ. Only
off-diagonal SRO parameters may be measured if there
is contrast, i.e., fµ − fν 6= 0. For the well-studied A-B bi-

naries, a single αAB(k) correlation can be observed, and
diagonal values are obtained via sum rules dictated by
the optical theorem. Interpretation is straightforward: If
not an A atom, then a B atom in a favorable wavevector
ordering sequence. For N-component alloys, N(N− 1)/2
pairs must be measured, achieved only if there is suf-
ficient scattering fµ − fν contrast; but, without all the
off-diagonal pairs, the SRO cannot be interpreted.

Here, we do not address the challenge of how one mea-
sures all off-diagonal pairs of N-component alloy. We pro-
vide a general theoretical method to predict all pair cor-
relations and, in particular, how to interpret uniquely the
SRO manifest in αµν(k). The approach uses the KKR
Green’s function electronic-structure method in combina-
tion with an inhomogeneous coherent-potential approxi-
mation (CPA) developed for binaries10,11 and extended
to ternaries.3,8,12 From the KKR-CPA, we may connect
SRO to its electronic origin (competing effects of band-
filling, hybridization, Fermi-surface nesting, van Hove
states, ...), and confirm the behavior by direct calculation
of formation energies ∆Ef for partially ordered states.

After some background, we relate in section III the
SRO to second-order (infinitesimal) concentration varia-
tions to the alloy free-energy (chemical stability matrix ).
Eigenvectors of the stability matrix reveal the incipient
order reflected in the SRO. Describing the N-component
system in Gibbs space as an (N−1)-simplex using {cµ} as
natural barycentric coordinates, we establish the trans-
form in Gibbs space that yields a correct analysis of SRO
in N-component solid solutions. In particular, we ob-
tained the transform’s matrix elements analytically for
N-dimensions that guarantees the SRO eigenvectors are
properly chemically and geometrically orthogonal. We
apply the new SRO analysis to two well-studied ternar-
ies (A1 Cu-Ni-Zn3,8 and A2 Nb-Al-Ti12) to validate, and
then to quinary Al-Co-Cr-Fe-Ni alloys. With this general
analysis approach, our electronic-structure-based SRO
theory can be analyzed using the SRO eigenvectors in
a concentration-wave (Fourier) analysis,3,8,13 now rigor-
ously generalized to N-components alloys.
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II. BACKGROUND

The study of SRO in disordered solid-solutions has
a long history, mostly on binaries and a few ternaries.
In the multicomponent case, the complexity with ex-
periments and interpretation of the pair correlations re-
mains a challenge. In disordered solid-solution alloys,
the SRO is thermally induced infinitesimal concentra-
tion fluctuation and directly related to the chemical pair
correlations.8,9,13–16 In terms of site (i and j) occupation
variables, pair correlations qijµν(k) are mathematically de-
fined as

qijµν(k) = 〈(ξiµ − ciµ)(ξiν − ciν)〉 = 〈ξiµξjν〉 − 〈ξiµ〉〈ξjν〉, (2)

where 〈...〉 represents a thermodynamic average, and ξiµ
is a site-occupation variable; that is, ξiµ = 1(0) if the
site is (is not) occupied by an µ-type atom at the site i,
hence, 〈ξiµ〉 = ciµ. For an N-component alloy in a “host”
picture, there are N-1 independent fluctuations, as the
host (dependent) variable is dictated by a site single-
occupancy constraint, i.e.,

∑
µ ξ

i
µ = 1, forcing

∑
µ c

i
µ = 1,

so there is only N−1 independent occupations. Notably,
a vacancy can be treated as just another independent
species (not host). With ξiµ idempotent ((ξiµ)2 = ξiµ),

site-diagonal pair correlations 〈ξiµξiν〉 obey the sum rule

qiiµν(k) = ciµ(δµν − ciν) (3)

where δµν is Kronecker delta function over species. For
an A-B binary, cA + cB = 1, and, if cA is considered
independent, then cB is the dependent (host) variable,
and qiiAA = cA(1− cA).

We now can define Warren-Cowley (WC)
parameters5–7 as normalized pair probabilities in
Laue units, i.e.,

αijµν(k) =
qijµν(k)

cµ(δµν − cν)
(4)

and in real space this can be understood in terms of pair
probabilities: pijµν = ciµc

j
ν

[
1− αijµν

]
, where point proba-

bilities are the concentrations. For example, if α → 0,
then pair correlation vanishes; while for α < 0 (α > 0)
system correlations reflect ordering (clustering).

Experiments only can measure the off-diagonal pair
correlations (SRO) defined in Eqs. 1 or 2. Through
the conservation of probability (optical theorem) it is
straightforward to derive this sum rule9,16∑

ν

cjνα
ij
µν = 0 (5)

that allows us to get unmeasured (diagonal) correlations.
As shown rigorously elsewhere,9 the theory for SRO for
disordered alloys used here calculates the non-singular
(N− 1)× (N− 1) portion of inverse of[

q−1(k)
]
µν

=

[
δµν
cµ

+
1

cN

]
− βS(2)

µν (k) (6)

where {µ, ν} ∈ 1,N−1 and β is (kBT)−1, defined by tem-
perature (T) and Boltzman constant (kB). The expres-

sion is exact.9,17,18 Most notably, S(2)(k) – the chemical
fluctuation stability matrix – is a thermodynamic func-
tional that reflects the free-energy cost of a pair fluctu-
ation, and is represented by a symmetric matrix; impor-
tantly, it is not a pair interaction, as often assumed.9 At
the spinodal temperature, Tsp, for a specific maximum
wavevector instability, the inverse pair correlation first
vanishes (i.e., the pair correlation diverge). Hence, from
the stability matrix we can determine which wavevector
instability first goes unstable, what pair(s) drive this in-
stability, and at what temperature this instability occurs.
All this information is useful for predicting and character-
izing SRO in any complex solid-solution, like any HEA.

