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1Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
3Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

4Instituto de F́ısica de São Carlos, Universidade de São Paulo,

C.P. 369, São Carlos, São Paulo 13560-970, Brazil
5Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

We study the effects of quenched disorder on the first-order phase transition in the two-dimensional
three-color Ashkin-Teller model by means of large-scale Monte Carlo simulations. We demonstrate
that the first-order phase transition is rounded by the disorder and turns into a continuous one. Us-
ing a careful finite-size-scaling analysis, we provide strong evidence for the emerging critical behavior
of the disordered Ashkin-Teller model to be in the clean two-dimensional Ising universality class,
accompanied by universal logarithmic corrections. This agrees with perturbative renormalization-
group predictions by Cardy. As a byproduct, we also provide support for the strong-universality
scenario for the critical behavior of the two-dimensional disordered Ising model. We discuss conse-
quences of our results for the classification of disordered phase transitions as well as generalizations
to other systems.

PACS numbers: 75.10.Nr, 75.40.-s, 05.70.Jk

I. INTRODUCTION

The Imry-Ma criterion1 is one of the key results on
phase transitions in disordered systems. It governs
the stability of macroscopic phase coexistence against
quenched random disorder that locally favors one phase
over the other. By comparing the energy gain due to
the disorder with the energy cost of a domain wall, Imry
and Ma showed that disorder destroys phase coexistence
by domain formation in dimensions d ≤ 2.2 As a con-
sequence, infinitesimal disorder rounds first-order phase
transitions in d ≤ 2 as Aizenman and Wehr3 later proved
rigorously as a theorem.4

These results raise the important question of what is
the fate of a first-order transition that is destroyed by
disorder? Is it a continuous transition, does an interme-
diate phase appear, or is the sharp transition, perhaps,
completely destroyed via smearing? If the transition be-
comes continuous, what is the critical behavior? Is it
accompanied by pretransitional singularities due to rare
regions, as is the case at “generic” critical points in disor-
dered systems (see, e.g., Refs. 5 and 6)? These questions
have recently reattracted considerable attention, in par-
ticular in the context of zero-temperature quantum phase
transitions.7–11

It turns out, however, that these questions remain un-
resolved even for a simple prototypical classical phase
transition, viz., the transition in the two-dimensional fer-
romagnetic Ashkin-Teller model. The N -color Ashkin-
Teller model12–15 consists of N Ising models, coupled via
their energy densities. In the absence of disorder and
for N > 2, this system features a first-order phase tran-
sition between a paramagnetic high-temperature phase
and a ferromagnetic (Baxter) phase a low temperatures.
According to the Imry-Ma criterion, or equivalently the
Aizenman-Wehr theorem, this first-order transition can-

not survive the introduction of weak disorder in the form
of random bonds or bond or site dilution. Murthy16 and
Cardy17 analyzed this problem by means of perturba-
tive renormalization group calculations which predicted
that the first-order transition is rounded to a continuous
transition in the universality class of the two-dimensional
clean Ising model, apart from logarithmic corrections.
However, recent numerical simulations of a random-bond
three-color Ashkin-Teller model18,19 disagreed with these
predictions. They found nonuniversal critical exponents
that vary with disorder strength and differ from the clean
Ising exponents. Moreover, the reported value of the cor-
relation length exponent ν violates the inequality dν ≥ 2
due to Chayes et al.20

To resolve these contradicting results, we perform
large-scale high-accuracy Monte Carlo simulations of the
two-dimensional three-color Ashkin-Teller model. We
consider two types of quenched disorder, random bonds
as well as site dilution. Our data provide strong evidence
that the emerging critical behavior is universal and in the
clean Ising universality class, as predicted by the renor-
malization group calculations.16,17 It is also accompanied
by logarithmic corrections analogous to those found in
the disordered two-dimensional Ising model.

The rest of our paper is organized as follows: In Sec.
II, we introduce the N -color Ashkin-Teller model and
discuss its properties in the absence of disorder. We
then briefly summarize the results of Cardy’s renormal-
ization group theory. In Sec. III, we explain our Monte
Carlo method, and we give an overview over the simu-
lation parameters. Section IV is devoted to the numer-
ical results for the clean, site-diluted, and random-bond
Ashkin-Teller models. As a byproduct, our data provide
additional support for the strong-universality scenario for
the two-dimensional disordered Ising model. We con-
clude in Sec. V by discussing consequences of our results
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for the classification of disordered phase transitions as
well as generalizations to other systems.

II. MODEL AND THEORY

The two-dimensionalN -color Ashkin-Teller model13–15

is a generalization of the original model proposed by
Ashkin and Teller12 (which corresponds to the N = 2
case). It consists of N identical Ising models, coupled
via their energy densities. The Hamiltonian of the clean
model reads

H = −J

N
∑

α=1

∑

〈ij〉

Sα
i S

α
j −K

∑

α<β

∑

〈ij〉

Sα
i S

α
j S

β
i S

β
j . (1)

Here, i and j denote the sites of a regular square lattice of
L2 sites, and the corresponding sum is over pairs of near-
est neighbors. α is the “color” index that distinguishes
the N Ising models, and Sα

i = ±1 are the usual classical
Ising variables. We are interested in the regime in which
both the Ising interaction J and the four-spin interaction
K are positive. The strength of the coupling between the
Ising models can be parameterized by the dimensionless
ratio ǫ = K/J . Note that the Hamiltonian (1) is self
dual for the case of N = 2 colors; and this property has
been used to find the exact location of the phase transi-
tion in the clean and disordered models.21,22 For N > 2,
the Hamiltonian (1) is not self-dual. Self-duality can be
restored, however, by including higher-order terms with
up to 2N spins.23 We have not done this in our work,
mainly to keep our results quantitatively comparable to
other simulations13,18,19 in the literature.
The properties of the clean Ashkin-Teller model have

been studied in great detail. The two-color model (N =
2) features a continuous transition with nonuniversal,
continuously varying exponents between a paramagnetic
high-temperature phase and an ordered phase at low tem-
peratures (see, e.g., Ref. 24 and references therein). In
contrast, this transition is of first order for N > 2, which
is the case we are interested in.13–15

Quenched disorder can be introduced into the Hamil-
tonian (1) in several ways. We consider both site dilution
and bond randomness. In the former case, a fraction p
of the lattice sites is removed at random (the Sα

i for all
colors α are removed at such vacancy sites). The inter-
actions between the remaining sites retain their uniform
values J and K. In the case of bond randomness, the
Ising couplings Jij between neighboring sites i and j be-
come independent random variables drawn from some
probability distribution P (J) which we take to be a bi-
nary distribution

P (J) = cδ(J − Jh) + (1− c)δ(J − Jl) (2)

with Jh > Jl > 0. Here, c is the concentration of the
stronger bonds. The four-spin couplings Kij are either
taken to be uniform or they are slaved to the Ising inter-
actions on the same bond via Kij = ǫJij with constant

coupling strength ε
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FIG. 1. (Color online) Cardy’s renormalization group trajec-
tories on the critical surface (coupling strength ǫ vs. disor-
der strength ∆) for N = 3. The trajectories initially flow
towards the first-order region at strong coupling. However,
they eventually curl back towards the clean Ising fixed point
at ǫ = ∆ = 0.