From linear-response theory, S(2)
µν (k) is the second-

variation of the alloy Grand Potential with respect to
composition fluctuations, evaluated in the high-T disor-
dered phase.4,9 That is, expanding the interacting elec-
tronic part of the free-energy in a functional Taylor’s se-
ries relative to the disordered alloy, we find9,10,18–20 that

∆F ({ciµ}) = F ({ciµ})− F ({c̄µ})

=
1

2

∑
µν,ij

∆c†iµ
δ2F

δc†iµ δc
j
ν

|{cµ}∆c
j
ν

≈ 1

2

∑
µν

∫
BZ

dk ∆c†µ(k)S(2)
µν (k)∆cν(k), (7)

and where the first variation is zero by symmetry of the
disordered state. The Brilliouin zone (BZ) integral is over
that of the solid-solution’s Bravais lattice, where the fluc-
tuations ciµ− c̄µ (i.e., Fourier wave ∆cµ(k)) happen. The
total alloy free energy, F = F0 + Fint, can be written
as the sum of non-interacting, F0, and interacting, Fint,
contributions, where F0 is related to point entropy (Spt)
[i.e., TSpt = −kBT

∑
ciµlnciµ] and Fint comes from elec-

tronic structure (ion-ion, band-energy, double-counting

and exchange-correlation). S(2)
µν (k) is determined from

Fint in the solid-solution phase, and encompasses all elec-
tronic effects (hybridization, band-filling, Fermi-surface
nesting, van Hove states, ...).

If evaluated in the homogeneous state, αµν(k) is
an approximation to the state with actual SRO, and
it can be calculated with KKR-CPA linear-response
codes.3,4,12 Given calculations of (6), the Warren-Cowley
SRO parameters5–7 are determined from (4). What re-
mains to be determined is ordering fluctuations embodied

in S(2)
µν (k).

III. CHEMICAL SRO EIGENVECTORS

In an N-component alloy with
∑N
µ=1 ciµ = 1, the in-

dependent compositional fluctuations are described by
N− 1 component vectors. The associated Gibbs space is
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FIG. 1. (color online) Gibbs space for (a) ternary shown by an
equilateral triangle (2-simplex) and (b) quaternary shown by
a regular tetrahedron (3-simplex), where {δci} are the direc-
tions of concentrations fluctuations. Barycentric points ‘o2’
and ‘o3’ are centroids of 2- and 3-simplex, respectively and
{xi} are Cartesian labels.

N-dimensional, and represented by (N−1)-simplices: for
N=2, a line (1-simplex), for N=3, a triangle (2-simplex),
for N=4, a tetrahedron (3-simplex), and so on. From
sum rules, {cµ} are natural barycentric coordinates as
developed for finite-element methods,21 and define coor-
dinates in whole Gibbs space. Figure 1 shows a schematic
for ternary and quaternary simplices and arrows labelled
by δcµ’s are the directions of fluctuations in Gibbs space
(parallel to directions of increasing concentrations); gen-
erally, these axes are oblique to one another – not geo-
metrically orthogonal.3,9,22,23

The fluctuation energy (in matrix-vector notation) is

∆F = ĉ†Sĉ (8)

= x̂†(T †ST )x̂ = x̂†Ŝx̂, (9)

By solving the characteristic equation for (8), the Sµν(k)
eigenvectors (eN) exhibit a host dependence, and possibly
unphysical (negative) concentrations. Formally, it is first
necessary to transform from Gibbs (ĉ) to a Cartesian (x̂)

coordinate system (ĉ = Tx̂), where Ŝ = T†ST in (9) has
eigenvectors (eX) that are now host independent but rep-
resented in Cartesian space. Then, we must transform eX
back to Gibbs space (eG = TeX) to get the physically
proper eigenmodes and concentrations (ordering proba-
bilities). Because compositional representation of Gibbs
space based on simplices is oblique, the transformation
matrix T is not unitary, i.e., T−1 6= T† and TT† 6= 1, so
eigenvectors eX are not same as eG, which are the correct
ones in Gibbs space. Notably, with T known analytically
for the N-dimensional case, we may analyze all SRO di-
rectly via eG.

A. Matrix elements of T analytically for
N-component alloys

The form of T is well known in terms of barycentric
coordinates for N-dimensions; typically the matrix ele-
ments and inverse transformations are then numerically

calculated. Remarkably, however, we can analytically
derive the matrix elements of T for N-dimensional Gibbs
(“equilateral”) simplices (see Appendix). With T known
analytically, we may obtain eG from measured αµν(k) or
calculated Sµν(k) for the N-component solid solution.

The Jacobian transformation from Cartesian to
oblique coordinates is well-known for any dimension, i.e.,
T is

N-1T =

 X1
1 −XN1 X2

1 −XN1 · · · X
N−1
1 −XN1

X1
2 −XN2 X3

2 −XN2 · · · X
N−1
2 −XN2

· · · · · · · · · · · ·
· · · · · · · · · · · ·

X1
N−1 −XNN X2

N−1 −XNN · · · X
N−1
N−1

−XNN

 (10)

where {Xi
j} represents coordinates of jth vertex relative

to the host vertex {XN
j }. In a host picture, the Nth

vertex in (N−1)-simplex is redundant from the sum rule
for barycentric coordinates so the T matrix will always
be rank N − 1. Coordinates of all (N − 1) vertices for
Gibbs simplices are derived (Appendix) as

Xj
i −X

N
i = − 1

Xi
i

√
2(N− 1)

N

[
Xi
i−1 ·Xj

i−1 +
1

N− 1

]
(11)

and each i, j runs from 1 to N− 1.

From this analytic matrix element for T for any Gibbs
space, we may evaluated easily the specific ternary and
quinary cases addressed in results section. For a ternary
(2-simplex), the 2× 2 2T matrix is

2T =

(
−1 −1/

√
3

1 −1/
√

3

)
, (12)

while, for quinary(4-simplex), the 4× 4 4T matrix is

4T =


−1 −1/

√
3 −1/

√
6 −1/

√
10

1 −1/
√

3 −1/
√

6 −1/
√

10

0 2/
√

3 −1/
√

6 −1/
√

10

0 0
√

3/2 −1/
√

10

 . (13)

Notice that 2T (ternary) is a submatrix of 4T (quinary),
and so too is 3T the 3× 3 submatrix (quaternary).