ǫ. Both site dilution and random bonds are realizations
of random-Tc disorder, i.e., disorder that does not break
any of the spin symmetries but changes the local ten-
dency towards the high-temperature or low-temperature
phases. Thus, if the system undergoes a continuous phase
transition, both types of disorder should lead to the same
universality class.
Murthy16 and Cardy17 applied a perturbative renor-

malization group to a continuum version of the two-
dimensional N -color Ashkin-Teller model. This analysis
benefits from the fact that the first-order phase transition
in the clean model is fluctuation-driven. As a result, the
renormalization group is controlled in the limit of small
inter-color coupling and weak disorder. Cardy found the
renormalization group trajectories on the critical surface
in closed form. In terms of the coupling strength ǫ and
the dimensionless disorder strength ∆, they read

ǫ = const× (∆/ǫ)(N−2)/N exp(−2∆/Nǫ) (3)

A few characteristic trajectories are shown in Fig. 1. For
weak bare (initial) disorder, the trajectories first run to-
wards the strong-coupling region ǫ ≫ 1 where the tran-
sition would turn first order. However, they eventually
turn around and curl back towards the clean Ising fixed
point at ǫ = ∆ = 0. This not only implies that the tran-
sitions has become continuous, in agreement with the
Imry-Ma criterion, it also means that the critical behav-
ior is in the clean Ising universality class. A more detailed
analysis of the renormalization group equations produces
additional logarithmic corrections to the leading Ising
power laws, similar to those found in renormalization
group approaches to the disordered Ising model.25–28

Furthermore, the large excursions of the renormaliza-
tion group trajectories for small bare disorder strength
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imply a very slow crossover from the first-order tran-
sition of the clean Ashkin-Teller model to the critical
point of the disordered system. This crossover is espe-
cially interesting because d = 2 is the marginal dimen-
sionality for the Aizenman-Wehr theorem. (First-order
transitions are destroyed by randomness for d ≤ 2 while
they can survive for d > 2.) If the clean system has
a strong first-order transition, the breakup length Lb,
beyond which randomness becomes important increases
very rapidly with decreasing disorder strength ∆. In fact,
for weak disorder, it is expected29,30 to follow the expo-
nential Lb ∼ exp(const/∆2). This implies that enormous
system sizes are necessary to reach the asymptotic regime
if the clean first-order transition is strong and the disor-
der is weak.

III. MONTE CARLO SIMULATIONS

A. Overview

To resolve the discrepancy between the renormaliza-
tion group predictions outlined above and the recent nu-
merical results of Refs. 18 and 19, we perform large-
scale high-accuracy Monte Carlo simulations of two-
dimensional three-color Ashkin-Teller models with site
dilution and/or bond randomness.
As we are interested in the critical behavior, a cluster

algorithm is required to reduce the critical slowing down
close to the phase transition. We employ a Wolff em-
bedding algorithm similar to that used by Wiseman and
Domany22 for the two-color Ashkin-Teller model. Its ba-

sic idea is simple. Imagine fixing all S
(2)
i and S

(3)
i spins.

Then, the Hamiltonian (1) is equivalent to an (embed-

ded) Ising model for the S
(1)
i spins with effective interac-

tions

Jeff
ij = J + ǫJ

(

S
(2)
i S

(2)
j + S

(3)
i S

(3)
j

)

. (4)

Simulating this Ising model using any valid Monte Carlo
algorithm establishes detailed balance between all states

with the same fixed S
(2)
i and S

(3)
i . We can construct

and simulate analogous embedded Ising models to up-

date S
(2)
i and S

(3)
i . By combing Monte Carlo updates for

all three embedded Ising models we arrive at a valid algo-
rithm (fulfilling ergodicity and detailed balance between
all states) for the entire Hamiltonian (1).
To simulate the embedded Ising models, we use the ef-

ficient Wolff and Swendsen-Wang cluster algorithms.31,32

They are only valid if all interactions are ferromagnetic,
i.e., if all Jeff

ij ≥ 0. This is fulfilled as long as the coupling
strength |ǫ| ≤ 1/(N − 1). In our case of three colors, ǫ
therefore must not exceed 1/2.
Finding the averages, variances, and distributions of

observables in disordered systems requires the simulation
of many samples with different disorder configurations.
For optimal performance, one must therefore carefully

choose the number ns of samples (i.e., disorder configu-
rations) and the number nm of measurements during the
simulation of each sample.33–35 Assuming statistical in-
dependence between measurements (quite possible with
a cluster algorithm), the total variance σ2

t of a particular
observable (thermodynamically and disorder averaged)
can be estimated as

σ2
t = (σ2

s + σ2
m/nm)/ns (5)

where σ2
s is the disorder-induced variance between sam-

ples and σ2
m is the variance of measurements within each

sample. As the numerical effort is roughly proportional
to nm ns (neglecting equilibration for the moment), it is
clear that the best value of nm is quite small. One might
even be tempted to measure only once per sample. How-
ever, with too few measurements, the majority of the
computer time would be spent on equilibration. These
requirements can be balanced by using large numbers ns

of disorder configurations (ranging from several 10000 to
several million in our case) and rather short runs with
a few hundred Monte Carlo measurements per sample.
Note that such short runs lead to biases in several ob-
servables, at least if the usual estimators are employed.
These biases can be corrected by improved estimators as
is discussed in Appendix A.
Based on these ideas, we develop two independent

Monte Carlo codes, one (referred to as code A) mainly
employed for simulating the site-diluted Ashkin-Teller
model, and the other one (code B) used for the random-
bond case.

B. Site-diluted simulations

All site-diluted simulations use code A. We study im-
purity concentrations p = 0 (the clean case), 0.05, 0.1,
0.2, and 0.3. For comparison, the lattice percolation
threshold is at pc = 0.407253. The Ising interaction J is
fixed at unity while the coupling strength ǫ = K/J takes
values 0 (the Ising limit), 0.05, 0.1, 0.2, 0.3, and 0.5.
The system is tuned through the transition by changing
the temperature T . Lattice sizes range from 252 sites to
16002 sites (22402 sites for the Ising case, ǫ = 0) with pe-
riodic boundary conditions. Data are averaged over up
to 4 million disorder configurations for the smaller sys-
tems and over up to 500,000 configurations for the largest
ones. This leads to small statistical errors of the data.
For site-diluted systems, we combine the Wolff single-

cluster updates with Swendsen-Wang multi-cluster up-
dates to equilibrate small isolated clusters of lattice sites
that can occur for larger dilutions. Specifically, a full
Monte Carlo sweep consists of a Swendsen-Wang sweep
(for each color) followed by aWolff sweep. (AWolff sweep
is defined as a number of cluster flips such that the total
number of flipped spins per color is equal to the num-
ber of sites.) To verify our codes we have also compared
the results to those of conventional Metropolis single-spin
updates.36
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To estimate the equilibration times, we compare runs
with “hot start” (initial spin values are completely ran-
dom) and “cold start” (initially, all spins Sα

i = 1). Char-
acteristic equilibration times range from less than 10
sweeps for linear system size L = 50 to about 40 sweeps
for system size L = 1600. In our production runs, we
therefore employ equilibration periods of 60 to 100 sweeps
and measurement periods of another 100 to 200 sweeps,
with measurements taken after every sweep. Using these
parameters, the results of runs with hot and cold starts
agree within our small statistical errors.

Note that simulations of the clean Ashkin-Teller model
close to its strong first-order phase transition require
longer equilibration times to overcome the supercritical
slowing down associated with first-order transitions. De-
tails will be given in Sec. IVA.

C. Random-bond simulations

Using code A, we study the random-bond Ashkin-
Teller model with the binary bond distribution (2). The
Ising interactions take the values Jh = 2 or Jl = 0.5,
each with a probability of 0.5. The four-spin interactions
are slaved to the Ising interactions via Kij = ǫJij with
constant coupling strength ǫ. We explore the cases ǫ = 0
(random-bond Ising model), 0.1, 0.2, and 0.5. Lattice
sizes range from 352 to 11202 sites with periodic bound-
ary conditions. The numbers of disorder configurations
for each parameter set range from 105 for the largest sys-
tems to 106 for the smallest ones.

Otherwise, the random-bond simulations are analo-
gous to the site-diluted ones: Each full Monte Carlo
sweep is a combination of a Wolff sweep and a Swendsen-
Wang sweep. Each system is equilibrated from a hot start
using 100 full sweeps, the measurement period is another
100 sweeps.

In addition, we use code B to perform simulations of
a random-bond Ashkin-Teller model with uniform, non-
random four-spin interaction K. Specifically, the Ising
interactions take the values Jh = 6/5 and Jl = 4/5, each
chosen with a probability of 0.5. This implies that the av-
erage Ising interaction is J ≡ (Jh + Jl)/2 = 1. The four-
spin interactions are non-random and given by K = ǫJ .
Because the effective interactions (4) appearing in the
embedded Wolff algorithm must be positive for both val-
ues of the Ising interaction, the coupling strength is re-
stricted to ǫ ≤ 2/5. In our simulations, ǫ will be fixed at
0.1. We simulate lattice sizes ranging from 242 to 16002

sites with periodic boundary conditions. The numbers
of disorder configurations range from 104 for the largest
system to 105 for the smallest one. Each system is equili-
brated from a cold start using 200 full Wolff sweeps, the
measurement period is also 200 Wolff sweeps per temper-
ature; and we take measurements after every four sweeps.

D. Observables

During the simulations, we calculate various thermo-
dynamic quantities such as the energy E = [〈e〉]dis and
the magnetization M = [〈m〉]dis. Here e and m stand
for individual energy and magnetization measurements,
and 〈. . .〉 is the canonical thermodynamic average (which
is approximated by the Monte Carlo average over nm

measurements). The average [. . . ]dis over the disor-
der distribution is approximated by the average over ns

samples. Specific heat and magnetic susceptibility are
calculated from the fluctuations of e and m as C =
(L2/T 2)[〈e2〉 − 〈e〉2]dis and χ = (L2/T )[〈m2〉 − 〈m〉2]dis.
We also measure the product order parameter (or “po-

larization”) Mp = [〈mp〉]dis with mp = (1/L2)
∑

i S
α
i S

β
i

for two different colors α and β. The corresponding sus-
ceptibility reads χp = (L2/T )[〈m2

p〉 − 〈mp〉
2]dis.

Magnetization and susceptibility are averaged over the
three colors for increased accuracy, and all quantities are
normalized “per spin”. Analogously, the product order
parameter and its susceptibility are averaged over the
three possible pairs of colors. The statistical errors of
all thermodynamic quantities are estimated from their
fluctuations between disorder configurations.
In addition, we calculate several quantities whose scale

dimension is zero which makes them particularly suitable
for a finite-size scaling analysis. The first such quantity
is the Binder cumulant of the magnetization. In a disor-
dered system, we need to distinguish the average Binder
cumulant gav and its “global” counterpart ggl, depend-
ing on when the disorder average is performed. They are
defined as

gav =

[

1−
〈m4〉

3〈m2〉2

]

dis

, ggl = 1−
[〈m4〉]dis
3[〈m2〉]2dis

. (6)

The Binder cumulants gEav and gEgl of the energy can be
defined analogously.
The correlation length is calculated via the second

moment of the spin-spin correlation function G(r) =
(1/L2)

∑

i,j,α〈S
α
i S

α
j 〉δ(r−rij).

37–39 We again need to dis-
tinguish average and “global” versions of this quantity,
depending on when the disorder average is performed.
They can be obtained efficiently from the Fourier trans-
form G̃(q) of the correlation function:

ξav =





(

G̃(0)− G̃(qmin)

q2minG̃(qmin)

)1/2




dis

, (7)

ξgl =

(

[G̃(0)− G̃(qmin)]dis

q2min[G̃(qmin)]dis

)1/2

. (8)

Here, qmin = 2π/L is the minimum wave number that
fits into a system of linear size L.
As was mentioned in Sec. III A, short Monte Carlo runs

potentially introduce biases into observables for which a
nonlinear operation is performed on the data before the
disorder average. In our case, this includes C, χ, gav, and



5

ξav. As is explained in Appendix A, these biases can be
eliminated by using improved estimators.
To judge the quality of the fits of our data to various

mathematical models, we use the reduced weighted error
sum χ̄2. For fitting n data points (xi, yi) to a function
f(x) containing q fit parameters, it is defined as

χ̄2 =
1

n− q

∑

i

(yi − f(xi))
2

σ2
i

(9)

where σ2
i is the variance of yi. The fits are of good quality

if χ̄2 / 2.

IV. RESULTS

A. Clean Ashkin-Teller model

We first perform a number of simulations (using code
A) of the clean model (no dilution, uniform interactions
J = 1,K = ǫ) to test our algorithms and for later com-
parison with the disordered case.
For ǫ = 0, the three-color Ashkin-Teller model is iden-

tical to three independent Ising models. We simulate
this model on lattices of 502 to 8002 sites, averaging the
data over 1000 samples for each size. The critical tem-
perature is determined, as usual, from the crossing of the
magnetic Binder cumulant g for different system sizes
L. We find Tc = 2.26920(4) (the number in brackets
indicates the error of the last digit) in agreement with
the exact value 2/ ln(1 + 21/2) = 2.269185 . . .. Straight
power-law fits (without subleading corrections) of mag-
netization and susceptibility at Tc as functions of L yield
the critical exponent estimates β/ν = 0.1253(4) and
γ/ν = 1.751(2). The correlation length exponent itself
derives from the temperature derivative of g at critical-
ity. We find ν = 0.992(7). All fits are of good quality (re-
duced χ̄2 of about 0.3 . . . 1.2), and the estimates are in ex-
cellent agreement with the exact values β = 1/8, γ = 7/4,
and ν = 1.
For nonzero positive ǫ, the phase transition in the clean

Ashkin-Teller model is known13–15 to be of first-order.
We confirm this by simulations for ǫ = 0.2, 0.3 and 0.5
using systems of up to 5602 sites, averaged over 1000
samples. Because of the supercritical slowing down as-
sociated with first-order transitions we increase the equi-
libration period to up to 500 Monte Carlo sweeps and
the measurement period to 2000 sweeps. The first-order
character can be seen clearly in the double-peak structure
of the probability distribution P (m) of the magnetization
close to the transition temperature, as shown in Fig. 2.
Notice that the minimum between the peaks becomes
more pronounced with increasing system size, and the
distance between the peaks remains roughly unchanged.
We also perform exploratory simulations for ǫ = 0.7

and 1.0. The Wolff and Swendsen-Wang algorithms are
invalid for these values because the effective interactions
(4) can become negative. We therefore employ only
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FIG. 2. (Color online) Left: Magnetization distribution
P (m) of the clean three-color Ashkin-Teller model for cou-
pling ǫ = 0.3 close to the transition temperature Tc ≈ 3.178.
The double-peak structure characteristic of a first-order tran-
sition becomes more pronounced with increasing system size.
(The curves for L = 400, 280, and 200 are shifted upwards by
multiples of 0.5 for clarity.) Right: Wang-Landau density of
states ρ(E) weighted by the Boltzmann factor (and normal-
ized to its maximum) for the clean Ashkin-Teller model at
ǫ = 1. The system size is L = 48.

Metropolis updates which requires long equilibration and
measurement times and severely restricts the possible
system sizes. Consequently, our simulations of up to
2002 lattice sites (using 1000 samples, each with 5000
equilibration sweeps and 10000 measurement sweeps) are
less accurate than the simulations for ǫ ≤ 0.5. However,
by comparing runs with “hot” and “cold” starts we can
bracket the transition temperature with reasonable preci-
sion. Analogous simulations of the clean system are also
carried out using code B.