B. Concentration Waves in N-component Alloys

Given e
G

(ordering normal modes) and T (transform
matrix), we need to interpret the order reflected in the
SRO, accomplished best by Fourier analysis. The occu-
pational vector, n̂(r), give the probabilities of an atom to
occupy specific sites in a crystal structure. In substitu-
tional solid-solutions, ni(r) is identical to concentrations,
ci(r). But, in ordered phases, this depends on the type of
order and real-space site coordinates.13 The vector n̂(r)
for a N-component alloy, where all sites are represented
by the same Bravais lattice, can be expanded in a Fourier
series (concentration wave) and written in terms of nor-
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mal modes as
n1(r)
n2(r)

...
nN−1(r)

 =


c1(r)
c2(r)

...
cN−1(r)

+
∑
s,σ

ηsσ


ν1σ(ks)
ν2σ(ks)

...
νN−1σ (ks)


×
∑
js

γσ(kjs)e
ikjs ·r.

(14)

For a given crystal lattice vector r, cN−1(r) is compo-
sition of the (N − 1)th component. The sums run over
the star s (inequivalent wavevectors that define order-
ing), σ (eigenvector branch of the free-energy quadric),
and js (equivalent wavevectors in the sth star). The other
quantities are: LRO parameter ηsσ for the σth branch and
s-star; νN−1σ is (N − 1)-component vector of the normal
concentration mode (eG) of Sµν(k) for the σth branch;
and the symmetry coefficient γσ(kjs) determined by nor-
malization condition and geometry.

IV. COMPUTATIONAL DETAILS

We use a Korringa-Kohn-Rostoker (KKR) Coherent
Potential Approximation (CPA) code.24–26 For metallic
solid-solutions, the screened-CPA is used to incorporate
Friedel screening from charge correlations in the local
chemical environment.26 As our KKR-CPA-based SRO
theory is only coded for the Atomic Sphere Approxima-
tion (ASA), we use the KKR-CPA-ASA for all results,
and include so-called muffin-tin (MT) corrections to the
ASA total energies. We also evaluate electronic prop-
erties and total energies using Voronoi polyhedra (VP)
integration27 for spherically averaged radial functions in
the site-centered, spherical-harmonic (YL) basis. We in-
clude s-, p-, d- and f-symmetries in the KKR basis, i.e.,
truncated at Lmax=3, where L ≡ (l,m).

Potentials, charge densities, and total energies are ob-
tained using a complex-energy Gauss–Legendre semicir-
cular contour with 24 points, and Brillioun zone integra-
tions use special k-point method28 with a 20 × 20 × 20
mesh. We use the von-Barth–Hedin29 local density ap-
proximation as parameterized by Moruzzi, Janak and
Williams.30 Self-consistency for potentials and charge
densities is achieved with convergence technique based on
modified Broyden’s second method.33 Scalar-relativistic
effects are included, but spin-orbit is ignored. Because
the potential zero v0, i.e., muffin-tin zero, can dramat-
ically affect stability prediction for spherical potentials,
we use a variational definition32 that yields kinetic ener-
gies that approach those of full-potential methods.31,32

The first-principles theory of SRO in multicomponent
alloys has been presented before.10,11,20 The complete ex-

pression for S
(2)
µν (k; T), one that includes all electronic-

structure, charge screening and transfer, has been de-
rived only for binaries.10,11,20 The importance of metal-
lic screening for SRO calculation in the solid solution

phase has been discussed before for binaries.34 How-
ever, at fixed composition, assuming site charges change
little with SRO, Pettifor’s force theorem can be ap-

plied and S
(2)
µν (k; T) then has contributions only from

the band-energy variations.3,8 Hence, for present pur-
pose to showcase the prediction and interpretation of
SRO for N-component metallic solid-solutions, we cal-

culate all S
(2)
µν (k; T) results using the band-energy-only

expression; that is, double counting terms and exchange
correlation are neglected by invoking the force theorem.
(We will add these variations in the future.) The scalar-
relativistic KKR-CPA-ASA potentials, charge densities,
and scattering matrices for a given solid-solution are
used to then evaluate the linear-response expression for

S
(2)
µν (k; T). The expression for S

(2)
µν (k; T) are evaluated on

a log-mesh along the Matsubara poles, and interpolated
to the correct poles (temperature) for use in response
functions.10,11

Thermodynamically, the Warren-Cowley parameters
(4)5–7 must obey the optical theorem and conserve the
particle number associated with the through beam, i.e.,
at the ith site (see Review [9])

αiiµν = 1− δµν
cνi

=
1

VBZ

∫
dk αµν(k). (15)

Any mean-field approximation to S(2)(k,T) does not
guarantee this sum rule,9 as is true of the CPA. As shown

from (6), modifying S
(2)
µν (k,T) ≡ S(2)MF

µν (k,T)− Λµν(T)

satisfied the sum rule8–10 with

Λµν(T ) =
1

VBZ

∑
β

∫
dk S

(2)MF
µβ (k, T )αβν(k). (16)

This coupled set of equations may be solved by Newton-
Raphson techniques, using multi-dimensional mapping
for inversion of tensors. S(2)(k,T) is typically very
weakly temperature dependent arising from the Fermi
factors (see below), while αµν(k) strongly depends on
temperature, diverging at Tsp, see (6). The correction is
historically called the Onsager cavity field correction,35

which renormalizes the thermodynamic excitation ener-
gies to conserve the diffuse intensity over the Brilliouin
zone. Although not commonly used as a more proper
mean-field theory, this single-site fix to mean-field the-
ory corrects the topological error in mean-field phase di-
agrams, such as Bragg-Williams (Ising) models.36

Besides energy- and species-dependent matrix ele-

ments MLL’
µν (ε) and Fermi factors f(ε), S(2)(k,T) is

found from the KKR scattering path operator, τLL’(k; ε),
which determines the Green’s function and embodies all
electronic-structure effects.3,8,10,11 In brief, S(2)(k,T) is
a generalized susceptibility, and, roughly,18 in terms of
the Bloch spectral functions A(k; ε) = −=τ(k; ε)/π (dis-
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persion), we may suggestively write it as

S(2)
µν (q;T ) ∼

∫
dε Mµν(ε)

∫
dε′
[
f(ε;T )− f(ε′;T )

ε− ε′

]
× 1

ΩBZ

∫
dk A(k; ε)A(k + q; ε′) (17)

All valence states contribute to (17). If only hole and
electron states near the Fermi energy, EF, dominate, the
bracketed [...] term collapses the energy integrals to

S(2)(q;T )→
∫

dk A(k;EF )A(k + q;EF ), (18)

a convolution integral of the Fermi surface states and the
origin for so-called Fermi-surface “nesting”.3,8,18 Due to
alloying, even in a metallic system, hybridized states well
below EF in (17) can drive ordering, as for NiPt,37 or
van Hove features at EF contribute, as for CuPt.38 In
short, the nature and electronic origin of the SRO may
be determined directly.