The supercritical slowing down can be overcome by
alternative sampling approaches.40–43 To further check
the correctness of the phase diagram, we therefore im-
plement a code based on the Wang-Landau algorithm42

which is particularly suited to address first-order tran-
sitions. This method performs a random walk in en-
ergy space and provides direct access to the density of
states ρ(E) (here, E = L2e refers to the extensive total
energy). Specifically, the algorithm proceeds as follows:
We initially set ρ(E) = 1. The energy histogram, which
records the visit to each energy level E, is started at
H(E) = 0. We then flip spins according to the proba-
bility p(Ei → Ej) = min(1, ρ(Ei)/ρ(Ej)) where Ei and
Ej are the energies of the states before and after the
flip, respectively. After every attempted spin flip, the
density of states at the resulting energy is updated via
ρ(E) → f×ρ(E), and we record the visit by updating the
histogram, H(E) → H(E)+1. The modification factor f
is initially set to f = exp(1). Once the histogram H(E)
becomes reasonably flat, we reset H(E) = 0 and update
the modification factor to a smaller value, f → f1/2. It-
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FIG. 3. (Color online) Phase diagram of the clean three-
color Ashkin-Teller model as function of temperature T and
coupling strength ǫ. The blue squares and the pink crosses
mark the numerically determined transition points while the
line is just a guide to the eye. The error bars of all our data are
significantly smaller than the symbol size. For comparison,
the figure also shows data extracted from the papers by Grest
and Widom13 and Bellafard et al.18

erating this procedure until f < exp(10−8) gives the den-
sity of states ρ(E) with high precision. The right panel of
Fig. 2 shows the resulting density of states, weighted with
the Boltzmann factor, for the clean Ashkin-Teller model
at ǫ = 1. The double peak structure characteristic of two
coexisting phases is clearly visible. The phase boundary
can also be estimated from the peak of the specific heat
curve.
The phase diagram presented in Fig. 3 summarizes

the results of our calculations for the clean Ashkin-Teller
model. The figure also shows the critical temperatures
reported in Refs. 13 and 18 (extracted by redigitizing Fig.
3 of Ref. 13 and Fig. 1 of Ref. 18). Within the errors of
the redigitized data, our results agree well with Ref. 13
but disagree with Ref. 18.44

B. Site-diluted Ising model

After discussing the clean limit p = 0, ǫ 6= 0, we now
turn to the opposite limit p 6= 0, ǫ = 0. In this limit, our
Hamiltonian is equivalent to three decoupled site-diluted
Ising models. The critical behavior of the disordered two-
dimensional Ising model is actually an interesting topic
in itself because the clean correlation length exponent
takes the value ν = 1 which makes it marginal with re-
spect to the Harris criterion45 dν > 2. In the literature,
two main scenarios for the critical behavior have been
put forward, the logarithmic correction scenario and the
weak-universality scenario.
The logarithmic correction (strong-universality) sce-

nario arises from a perturbative renormalization-group
approach.25–28 It predicts that the asymptotic critical be-

havior of the disordered Ising model is controlled by the
clean Ising fixed point. Disorder, which is a marginally
irrelevant operator, gives rise to universal logarithmic
corrections to scaling. Specifically, one can derive the
following finite-size scaling behavior46–48 in the limit of
large L. The specific heat at the critical temperature
diverges as

C ∼ ln lnL (10)

with system size. Magnetization and magnetic suscepti-
bility at Tc behave as

M ∼ L−β/ν [1 +O(1/(lnL))] , (11)

χ ∼ Lγ/ν [1 +O(1/(lnL))] , (12)

with γ/ν = 7/4 and β/ν = 1/8 as in the clean Ising
model. Any quantity R of scale dimension zero (such as
the Binder cumulants gav and ggl as well as the correla-
tion length ratios ξav/L and ξgl/L) and its temperature
derivative scale as

R = R∗ +O(1/(lnL)) , (13)

dR/dT ∼ L1/ν(lnL)−1/2 [1 + O(1/(lnL))] (14)

with ν = 1. This means, χ, M , and R do not have
multiplicative logarithmic corrections but dR/dT has a
multiplicative (lnL)−1/2 correction.
The weak-universality scenario was developed heuris-

tically based on early numerical data.49–51 It states that
the observables display simple power-law critical singu-
larities. Their exponents vary continuously with disorder
strength, but certain ratios stay constant at their clean
values, for example γ/ν and β/ν. The debate over the
critical behavior of the two-dimensional disordered Ising
model has persisted over many years, mainly because it is
very hard to discriminate between logarithms and small
powers on the basis of numerical data. Only in the last
few years, the evidence seems to favor the logarithmic
correction scenario (see, e.g., Refs. 47, 48, 52, and 53 and
references therein).
The purpose of our simulations is twofold: On the one

hand, the disordered Ising model is an important (lim-
iting) reference case for our main topic, the disordered
Ashkin-Teller model. On the other hand, we hope to
make a contribution towards resolving the above contro-
versy about the disordered Ising model itself. We there-
fore perform a series of high-accuracy simulations for di-
lution p = 0.3 and ǫ = 0, using linear system sizes from
L = 50 to 2240. The numbers of disorder realizations
range from 4× 106 for L = 50 to 5× 105 for L = 2240).
Figure 4 shows the Binder cumulant ggl as a function

of temperature. Analogous plots can be produced for gav,
ξgl/L and ξav/L. All these quantities display significant
corrections to scaling manifest in the shift of the crossing
temperature with increasing L. To extrapolate to infinite
system size, we determine the crossings of the ggl vs. T
curves for sizes L/2 and L (and the corresponding cross-
ings for gav, ξgl/L and ξav/L). Figure 5 presents the de-
pendence of the crossing temperatures Tx on the system
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FIG. 4. (Color online) Binder cumulant ggl vs. temperature
T for p = 0.3 and ǫ = 0 for different linear system sizes L.
The statistical errors are much smaller than the symbol size.
With increasing L, the crossing point shifts towards higher T ,
indicating significant corrections to scaling.
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FIG. 5. (Color online) Crossing temperatures Tx vs. inverse
system size 1/L for p = 0.3 and ǫ = 0. Tx is the temperature
where the curves of gav, ggl, ξav/L and ξgl/L versus T cross
for system sizes L/2 and L. The solid lines are fits to Tx =
Tc + aL−b. The error bars of Tx are about the size of the
symbols at the right side of the plot and become much smaller
towards the left.

size. The critical temperature Tc can be extracted by
extrapolating the crossing temperatures to infinite sys-
tem size. Fits to Tx = Tc + aL−b yield Tc = 1.07201(3)
which agrees reasonably well with the result of Ref. 47,
Tc = 1.07194(6), obtained from systems with up to 2562

sites. (Fits of Tx vs. 1/L to quadratic polynomials give
comparable results.)

1. Logarithmic-correction scenario

To study the critical behavior, we analyze the system-
size dependence at the critical temperature of magne-
tization M , susceptibility χ, specific heat C and the
slope d ln(ξgl/L)/dT of the normalized correlation length
curves. Straight power-law fits (without corrections to
scaling) of the data at T = 1.07200 to M ∼ L−β/ν,
χ ∼ Lγ/ν, C ∼ Lα/ν and d ln(ξgl/L)/dT ∼ L1/ν give
the estimates β/ν = 0.1217(1), γ/ν = 1.8046(2), α/ν =
0.0516(1), and ν = 1.107(3). These values do not agree
with the clean Ising exponents, β/ν = 1/8, γ/ν = 7/4,
α/ν = 0, and ν = 1. However, the quality of all fits
is extremely poor, with reduced χ̄2 values of about 50,
1300, 4600, and 7, respectively. This indicates that the
data significantly deviate from pure power laws.
To understand the nature of the deviations, we divide

out the clean Ising power laws and plot the resulting data
in Fig. 6. ML1/8 and χL−7/4, shown in the upper panel,
clearly increase much more slowly than power laws with
L. As suggested in eqs. (11) and (12), their behaviors
can be analyzed as logarithmic corrections to scaling and
fitted to the form a[1 + b/ ln(cL)]. The fits are of good
quality (reduced χ̄2 of 1.1 and 0.5 for the magnetization
and susceptibility, respectively). The lower panel of Fig.
6 shows specific heat C vs. system size at the critical
temperature. The data can be fitted well by the double-
logarithmic form a ln[b ln(cL)] suggested by eq. (10), giv-
ing a reduced χ̄2 of about 1.2. For comparison, we also
consider a simple logarithmic form C = a ln(bL). A semi-
log plot of C vs. ln(L) (not shown) shows strong devia-
tions from a straight line. Correspondingly, the simple
logarithmic fit is of very poor quality, with a reduced χ̄2

of about 3000; and it does not improve much if the fit
range is restricted.

The lower panel of Fig. 6 also shows the slopes
d ln(ξav/L)/dT and d ln(ξgl/L)/dT of the normalized
correlation length curves at the critical tempera-
ture. We again divide out the clean Ising power law
d ln(ξ/L)/dT ∼ L to make the deviations from power-law
behavior clearly visible. The resulting data can be fitted
well by the logarithmic form a[ln(bL)]−1/2 suggested by
eq. (14) (reduced χ̄2 of about 0.3 for both data sets).
Including extra additive corrections to scaling does not
improve the fits. The slopes of the magnetic Binder cu-
mulants behave analogously.

In addition to the quantities shown in Fig. 6, we study
the system-size dependence of the dimensionless ratio
ξ/L at criticality. Within the logarithmic correction sce-
nario, this ratio is expected to approach the universal
value (ξ/L)∗ of the clean Ising model which is known with
high precision (see, e.g., Ref. 54). For a square lattice
with periodic boundary conditions (torus topology), it
reads (ξ/L)∗ = 0.9050488292(4). According to eq. (13),
the approach to this value is logarithmically slow. We
therefore plot ξgl/L and ξav/L at the critical tempera-
ture as functions of 1/ ln(L) in Fig. 7. Both ratios can
be well fitted to the form (ξ/L) = (ξ/L)∗ + a/ ln(bL),
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FIG. 6. (Color online) System-size dependence of observables

at the critical temperature. Top: Log-log plots of ML1/8 and
χL−7/4 vs. L at T = 1.07200 for p = 0.3 and ǫ = 0. The solid
lines are fits to a[1 + b/ ln(cL)] as suggested by eqs. (11) and
(12). Bottom: Log-log plots of the specific heat C as well as
the slopes L−1d ln(ξav/L)/dT and L−1d ln(ξgl/L)/dT vs. L at
T = 1.07200 for p = 0.3 and ǫ = 0. The solid lines represent
fits to a ln[b ln(cL)] for the specific heat and to a[ln(bL)]−1/2

for the slopes. The dashed line shows a power-law fit using
ν = 1.130 as implied by the hyperscaling relation 2− α = 2ν
in the weak-universality scenario.

as suggested by eq. (13), with (ξ/L)∗ fixed at the clean
Ising value. The fits are of excellent quality (reduced
χ̄2 of 0.7 and 0.6, respectively) if the fit range is re-
stricted to system sizes L > 70. We attribute the small
deviations for the smallest L to subleading terms47 of
the form ln ln(bL)/ ln2(bL) in eq. (13) that are not in-
cluded in the fit. Analyzing the system size dependence
of the Binder cumulant gav at criticality gives the same
result: gav approaches the universal clean Ising value54,
g∗ = 0.610692(2) following eq. (13). The behavior of ggl
is more complex. With increasing L, it first decreases
below g∗ before turning around and approaching g∗ from
below. A quantitative analysis therefore requires even
larger systems than ours to properly fit the subleading
terms in eq. (13).
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1/ln(L)
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ξ/
L
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ξgl /L

p=0.1, ε=0.1
ξav/L
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FIG. 7. (Color online) Dimensionless ratios ξgl/L and ξav/L
at criticality vs. 1/ ln(L) for p = 0.3, ǫ = 0 (T = 1.07200),
p = 0.3, ǫ = 0.5 (T = 1.93471), and for p = 0.1, ǫ = 0.1 (T =
2.18769). The error bars are significantly smaller than the
symbol size. The lines are fits to (ξ/L) = (ξ/L)∗ + a/ ln(bL)
with (ξ/L)∗ fixed at the clean Ising value 0.9050488292. Note
that the two ξgl/L curves for p = 0.3, ǫ = 0 and p = 0.3, ǫ =
0.5 are almost on top of each other.

Finally, we also study the product order parameterMp.
As the different colors are completely independent for
ǫ = 0, Mp must scale as M2. Indeed, the system size
dependence of our data at criticality (not shown) can be
fitted very well by Mp = aL−1/4[1 + b/ ln(cL)].
In sum, our high-accuracy data almost perfectly agree

with the renormalization-group predictions that lead to
the logarithmic correction scenario outlined in eqs. (10)
to (14) over the entire range of system sizes studied (L =
50 to 2240).

2. Weak-universality scenario

Can these data also be understood within the heuris-
tic weak-universality scenario? Figure 6 shows that the
data deviate significantly from pure power laws over en-
tire system size range. The weak-universality scenario
can thus only work, if at all, if corrections to scaling are
included (in addition to potential changes in the critical
exponents).
The system size dependencies of M and χ at Tc shown

in Fig. 6 can be fitted with the clean Ising exponents
β/ν = 1/8 and γ/ν = 1, provided that corrections
to scaling of the type M = aL−β/ν(1 + bL−ω) and
χ = aLγ/ν(1 + bL−ω) are included. These fits are of
lower, but still acceptable, quality (reduced χ̄2 of about
1.9 and 2.5, respectively) than the fits with logarithmic
corrections given in eqs. (11) and (12). Four-parameter
fits to the same functional forms but with floating crit-
ical exponents give β/ν = 0.123(10) and γ/ν = 1.76(2)
where the errors mostly stem from the sensitivity of the
fits towards changes of the fit interval. We conclude that
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β/ν and γ/ν agree with the clean Ising values. As these
exponent ratios are expected to take the clean values in
both scenarios, this does not allow us to discriminate be-
tween the scenarios. We therefore turn to the exponents
α/ν and ν which are expected to be nonuniversal.
In the weak-universality scenario, the slow increase of

the specific heat C with L (as shown in the lower panel of
Fig. 6) is interpreted as power-law behavior of the type
C = C∞ + aLα/ν with a negative exponent α. A fit
to this form yields α/ν = −0.230(3), however, it is of
much lower quality (reduced χ̄2 of about 26) than the
double-logarithmic fit employed above. Moreover, the fit
is very unstable. If we extract an effective exponent by
restricting the fit to the interval (Lmin, 4Lmin), its value
increases monotonically from −0.278 for Lmin = 50 to
−0.106 for Lmin = 560, with no sign of saturation. A
controlled extrapolation to infinite Lmin is difficult; but
it appears to be compatible with α/ν = 0. In fact, a
(perhaps overambitious) five-parameter fit that includes
subleading corrections to scaling, C = C∞ + aLα/ν(1 +
bL−ω), yields a very small α/ν ≈ 0.03 albeit with a large
error of about 0.2.
The temperature derivatives d ln(ξav/L)/dT and

d ln(ξgl/L)/dT of the normalized correlation length
curves at the critical temperature can be fitted with the
clean Ising exponent ν = 1 if corrections to scaling of
the type aL1/ν(1 + bL−ω) are included. The quality of
these fits (reduced χ̄2 of 0.5 and 0.2) is comparable to
that of the logarithmic fits above (note, however, that
the logarithmic fits contained only two free parameters).
Four-parameter fits to the same functional form but with
floating ν give ν = 1.07(4) and 1.06(6) for the average
and global correlation length data, respectively.
If we ignore the strong size-dependence of the effec-

tive specific heat exponent and take the value α/ν =
−0.230(3) resulting from the global fit, the hyperscaling
relation 2 − α = 2ν yields a correlation length exponent
of ν = 1.130(3). As the lower panel of Fig. 6 shows,
the d ln(ξ/L)/dT data are clearly incompatible with this
value, even if corrections to scaling are included.55

Finally, we point out that the subleading exponent ω
appearing in all the power-law fits is not very robust. Its
values seem to cluster around 0.35 but they vary between
about 0.2 and 0.7 upon changing the fit intervals and
between quantities.
We conclude that the weak-universality scenario is not

compatible with our numerical results: Simple power-law
singularities do not describe the data at all. If corrections
to scaling are included, we do not find evidence for the
asymptotic exponents to be different from the clean Ising
ones.

3. Other dilutions

We have performed analogous simulations for dilution
p = 0.2, using systems with 502 to 11202 sites. The
data are averaged over 105 to 106 disorder configurations.
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FIG. 8. (Color online) Magnetization distribution P (m) of
the three-color Ashkin-Teller model with dilution p = 0.3 and
coupling ǫ = 0.5 close to the transition temperature Tc ≈

1.94. The distribution features a single peak characteristic of
a continuous transition. (The curves for L = 400, 280, and
200 are shifted upwards by multiples of 1.0 for clarity.)