For completeness, using a laptop computer with an In-
tel i7 (2.3 GHz quad core) processor, we provide some
timings involved in evaluating the self-consistent poten-
tials and linear-response S(2)(q;E) for 24 energy points
on the semi-circular or Matsubara contour. For pure bulk
(one-atom) elemental groundstates, KKR-CPA SCF cal-
culations require 10-20 iteration with ∼10 seconds per
iteration. However, for bulk solid-solutions (effectively
1-atom cells for A1 or A2), KKR-CPA SCF calculations
require 30-50 iteration with ∼25-50 seconds per itera-
tion, due to cost of the CPA convergence that often takes
longer than charge convergence. Typically, as the num-
ber of components (disorder) increases, the CPA is easier
to converge and uses fewer iterations. For linear-response
calculations in serial mode for a binary, the S(2)(q;E) re-
quires ∼3600 seconds. Post-processing analysis requires
another ∼20 seconds. For the N-component case, the
time grows linearly with N-1 due to extra matrix elements
in S(2). For magnetic case in local-spin density approxi-
mation, the timings are double that of non-magnetic case
due to calculating both the majority and minority spin
channels. If the linear-response is done for all 24 ener-
gies in parallel (not a laptop), divide the time by 24, or
∼150 seconds. Of course, structural minimization of lat-
tice constants can be done to get the minimum-energy
potentials, or use the experimental lattice constants, and
those potentials are then used for SRO predictions.

So, it is now possible both to predict SRO from the
electronic structure and to interpret the SRO correctly

by extracting the proper eigenvectors of S(2)(k,T) for
arbitrary N-component alloys.

V. RESULTS

The prediction and characterization of chemical or-
dering instabilities in multicomponent alloys is of great

practical and fundamental interest. The temperature-
dependent chemical order is determined by the balance
between ordering energy (favoring long-range order) and
entropy (favoring disorder). The ordering energy largely
reflects the underlying electronic effects within the disor-
dered alloy. We have divided this section into two parts,

first validation of updated S(2)(k) code and new gener-
alized transformation approach to interpret SRO eigen-
vectors using well-studied binary and ternary systems,
and the second focuses on analysis of high-entropy alloy
candidate Al-Co-Cr-Fe-Ni quinary system. We report k-
space wavevectors in units of 2π/a and real-space site
coordinates in units of a. We calculate the KKR-CPA
formation energy for a solid solution in a phase x (e.g.,
A1, A2, or A3) as ∆Exf (V ) = Ex(V ) −

∑
α cαE

o
α(V oα ),

where the Eoα(V oα ) is the energy of the alloying element
in its ground-state phase and equilibrium volume. As
discussed by Alam et al.,39 formation energy provides a
good estimate of miscibility gap (Tc = ∆Ef/Spt) and
order-disorder temperature (Tc = ∆Ef/kB), where there
is a cancellation in entropy to second-order from above
and just below the transition at fixed concentration.39

A. Validation and Example Analysis

We first validate our updated S(2)
µν (k; T) calculations

and new generalized SRO analysis by investigating a clus-
tering binary and two ordering ternaries to show previous
calculations and experiments are reproduced quantita-
tively.

A1 Cu50Ni50 – Diffuse scattering and phase diagram
experiments show that Ni-Cu has a clustering (phase seg-
regation) tendency above the observed miscibility gap at
615 K.40 An earlier SRO calculation8 reported [000] in-
stability at a spinodal temperature (Tsp) of 564 K. We
repeated this and also found a kus = [000] mode at Tsp

of 559 K. The KKR-CPA calculation of the Cu50Ni50
solid-solution ∆Ef finds +2.90 mRy, a positive value in-
dicating phase segregation with estimated miscibility gap
of 660 K. The solid-solution ∆Ef and SRO-assessed Tsp

indicate segregation on similar energy scale.

A2 Nb-Al-Ti – We apply the new code and analy-
sis to A2 Nb-Al-Ti ternaries, and compare the SRO re-
sults and cluster variation method (CVM) calculations
by Johnson et al.,12 neutron scattering results by Jacob
et al.,41,42 and TEM-ALCHEMI (atom location by chan-
neling enhanced microanalysis) measurements by Fraser
et al.43–46 We also found B2-type ordering for Nb-Al-Ti
alloys with [111] instability dominated by Ti-Al correla-
tion, arising simply from hybridization and band-filling,
as found earlier. The eigenvectors at the instability es-
timate the occupational probability of each species at
different sub-lattices in the ordered structure using (14).

Due to a SRO instability at kus = {111}, A2 NbAlTi2
is unstable to ordering below the order-disorder temper-
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FIG. 2. (color online) For A2 Nb-Al-Ti, concentration-wave
polarizations (OTLs) are plotted for lines of short-black (old
theory), short-blue (new theory) and green (ALCHEMI43–46

extended to maximal permitted values). Neutron Rietveld-
refinement results41,42 are plotted by dotted-lines. CVM B2-
sublattice concentrations at T/Tc= 0.9, 0.8, 0.7 given by cir-
cles, squares, and triangles, respectively.

ature with a concentration wave given by[
nNb(r)
nAl(r)

]
=

[
0.25
0.25

]
− 1

2
η(T )

[
0.12
0.81

]
× e2πi(111)·r (19)

giving the probability distribution for A2 sites, i.e.,
cube corner at (000) and center at

(
1
2
1
2
1
2

)
. From (19)

the first site probability that vanishes for a given η(T )
occurs for nAl(r = 000), giving a maximum LRO of
ηmax = 0.25(0.5 ∗ 0.81)−1 = 61.7%; it follows that
the probability occupation of (Nb, Al, Ti) is (21.3, 0,
78.7)% at cube-corner and (28.7, 50, 21.3)% at cube-
center. Clearly, the Nb/Al concentrations are reduced
(enhanced) at corner (central) sites, and, as a result,
the Ti increases to a maximum of 79% at corners – a
partially-ordered B2 structure.

Analytically the ratio of eigenvectors of independent
components (with respect to host) at unstable (kus) is

c
Al

( 1
2
1
2
1
2 )− c

Al
(000)

c
Nb

( 1
2
1
2
1
2 )− c

Nb
(000)

=
e
Al

G
(kus = 111)

eNb
G

(kus = 111)
(20)

and, for a ternary, they may be graphically represented
by the slope of a line in the Gibbs triangle, Fig. 2, known
as ordering-tie-lines (OTLs).46 Our SRO results compare
well with calculated and measured results. The calcu-
lated Tsp of 1610 K is in good agreement with the mea-
sured 1713 K order-disorder.41

A1 Cu2NiZn– Hashimoto et al.47 and Van der Wegen
et al.48,49 showed first-order structural transitions from
A1 Cu2NiZn occur at 774 K to a {100}-type partially
ordered L12 structure. Althoff et al.8 predicted {100}-
type ordering corresponding to the partially ordered L12
phase with Tsp = 980 K, driven by strong Ni-Zn correla-
tions arising directly from Fermi-surface nesting features,

as also found here. With our newly developed analy-
sis approach, we find a similar partially-ordered state at
Tsp = 840 K. The lower Tsp arises from the use of an
optimal basis set in KKR-CPA-ASA.

B. High-Entropy Alloy: Al-Co-Cr-Fe-Ni

For HEA formation, Zhang et al.50 proposed three em-
pirical criteria:

1. Mix N ≥ 5 atoms in near-equiatomic ratio for
higher ∆Spt = −kB

∑
i ci ln ci ≥ 1.60kB ;

2. Have atomic size ratio δ < 4.6 (like Hume-Rothery
size effect rule for solid solutions); here, δ ≡√∑

i ci(1− ri/r̄)2 for elemental radii ri and aver-
age radii r̄ =

∑
i ciri;

3. Small −2.05δ − 1.94 < ∆Ef < −0.98δ + 4.14 mRy
to void compound formation.

Interestingly, so far, many multicomponent system fol-
lowing the above criteria form simple solid-solution
phases, e.g., A1, A2 or A3. For AlCoCrFeNi, using
an empirical Miedema model by Ren et al.51, we find
∆Ef = −1.79 mRy and ∆Spt = 1.61, so this system
obeys the criteria.

Chou et al.52, in their observation for Al-Co-Cr-Fe-Ni,
found that increasing %Al plays the role of phase stabi-
lizer. For the readers convenience, we define a parame-
ter ∆ (in mole fraction) that controls the Al concentra-
tion in Al ∆

5
[CoCrFeNi]1−∆

5
. Similar to Chou et al.52 and

Zhang et al.,50 we focused our attention to three regions:
(1) Al-poor region for ∆ < 0.5 with A1 phase; (2) Al-
intermediate for 0.5 ≤ ∆ < 1.25, which exhibits a mixed
A1 + A2 phase; and (3) Al-rich for 1.25 ≤ ∆ ≤ 2.0 with
A2 phase.53,54

We performed KKR-CPA calculations in each region
to study relative phase stability (by both VP and ASA
methods to assess errors), and then used the KKR-CPA-
ASA potentials and charge densities in the SRO cal-
culations (the restriction in the SRO code). We chose
one composition within each region: ∆ = 0.395 (8%Al)
from Al-poor; ∆ = 1 (20%Al) from Al-intermediate; and
∆ = 1.6 (32%Al) from Al-rich – with equal compensation
by remaining elements (Co, Cr, Fe and Ni).

For stability of A2 relative to A1, as shown in Fig. 3,
both KKR-CPA VP and ASA results show that that in-
creasing %Al stabilizes the A2 phase in agreement with
the experimental observations made by Chou et al.52 and
calculations of Zhang et al.57 using CALPHAD (CAL-
culations of PHAse Diagram) techniques.55,56 The VP
results provide a better description of charge and inte-
grations within each VP sites, improving the total en-
ergy. (For the ASA, errors in relative phase stability,
e.g., A2 versus A1, is a known issue.) The small shift in
EA2−EA1 from VP versus ASA improves agreement with
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FIG. 3. (color online) For Al ∆
5

[CoCrFeNi]1−∆
5

, (Top) Sta-

bility of A2 phase relative to A1 phase, for KKR-CPA VP
and ASA calculations, see text. (Bottom) Common tangent
(solid-red) line to free energy curves shows %Al composition
region where mixed A1+A2 phase occurs.

that measured experimentally, see Fig. 3 (bottom). The
common tangents to enthalpy curves shows %Al compo-
sition (0.5 ≤ ∆ ≤ 1.25) where two-phase A1+A2 equi-
libria occurs, which lowers the overall free energy of the
homogeneous system into a weighted mix of two phases.

For selected compositions, we performed the linear-
response calculations to identify unique SRO modes. We

calculated S(2)
µν (k,T) and determined αµν(k) for each

composition. The S(2)
µν (k,T) stability matrix is formu-

lated in a “host” picture for mathematical and computa-
tional expediency. For ease of interpretation, we convert
from host to the “off-diagonal” representation22 so that
the SRO corresponds to all individual pairs directly.

Notably, for binaries, the unstable wavevector in α(k)

is same as the favorable modes in S(2)(k). However, for
complex (N > 2) alloys, this need not be the case. Due to
the inversion in (6) and intensity conservation (15), the

competing eigenvectors in S(2)(k) can manifest differently
in α(k). In this case a careful analysis in real-space can
be helpful. In fact, unlike in a binary, a multicomponent
alloy can have negative intensity in αµν(k) relative to
homogeneously disordered case, exactly because of this
competing nature between modes and intensity conser-
vation. Examples of the effect appear below. In short, in
HEA, the instabilities manifest in αµν(k), may not reflect
the pairs driving instability, which shows the importance
of present thermodynamic theory.

A1 and A2 equiatomic quinary (∆ = 1.0)

A1 phase– We first focus on the Warren-Cowley SRO
parameters5–7 αµν(k) (or pair correlations) that may be

FIG. 4. (color online) For ∆ = 1.0 (20% Al) in A1 phase,

(upper) αµν(k) and (lower) S
(2)
µν (k,T) plotted along Γ-X-W-

K-L-Γ of the fcc Brilliouin zone.

measured experimentally. The diffuse maximal peaks in
Fig. 4 at kus = {100} (X−points) for α(k) indicates
the periodicity of the ordering instabilities in the dis-
ordered alloy (not Bragg reflections). At Tsp, particular
elements of α(k) become unstable (diverge) and indicate
second-order instability to LRO. The instability in α(k)

is related to the peak in the stability matrix S(2)(k) in

select pairs. The strongest pair in S(2)(k) driving or-
dering is Cr−Al, but Co−Cr is the dominant mode in
α(k). Clearly, the dominant mode in α(k) is not same

as S(2)(k), but Cr is involved in both competing modes
and the strong ordering for one element must be accom-
modated by the pairs sharing that element.