By extrapolation the crossing temperatures of the Binder
cumulant and the normalized correlation length as above,
we find a critical temperature of Tc = 1.50709(5). The
system-size dependence of observables at Tc looks almost
identical to that shown in Fig. 6 for p = 0.3: The data
feature pronounced deviations from power-law behavior
that can be fitted very well by the logarithmic-correction
scenario, eqs. (10) to (14), over the entire range of system
sizes studied (the reduced χ̄2 range between 0.4 and 1.1).

C. Site-diluted Ashkin-Teller model

After having discussed the limiting cases, we now turn
to the full problem, the site-diluted Ashkin-Teller model.
We first consider a system with dilution p = 0.3 and four-
spin coupling ǫ = 0.5 because we expect deviations from
the clean Ising critical behavior, if any, to be more easily
visible if p and ǫ are large.
According to the Aizenman-Wehr theorem,3 the first-

order phase transition of the clean system should be de-
stroyed by dilution. We confirm this by calculating the
magnetization distribution P (m) close to the transition
temperature for systems of 2002 to 5602 sites (1000 dis-
order configurations each). It is shown in Fig. 8. The
distribution features a single broad peak characteristic
of a continuous transition, in contrast to the double-peak
structure of the clean case (Fig. 2).
We then perform a series of high-accuracy simulations

for linear system sizes from L = 50 to 1600. The num-
bers of disorder configurations range from 3 × 106 for
L = 50 to 5 × 105 for L = 1600. To find the critical
point, we study the Binder cumulants gav(T ) and ggl(T )
as well as the normalized correlation lengths ξav(T )/L
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FIG. 9. (Color online) Normalized correlation length ξgl/L
vs. temperature T for p = 0.3 and ǫ = 0.5 for different linear
system sizes L. The statistical errors are significantly smaller
than the symbol size. With increasing L, the crossing point
shifts towards lower T , indicating significant corrections to
scaling.
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FIG. 10. (Color online) Crossing temperatures Tx vs. inverse
system size 1/L for p = 0.3 and ǫ = 0.5. Tx is the temperature
where the curves of gav, ggl, ξav/L and ξgl/L versus T cross
for system sizes L/2 and L. The solid lines are fits to Tx =
Tc + aL−b. The error bars of Tx are about the size of the
symbols at the right side of the plot and become much smaller
towards the left.

and ξgl(T )/L. The resulting data look qualitatively very
similar to those of the diluted Ising model. As an exam-
ple, we present ξgl/L in Fig. 9. The critical temperature
can be estimated by extrapolating to infinite system size
the temperatures where the gav(T ) curves (as well as the
ggl(T ), ξav(T )/L and ξgl(T )/L curves) for sizes L/2 and
L cross. Figure 10 shows the system-size dependence of
the crossing temperatures Tx. Fits to Tx = Tc + aL−b

yield the estimate Tc = 1.93472(5). (Fits of Tx vs. 1/L
to quadratic polynomials give comparable results.)

1. Critical behavior: Ising with logarithmic corrections

To analyze the critical behavior, we now study the
system-size dependence at criticality of magnetization
M , susceptibility χ, specific heat C, and the slope
d ln(ξgl/L)/dT of the normalized correlation length. Sim-
ple power-law fits over the entire system size range (L =
50 to 1600) of the data at T = 1.93471 to M ∼ L−β/ν,
χ ∼ Lγ/ν, C ∼ Lα/ν and d ln(ξgl/L)/dT ∼ L1/ν give
the estimates β/ν = 0.1238(1), γ/ν = 1.7948(3), α/ν =
0.0735(1), and ν = 1.075(2). These values do not agree
with the clean Ising exponents, but the quality of the
fits is again very poor. The reduced χ̄2 values are about
21, 180, 4300, and 7, respectively, indicating systematic
deviations from pure power-law behavior.
To investigate these deviations in detail, we proceed

analogously to the diluted Ising model in Sec. IVB, i.e.,
we divide out the clean Ising critical behavior and present
the resulting data in Fig. 11. The figure shows that none
of the plotted quantities follow simple power laws; instead
they vary more slowly with L over the entire system size
range.
Motivated by Cardy’s renormalization group17, we

therefore attempt to fit the data with the clean Ising ex-
ponents and logarithmic corrections analogous to those
of the diluted Ising model, eqs. (10) to (14). The magne-
tization can be fitted well to the form M = aL−1/8[1 +
b/ ln(cL)] over the entire size range L = 50 to 1600. The
reduced χ̄2 is about 0.9. Fitting the susceptibility to
χ = aL7/4[1 + b/ ln(cL)] over the entire size range leads
to an unsatisfactory reduced χ̄2 ≈ 7. However, the fit be-
comes of good quality (reduced χ̄2 ≈ 1.8) if we drop the
two smallest system sizes, restricting the fit to the range
L = 100 to 1600. We attribute this to the crossover from
the strong first-order transition in the clean case to our
critical point. (This crossover will be studied in detail in
Sec. IVC3.)
We also analyze the product order parameter Mp.

Within Cardy’s theory,17 the critical renormalization
group fixed point is at ǫ = 0. This means different colors
decouple at criticality. Thus, Mp should scale as M2. In
agreement with this expectation, the system size depen-
dence of our data at criticality (shown in the inset) can
be fitted by Mp = aL−1/4[1+b/ ln(cL)], giving a reduced
χ̄2 of about 1.
The specific heat, shown in the lower panel of Fig. 11,

can be fitted well by the double-logarithmic form C =
a ln[b ln(cL)] over the entire size range, giving a reduced
χ̄2 of a about 1.2. Finally, the slopes d ln(ξav/L)/dT and
d ln(ξgl/L)/dT of the normalized correlation lengths at

criticality can be fitted by the form aL[ln(bL)]−1/2 over
the entire size range (reduced χ̄2 of about 0.5 and 0.2,
respectively).
Finally, we investigate the system size dependence of

the dimensionless ratio ξ/L at criticality. Fig. 7 presents
ξgl/L and ξav/L as functions of 1/ ln(L). Both ratios can
be well fitted to the form (ξ/L) = (ξ/L)∗ + a/ ln(bL)
with (ξ/L)∗ fixed at the clean Ising value, as suggested
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FIG. 11. (Color online) System-size dependence of observ-
ables at the critical temperature. Top: Log-log plots of
ML1/8 and χL−7/4 vs. L at T = 1.93471 for p = 0.3 and
ǫ = 0.5. Inset: Log-log plot of MpL

1/4 vs. L. All solid
lines are fits to a[1 + b/ ln(cL)]. Bottom: Log-log plots of
the specific heat C as well as the slopes L−1d ln(ξav/L)/dT
and L−1d ln(ξgl/L)/dT vs. L at T = 1.93471 for p = 0.3 and
ǫ = 0. The solid lines represent fits to a ln[b ln(cL)] for the

specific heat and to a[ln(bL)]−1/2 for the slopes.

by eq. (13). The fits are of good quality (reduced χ̄2 of
1.0 and 1.6, respectively) if the fit range is restricted to
system sizes L > 100. The deviations for the smaller L
likely stem from the crossover between the clean first-
order transition and our critical point as well as from
subleading terms of the form ln ln(bL)/ ln2(bL) in eq. (13)
that are not included in the fit.