Just like phonon modes, k-space representation pro-
vides relative stability of ordering modes. However, the
k-space does not necessarily give a direct picture of un-
derlying pair correlations in complex systems. Then,
Fourier decomposition of such quantities into real space
becomes important. The real-space pair-correlation en-
ergies for the select pairs are shown in Table I, which are
calculated via Fourier (shell-by-shell) transform

S(2)
µν (k) = S

(2)
µν,0 +

∑
iεn

∑
µν

S(2)
µν,ne

ik·Ri , (21)

where n represents shell number. Being much larger,
Cr−Al pair is a dominant mode. The shell-by-shell cal-

culation gives the strength and spatial extent of S(2)(k).

The normal modes in Table II are shown at 1.2Tsp

(Tsp = 448 K), which are the eigenvectors of S(2)(k)
driving divergence in SRO. The free energy cost to es-
tablish one of these modes vanishes at Tsp. Above Tsp

all eigenvalues remains positive, costing energy to disor-
dered state for substantiating concentration modulations
while below Tsp, the critical eigenvalue establishes the
anticipated probability distribution.

Similar to the NbAlTi2 example, the probability dis-
tribution can easily be determined for systems with any
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TABLE I. Real-space (21) S
(2)
µν,n interchange energies (in

mRy) of A1 for ∆ = 1.0 for modes Cr−Al, Co−Cr and Cr−Fe.

Shell Cr−Al Co−Cr Cr−Fe

S
(2)
0 −4.44 +1.91 +2.49

S
(2)
1 +2.49 −0.68 −0.63

S
(2)
2 −0.64 −0.13 +0.14

S
(2)
3 +0.02 +0.16 +0.29

S
(2)
4 −0.27 +0.28 +0.33

TABLE II. With Ni as host, the normal modes in Gibbs space
for A1 AlCoCrFeNi at 1.2Tsp ( Tsp = 448 K). E3 is the mode
corresponding to vanishing eigenvalue (highlighted) and used
for concentration wave analysis in (14).

Comp. eAl eCo eCr eFe
E1 +0.15 −1.09 −0.78 −0.20
E2 +0.83 +0.77 −0.83 −0.08
E3 −0.21 +0.28 +0.32 −0.60
E4 +1.11 −0.39 +0.78 −0.03

number of components. Because SRO instability for A1
occurs at star of wavevector kus = {001}, i.e., (100),
(010) and (001), the system is unstable to ordering into
a L1

2
-like superstructure, where γ = 1

4 by symmetry.
The concentration wave is then

nAl(r)
nCo(r)
nCr(r)
nFe(r)

 =


0.20
0.20
0.20
0.20

+
1

4
η(T )


−0.21
+0.28
+0.32
−0.60


×
[
e2πi(100)·r + e2πi(010)·r + e2πi(001)·r

] (22)

gives the probability distribution for A1 sites, i.e., cube
corner at (000) and faces at {0,± 1

2 ±
1
2}. The maximum

possible LRO is given by the site probability that van-
ishes first: Here, that occurs for nFe at r = (000) giving
ηmax = 0.2( 3

4 ∗ 0.6)−1 = 4
9 = 0.44. Thus, the maximum

probability occupation of Al, Co, Cr, Fe, and Ni at cube-
corner is 13, 29, 31, 0, and 27%, respectively. Similarly,
the occupation at other sites can be evaluated from (22).

A2 phase– At Tsp Co−Al and Al−Ni pairs in α(k)
become unstable (diverge) and indicate SRO instability
in A2 to long-range B2 order, see Fig. 5. Clearly, the in-
stability in α(k) at kus = [111] is because of Al−Ni peak

in stability matrix S(2)(k) indicating ordering tendency
of Co−Al and Al−Ni pairs.

For A2 with kus = {111}, the system is unstable to a
B2 superstructure with γ = 1

2 by symmetry. The con-

centration wave, corresponding to eigenvector of S(2)(k)
driving divergence in SRO, i.e., E4, highlighted in Ta-
ble III, is

nAl(r)
nCo(r)
nCr(r)
nFe(r)

 =


0.20
0.20
0.20
0.20

+
1

2
η(T )


+1.20
−0.46
+0.04
−0.27

× e2πi(111)·r (23)

FIG. 5. (color online) For ∆ = 1.0 (20% Al) in A2 phase,

(upper) αµν(k) and (lower) S
(2)
µν (k,T) plotted along Γ-P-N-Γ-

H of the bcc Brilliouin zone.

giving the probability distribution for A2 sites, i.e., cube
corner at (000) and center at

(
1
2
1
2
1
2

)
. The maximum

possible LRO is given by the site probability that van-
ishes first: here, that occurs for nAl at r = ( 1

2
1
2
1
2 ) giving

ηmax = 1
3 . Thus, maximum probability of Al, Co, Cr, Fe

and Ni at cube-center is 0, 27.7, 19.3, 24.5 and 28.5%,
respectively.

A1 Al-poor quinary (∆ = 0.395)

In Fig. 6, the α(k) instability occurs at kus = [000]
(Γ-point), indicating clustering involving two compet-
ing Cr−Al and Cr−Ni pair correlations. Clearly, how-

ever, S(2)(k) shows that the strongest exchange energy is
in the Cr−Ni pair, which drives clustering and slightly
weaker Cr−Al (X-point) ordering energy. This energet-
ics is manifest in α(k) through Cr-based pair correlations

(Cr−Al and Cr−Ni) to accommodate favorable S(2)(k)
clustering energy in Cr−Ni and weaker ordering energy
in Cr−Al, so they are coupled. This effect is driven by

the strongest Cr−Ni pair in S(2)(k), but manifest in α(k)
in two closely competing modes, i.e., Cr−Al and Cr−Ni.

TABLE III. With Ni as host, the normal modes in Gibbs
space for A2 AlCoCrFeNi at 1.2Tsp ( Tsp = 1705 K). E4 is
the mode corresponding to vanishing eigenvalue (highlighted)
and used for concentration wave analysis in (14).

Comp. eAl eCo eCr eFe
E1 −0.46 −0.84 −0.99 −0.15
E2 −0.45 +0.47 +0.22 −0.55
E3 −0.41 −0.94 +0.98 −0.01
E4 +1.20 −0.46 +0.04 −0.27
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FIG. 6. (color online) For ∆ = 0.395 (8% Al) in A1 phase,

(upper) αµν(k) and (lower) S
(2)
µν (k,T) plotted along Γ-X-W-

K-L-Γ of the fcc Brilliouin zone.

A2 Al-rich quinary (∆ = 1.6)

In Fig. 7, the instability in α(k) occurs at kus = [111]
(H−points) indicating ordering tendency in Al−Ni and

Co−Al pairs. However, the peak in S(2)(k) at H−point
is driven by competing pairs Al−Ni, Co−Al and Fe−Ni.
Clearly, a small change in pair energies can significantly
affect Warren-Cowley parameter.5–7

In Al-rich region, the SRO for A2 occurs at kus =
{111} indicating an ordering instability to the B2-like
superstructure with γ = 1

2 by symmetry. The concentra-

tion wave, corresponding to eigenvector of S(2)(k) driving
divergence in SRO, i.e., E4, highlighted in Table IV, is

nAl(r)
nCo(r)
nCr(r)
nFe(r)

 =


0.32
0.17
0.17
0.17

+
1

2
η(T )


+1.25
−0.48
+0.04
−0.20

× e2πi(111)·r (24)

giving the probability distribution for A2 sites, i.e.,
cube corner at (000) and center at

(
1
2
1
2
1
2

)
. The ηmax is

given by the site probability that vanishes first: Here,
that occurs for nAl at r = ( 1

2
1
2
1
2 ) giving ηmax =

0.32( 1
2 ∗ 1.25)

−1
= 0.512. Thus, maximum probability

occupation of Co, Cr, Fe and Ni at the center is 29.2,
16.0, 22.1 and 32.7%, respectively. Similarly, the occu-
pation at corner site can be evaluated.

TABLE IV. With Ni as host, the normal modes in Gibbs space
for Al-rich A2 at 1.2Tsp ( Tsp = 1190 K). E4 is the mode
corresponding to vanishing eigenvalue (highlighted) and used
for concentration wave analysis in (14).

Comp. eAl eCo eCr eFe
E1 −0.40 −0.82 −1.03 −0.15
E2 −0.32 +0.40 +0.23 −0.58
E3 −0.41 −0.97 +0.94 −0.02
E4 +1.25 −0.48 +0.04 −0.20

FIG. 7. (color online) For ∆ = 1.6 (32% Al) in A2 phase,

(upper) αµν(k) and (lower) S
(2)
µν (k,T) plotted along Γ-P-N-Γ-

H of the bcc Brilliouin zone.

Electronic Origin of SRO

For better understanding, KKR-CPA density of states
results were plotted for ∆ = 0.395, 1.0 and 1.6 for A1 and
A2 Al-Co-Cr-Fe-Ni systems and tried to connect general
behavior to its electronic origin.

FIG. 8. (color online) For Al ∆
5

[CoCrFeNi]1−∆
5

, partial den-

sity of states versus energy (relative to Ef ) at ∆ =0.395, 1.0
and 1.6. For comparison, lattice constant (volume) is kept
constant in A1 (6.80 a.u.) and A2 (5.47 a.u.) phases.
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In Fig. 8, A2 (∆ = 1.0 and 1.6) has strong hybridized
states compared to A1 (∆ = 0.395 and 1.0) which en-
hances the filling of bonding-type states below Ef , while
simultaneously pushing anti-bonding (or non-bonding)
states above Ef . But for A1 phase, the disorder broad-
ening leads to weak hybridization, reducing the ordering
strength. Clearly, increasing %Al stabilizes the A2 rel-
ative to A1, due to increased hybridization in A2 phase
resulting in an increased order-disorder temperature.

From our KKR-CPA-ASA, we can compare the ∆Ef

and their changes with composition and structure (due
to the ASA, trends with ∆ and structure can be shifted
from full potential results). At ∆ = 0.395, the pos-
itive ∆Ef = +5.19 mRy for A1 shows clustering na-
ture of the alloy, with an estimated miscibility gap
of 523 K. At ∆ = 1.0, the negative ∆Ef for A1
(−4.26 mRy) and A2 (−7.66 mRy) shows the ordering
nature with estimated order-disorder temperature 679 K
and 1217 K, respectively. At ∆ = 1.6, negative ∆Ef

for A1 (−5.86 mRy) also shows ordering behavior with
estimated order-disorder temperature of 932 K. The es-
timated Tsp from SRO calculations are 448 K, 437 K,
1705 K and 1190 K, respectively. The spinodal temper-
ature for A2 increases because of stronger hybridization.
Note that, if SRO linear response had charge fluctua-
tions incorporated (i.e. all double counting terms), then
Madelung screening, if relevant, can change the magni-

tude of S(2)(k) and Tsp. Here, for the Al-Co-Cr-Fe-Ni
systems only hybridization and band-filling are signifi-
cant in driving ordering or clustering.

VI. CONCLUSION

We have developed an algorithm based on mathematics
of (N−1)-simplex to analyze uniquely the chemical SRO
in N-component solid-solution alloys i.e., thermodynami-
cally induced ordering fluctuations. The eigenvectors as-
sociated with the SRO can be interpreted easily within a
concentration-wave framework. In addition, we utilized a
KKR-CPA based thermodynamic linear-response theory
to predict the SRO for N-component solid-solutions de-
scribed by an inhomogeneous coherent potential approx-
imation. We validated the new SRO code and analysis
on experimentally and theoretically well-studied binary
and ternary systems. We investigated SRO in quinary
Al-Co-Cr-Fe-Ni systems using new approach in three re-
gions with different %Al, that is, Al-poor with ∆ < 0.5,
Al-intermediate with 0.5 ≤ ∆ ≤ 1.25 and Al-rich with
1.25 < ∆ ≤ 2.0, all of which show simple solid-solution
phases, i.e., A1, A2 or both. The thermodynamic
predictions from our electronic-structure-based theories
of formation energy and short-range order from linear-
response agree with all known measurements. Given that
SRO is difficult to measure in HEA alloys, and has yet to
be attempted, our validated theory provides predictive
methods to guide experiment and to assess properties for

design of complex alloy systems.