We conclude that all our data can be described nearly
perfectly in terms of the clean Ising critical behavior
with logarithmic corrections to scaling, as predicted by
Cardy’s renormalization group.17

2. Power law behavior?

Even though our analysis does not show any disagree-
ments between the Monte Carlo data and renormaliza-
tion group predictions, we still test whether the data are
compatible with nonuniversal power-law critical behav-
ior as suggested in Refs. 18 and 19. Since the quantities
shown in Fig. 11 do not follow simple power laws, it is
clear that corrections to scaling need to be included in
addition to possible deviations of the exponents from the
clean Ising values.
Magnetization, susceptibility and the slopes of the

normalized correlation lengths can be fitted to M =
aL−β/ν(1 + bL−ω), χ = aLγ/ν(1 + bL−ω), and
d ln(ξ/L)/dT = aL−1/ν(1+ bL−ω). If the exponents β/ν
and γ/ν and ν are fixed at the clean Ising values 1/8,
7/4 and 1, respectively, the fits are of good quality, with
reduced χ̄2 just slightly higher than the logarithmic fits
above. (The system size range for the susceptibility fit
needs to be restricted to L ≥ 100 to achieve an accept-
able quality.) Four-parameter fits over the entire system
size range to the same functional forms, but with float-
ing β/ν, γ/ν, and ν give the values β/ν = 0.125(1) and
γ/ν = 1.78(1) and ν = 1.04(6) where the errors mostly
stem from the sensitivity of the fits towards removing
points from the ends of the system size range. Note that
β/ν and γ/ν do not quite fulfill the hyperscaling relation
2β/ν+ γ/ν = 2, suggesting that these values are not the
true asymptotic exponents.
It is worth pointing out that the effective inverse cor-

relation length exponent 1/νeff, obtained by fitting the
correlation length slopes over a finite system size range,
is always smaller than unity. This can be seen from the
downward slope of L−1d ln(ξ/L)/dT vs. L in the lower
panel of Fig. 11; it also directly follows from (14). The
effective correlation length exponent thus fulfills νeff > 1.
In contrast to Refs. 18 and 19, we see no indications of the
inequality dν ≥ 2 due to Chayes et al.20 being violated
even by the effective exponent.
The most interesting quantity is the specific heat. A

correlation length exponent ν ≥ 1 implies, via the hy-
perscaling relation 2 − α = 2ν, that the specific heat
exponent α ≤ 0. We therefore attempt to fit the data to
the form C = C∞+aLα/ν. A fit of all system sizes yields
α/ν = −0.170(4), but the reduced χ̄2 ≈ 12 is unaccept-
ably large. Moreover, the fit is unstable. If we extract
an effective exponent (α/ν)eff by restricting the fit in-
terval to (Lmin, 4Lmin), its value varies between −0.204
and −0.131 for Lmin between 50 and 400. Extrapolating
these values to infinite system size does not give a defi-
nite answer. Depending on the mathematical model used
for the extrapolation, we find values between −0.12 and
0.
We again point out that the subleading exponent ω

appearing in all the power-law fits is not very robust. Its
values vary between about 0.2 and 1.1 upon changing the
fit intervals and between quantities.
We conclude that the description of our data in terms
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FIG. 12. (Color online) Semi-log plot of specific heat C vs.
system size L at criticality for dilution p = 0.1 and several
couplings ǫ. The error bars are much smaller than the symbol
size. The solid lines are fits to C = a ln[b ln(cL)].

of power-law singularities does not work nearly as well as
the logarithmic correction scenario of Sec. IVC1. Sim-
ple power laws do not describe the data. If we insist on
fitting the data to power laws with corrections to scal-
ing included, there is no compelling evidence for the true
asymptotic exponents to differ from the clean Ising val-
ues.

3. Universality and crossover between the clean and dirty

phase transitions

We perform analogous simulations for several addi-
tional values of dilution p and coupling strength ǫ in
order to test whether the asymptotic critical behavior
is universal. In addition, we wish to explore the interest-
ing crossover from the first-order transition of the clean
Ashkin-Teller model to the critical point of the disordered
system. As discussed at the end of Sec. II, it should be
particularly pronounced when the first-order transition
of the clean system is strong and the disorder is weak.
To analyze the crossover, we therefore perform a se-

ries of simulations for the weaker dilution p = 0.1. The
coupling ǫ takes values 0.1, 0.2, 0.3, and 0.5. (Increasing
ǫ increases the strength of the first-order transition in
the corresponding clean system.) These simulations use
sizes between L = 25 and 1120 with 105 to 106 disorder
realizations each. The data analysis follows the steps out-
lined above, and the resulting critical temperatures are
listed in the legend of Fig. 12. Interestingly, the crossing
temperature Tx of the Binder cumulants and the correla-
tion length ratios shifts much less with system size than
for p = 0.3, indicating weaker disorder-induced correc-
tions to scaling. (For the crossings between the L = 50
and L = 100 curves, (Tx−Tc)/Tc is roughly one order of
magnitude smaller for p = 0.1 than for p = 0.3.)
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FIG. 13. (Color online) Semi-log plot of χL−7/4 vs. L at
criticality for dilution p = 0.1 and several couplings ǫ. The
data for ǫ = 0.2, 0.3 and 0.5 are shifted upwards by 0.003,
0.005, and 0.008 for clarity. The error bars are much smaller
than the symbol size. The solid lines are fits to χ/L7/4 =
a[1 + b/ ln(cL)], the fit ranges are indicated in the graph.

Figure 12 displays a semi-logarithmic plot of the spe-
cific heat C at criticality vs. system size L. For all ǫ, C
curves downward, indicating that it increases more slowly
than logarithmic with L. The figure also shows fits to
the double-logarithmic form C=a ln[b ln(cL)] suggested
by (10). While the fits look nearly perfect to the eye, a
χ̄2 analysis reveals the effects of the crossover from clean
to dirty behavior: For ǫ = 0.1 and 0.2, fits over the entire
size-range L = 25 to 1120 are of good quality (reduced
χ̄2 ≈ 0.4 and 0.7, respectively). The quality decreases for
ǫ = 0.3 (reduced χ̄2 ≈ 2.3) and ǫ = 0.5 (reduced χ̄2 ≈ 9).
Good quality fits (reduced χ̄2 < 2) can be restored by
restricting the fit range to L ≥ 35 for ǫ = 0.3 and to
L ≥ 50 for ǫ = 0.5.

More pronounced signatures of the crossover from
clean to dirty behavior can be found in the corrections
to the leading power-law size dependencies of magneti-
zation and susceptibility (probably because these correc-
tions are weak – they only change the observables by a
few percent over the entire system-size range). Figure 13
presents χ/L7/4 vs. L at criticality for dilution p = 0.1
and several ǫ. The data for ǫ = 0.1 behave analogously
to those observed earlier in Fig. 11 for p = 0.3, ǫ = 0.5.
They can be fitted well (reduced χ̄2 ≈ 0.5) with the log-
arithmic form χ/L7/4 = a[1+ b/ ln(cL)]. The same holds
for the ǫ = 0.2 data which give a reduced χ̄2 ≈ 0.7 (Note,
however, that the curvature of the ǫ = 0.2 data is very
weak.) For larger ǫ, the behavior changes. χ/L7/4 first
decreases with increasing L before turning around and
starting to increase slowly. The increase can be fitted
to a[1 + b/ ln(cL)] for L ≥ 200 (ǫ = 0.3) and L ≥ 400
(ǫ = 0.5).

The corrections to the leading power-law behavior of
the magnetization behave in the same fashion as those of
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the susceptibility. We thus conclude that the asymptotic
critical behavior is compatible with the logarithmic cor-
rection scenario for all shown ǫ values. We emphasize,
however, that large system sizes are necessary to reach
this asymptotic behavior if the first-order transition of
the corresponding clean system is strong (ǫ = 0.3 and
0.5) and the disorder is weak. The universality of the
critical behavior is also confirmed by the analysis of the
ratio ξ/L at criticality for p = 0.1, ǫ = 0.1, shown in Fig.
7.
In addition to the parameter sets already discussed,

we also perform simulations for p = 0.05, ǫ = 0.05 as well
as p = 0.3, ǫ = 0.3 (system sizes between L = 50 and
1120 with up to 106 disorder realizations). In both cases,
the critical behavior can be fitted well with clean Ising
critical behavior and logarithmic corrections to scaling
over the entire system size range.

D. Random-bond Ashkin-Teller model

The random-bond Ashkin-Teller model is expected to
be in the same universality class as the site-diluted model
because both types of randomness are implementations of
random-Tc disorder. However, in view of the unexpected
results of Refs. 18 and 19, we also perform a number of
simulations for the random-bond case.
We employ code A to simulate systems using the bi-

nary bond distribution (2) with Jh = 2, Jl = 0.5 and
concentration c = 0.5. The four-spin interactions Kij are
slaved to the Ising interactions Jij via Kij = ǫJij with
uniform ǫ. We perform a series of runs for ǫ = 0, 0.1, 0.2,
and 0.5. The linear system sizes are between L = 35 and
1120; and the numbers of disorder realizations for each
parameter set range from 105 for L = 1120 to 106 for
L = 35.
The data analysis follows the steps outlined in Sec.