For future design purposes, we propose to combine
SRO prediction over the entire Gibbs space with struc-
tural stability (A1 versus A2 versus A3) and mechanical
property estimates using stacking fault energy to nar-
row the search space for desired chemical and mechan-
ical behavior. Notably, stacking fault calculations must
include the Suzuki effect,58,59 where solute is attracted
(repelled) from the defect to lower (maintain) the de-
fect energy, or otherwise the mechanical strength can be
highly overestimated.60
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Appendix: Cartesian Representation of Regular
Simplices in arbitrary dimension: an (N-1)-simplex

In geometry, triangle or higher-order polygon can be
generalized into a polytope of arbitrary dimension, also
known as simplex.61 A (N−1)-simplex is defined as a ge-
ometric object that has N-vertices and N(N−1)/2 edges.
By convention, a (N − 1)-simplex has N-barycentric co-
ordinates defined to all sum to one, and, as such, the
Nth-coordinate is redundant (linearly dependent).

A regular (N − 1)-simplex is a polygon with equal
edge lengths and N-vertices, so compositions {ci} of con-
stituents in an N-component alloy are natural barycen-
tric coordinates with cN a dependent variable, as to be
used in a “host” picture. For a ternary system, for ex-
ample, the Gibbs (equilateral) triangle in composition
space uniquely describes compositions of the alloy along
its edges, see Fig. 2. Here, three pure components are
represented by three corners.

To introduce barycentric coordinates, we consider a
case of 2-simplex, Fig. 9, represented by a ternary Gibbs
triangle. The point P is an arbitrary barycentric point
in 2-simplex S with vertices Ai (i = 1 − 3). With this
definition, we can construct N edges between P and the 3
vertices Ai to define 3 simplexes Si covering S. Opposing
each vertex Ai of the 2-simplex are smaller 2-simplices
Si with Ni edges. The barycentric coordinates of point P
are (B1, B2, B3). With this, we can generalize to (N-1)-
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FIG. 9. Height h of triangle ∆A1A2A3 can be generalized to
evaluate the height of regular polygon, here, (N− 1)-simplex.
P-O2 is shift from composition to centroid of the simplex.

simplex with N edges between P and N vertices Ai to
define N (N-1)-simplexes Si covering S. The barycentric
coordinate of point P in (N-1)-simplex, (B1, B2,· · · , BN),
found to be

Bi =
area(Si)

area(S)
≡ ci. (A.1)

It is self-evident by definition that
∑N
i=1 Bi = 1 and inde-

pendent of point P; hence, compositions {ci} are the nat-
ural barycentric coordinates for the alloy problem. This
relation also gives the coordinates of redundant vertex
N. Each vertex of S represents a single component of the
alloy, so it has value ‘1’ and all remaining components
will be ‘0’. For example, in Fig. 9, the centroid ‘o2’,
and the three vertices A1, A2, and A3 have barycentric
coordinates (1/3, 1/3, 1/3) and (1, 0, 0), (0, 1, 0), (0, 0, 1),
respectively.

The transformation matrix N-1T to go from orthogonal
to oblique coordinates is straightforward for any dimen-
sion, where rank (N-1) of the matrix increases with the
order of simplex. Generally, from finite-element (arbitary
simplices) T is that given in the main text (10). What re-

mains is to derive analytically the matrix elements {Xj
i },

which are scaled by the height of (N-1)-simplex with re-

spect to host (Nth vertex).

An analytical form for T enables the direct transform
of N-component orthogonal eigenvectors to oblique com-
positional ones for proper chemical interpretation. The
final Gibbs’ eigenvectors describe properly the physical
SRO concentration waves. The elements of the transfor-
mation matrix are calculated analytically in two steps.

1. General formula for the height of N-simplex

First, we consider 2-simplex, i.e. equilateral triangle,
with A1A2 = A2A3 = A3A1 = 1 (unit length), see

Fig. 9. The height of such a triangle is h = cos X
2 . An-

gle X=∠A2A1A3 is the dihedral angle of the regular 2-
simplex and defined by scalar product, A1A2 · A1A3 =

cos X = 1
2 , which results in h=

√
1
2 (1 + cos X)=

√
3
2 .

The relation between the height of a regular (N-1)-
simplex and its dihedral angle is the same as for 2-simplex

h = cos
X

2
=

√
1

2
[1 + cos X] =

√
N

2(N-1)
. (A.2)

Here, we use the elementary result for the dihedral
angle,63 i.e., cos X=(N-1)

−1
.

2. Cartesian coordinates of vertices of N-simplex

In (N − 1)-simplex, the Cartesian coordinates of each
vertex AN with respect to centroid ‘oN−1’ can be deter-
mined with following conditions:

1. For a regular simplex, the distances of each vertex
from center will be a constant.

2. The scalar product of two vertices of (N − 1)-
simplex with respect to its center ( 1

N−1 ,
1

N−1 , · ·
·, 1

N−1 ) will give the angle subtended, i.e.,

arccos
[
−(N− 1)−1

]
.62,63

here, in Fig. 9, A1, A2 and A3 are equidistant vertices
with length ‘a’ from centroid ‘o2’ and angle subtended is
arccos

[
− 1

2

]
.

In a host picture for a N-component alloy, the T ma-
trix is rank (N− 1) and must be evaluated with respect

to Nth vertex of regular (N − 1)-simplex. Here, the co-
ordinate of all vertices are known in terms of center as
the origin, so we translate the origin from center to the
Nth vertex. Next, the vertex coordinates are scaled by
the height of (N−1)-simplex calculated analytically, i.e.,√

N/2(N− 1). This cumulative result can be used for
any alloy without change.

It follows that the coordinates of (N − 1) vertices are
analytically given by the relation (11)

Xj
i −X

N
i = − 1

Xi
i

√
2(N− 1)

N

[
Xi
i−1 ·Xj

i−1 +
1

N− 1

]
,

where each i, j runs from 1 to N − 1. For example, T
for binary (12), quaternary, and quinary (13) are given
in the text. This T matrix for N-component alloy en-
sures that the Gibbs’ eigenvectors, after transformation,
are both algebraically and geometrically orthogonal (see
main text). This transformation is used to determine
eigenvectors, SRO and concentration waves, and guaran-
tees that 0 ≤ cµ ≤ 1.
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