IVC. The critical temperatures found by extrapolating
the crossing temperatures Tx of the Binder cumulants gav
and ggl as well as the correlation lengths ratios ξav/L and
ξgl/L to infinite system size are shown in the legend of
Fig. 14. We note that even though the bond random-
ness looks substantial (Jh/Jl = 4), the disorder-induced
corrections to scaling turn out to be rather weak: The
shifts of the crossing temperatures Tx with system size
are even smaller than those for dilution p = 0.1. Because
of the weaker corrections to scaling, effective exponents
extracted by simple power-law fits over the entire sys-
tem size range are already very close to the expected
clean Ising values. For example, for ǫ = 0.2, we find
β/ν = 0.1258(1), γ/ν = 1.7527(5), and ν = 1.031(2).
We now analyze whether the asymptotic critical be-

havior can be described by logarithmic corrections to the
clean Ising power laws, as was the case for site dilution.
Figure 14 displays a semi-logarithmic plot of the spe-
cific heat C at criticality vs. system size L. For all ǫ, C
curves downward, indicating that it increases more slowly
than logarithmic with L. The figure also shows fits to
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FIG. 14. (Color online) Semi-log plot of specific heat C vs.
system size L at criticality for the random bond-Ashkin-Teller
model with Jh = 2, Jl = 0.5 and c = 0.5. The error bars are
much smaller than the symbol size. The solid lines are fits to
C = a ln[b ln(cL)].
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FIG. 15. (Color online) Semi-log plot of χL−7/4 vs. L at
criticality for the random bond-Ashkin-Teller model with
Jh = 2, Jl = 0.5 and c = 0.5. The data for ǫ = 0.1, 0.2 and
0.5 are shifted upwards by 0.004, 0.007, and 0.013 for clarity.
The error bars are much smaller than the symbol size. The
solid lines are fits to χ/L7/4 = a[1 + b/ ln(cL)], the fit ranges
are indicated in the graph.

the double-logarithmic form C=a ln[b ln(cL)] suggested
by (10). All fits are of high quality (reduced χ̄2 < 2),
for ǫ = 0.5 this requires us to restrict the fit range to
L > 100.

The analysis of susceptibility and magnetization at
criticality again reveal signatures of the crossover from
clean to dirty behavior. Figure 15 presents χ/L7/4 vs.
L at criticality for different ǫ. The data for ǫ = 0 and
0.1 can be fitted to the logarithmic form χ/L7/4 = a[1 +
b/ ln(cL)] for sizes L ≥ 100 (with reduced χ̄2 < 2). For
larger ǫ, χ/L7/4 first shows a pronounced decrease with



14

30 50 100 200 300 500 1000
L

5

10

20

50

100

200

500

1000
d(

ξ/
L)

/d
T

ε=0.0
ε=0.1
ε=0.2
ε=0.5

FIG. 16. (Color online) Log-log plot of the slopes
d ln(ξgl/L)/dT vs. L at criticality for the random bond-
Ashkin-Teller model with Jh = 2, Jl = 0.5 and c = 0.5.
The data for ǫ = 0.1, 0.2 and 0.5 are multiplied by factors
2, 4, and 8 for clarity. The error bars are much smaller than
the symbol size. The solid lines are fits to d ln(ξgl/L)/dT =

aL[ln(bL)]−1/2.

increasing L before turning around and starting to in-
crease slowly. The increase can be fitted to a[1+b/ ln(cL)]
for L ≥ 200 (ǫ = 0.2) and L ≥ 280 (ǫ = 0.5). It must
be noted however, that the susceptibility corrections to
scaling in these data sets are so weak (in agreement with
the small shifts of Tx mentioned above) that we can-
not unequivocally confirm their functional form. Their
large-L behavior is certainly compatible with the pre-
dicted a[1 + b/ ln(cL)] form but other functions would
work as well. The corrections to the clean Ising power
laws for the magnetization behave analogously to those
of the susceptibility.

Finally, Fig. 16 shows the slopes d ln(ξgl/L)/dT of the
correlation length ratio vs. L at criticality. All curves can
be fitted with high quality (reduced χ̄2 / 1) by the form
aL[ln(bL)]−1/2 suggested by eq. (14). (Because the devia-
tions from the clean Ising power laws are again weak, the
fits cannot unambiguously discriminate between different
functional forms: Simple power laws work as well, giving
exponents ν in the range of 1.03 to 1.05.) We conclude
that the asymptotic critical behavior of the random-bond
Ashkin-Teller model is fully compatible with Cardy’s pre-
dictions, i.e., clean Ising exponents with logarithmic cor-
rections.

In all of the above (code A) simulations, the four-spin
interactions Kij are slaved to the Ising interactions Jij
via Kij = ǫJij with uniform ǫ. In addition, we study
random-bond Ashkin-Teller models with uniform Kij ≡
K employing code B. As summarized in Sec. III C, we
consider Jh = 6/5 and Jl = 4/5 with equal probability
c = 0.5, implying an average interaction of J ≡ (Jh +
Jl)/2 = 1. Note that this disorder is much weaker than
the disorder considered in the code-A simulations above.
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FIG. 17. (Color online) Log-log plot of the magnetization M ,
susceptibility χ, polarization Mp and polarization susceptibil-
ity χp vs. L at Tc for the random bond-Ashkin-Teller model
with Jh = 6/5, Jl = 4/5 and uniform K = 0.1. All error bars
are much smaller than the symbol sizes. The solid lines are
power-law fits.

The uniform, non-random four-spin interaction is given
by K = ǫJ with ǫ = 0.1. We simulate systems having
linear sizes from L = 24 to 1600. The number of disorder
realizations ranges from 104 for L = 1600 to 105 for L =
24.
The analysis of the data generated by code B proceeds

as in Sec. IVC. The critical temperature is found by ex-
trapolating the crossing temperature Tx of the Binder
cumulants gav to the infinite system size limit. This
yields a critical temperature Tc = 2.55625(1). Simple
power-law fits, shown in Fig. 17, of observables at Tc to
M ∼ L−β/ν, χ ∼ Lγ/ν, Mp ∼ Lβp/ν and χp ∼ Lγp/ν

give β/ν = 0.125(1), γ/ν = 1.749(3), βp/ν = 0.230(1)
and γp/ν = 1.53(1). The fits are of good quality (once
again reduced χ̄2 < 2) if we restrict them to system
sizes L ≥ 96. The exponents of magnetization and
susceptibility have already locked onto the clean Ising
values β/ν = 1/8 and γ/ν = 7/4 within their error
bars. The exponents related to Mp and χp do not quite
agree with the expected values βp/ν = 2β/ν = 1/4 and
γp/ν = 2 − 2βp/ν = 3/2, but they are close. This is in
tune with the results obtained for random-bond Ashkin-
Teller model simulated via code A.

Can the deviations of Mp and χp from the expected
behavior be explained by logarithmic corrections? To
answer this question, we again divide out the expected
power laws and present the resulting data in Fig. 18.
The product order parameter, Mp and the associated
susceptibility χp can be fitted quite well with Mp =

aL−1/4[1 + b/ ln(cL)] and χp = aL3/2[1 + b/ ln(cL)]. For
sizes L ≥ 96, the reduced χ̄2 are 1.26 and 0.713 for Mp,
and χp, respectively.
Corrections to the clean Ising behavior of magnetiza-

tion and susceptibility are very weak (in agreement with
the fact that the exponents of simple power-law fits al-
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FIG. 18. (Color online) Semi-log plot of MpL
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vs. L at Tc for the random bond-Ashkin-Teller model with
Jh = 6/5, Jl = 4/5 and uniform K = 0.1. The solid lines are
fits to a[1 + b/ ln(cL)]. Insert: Semi-log plot of the specific
heat C vs. L, the solid line is the fit to a ln(bL).

ready coincide with the clean Ising ones). If we include
the smaller system sizes in the fits, these weak correc-
tions cannot be fitted satisfactorily with the universal
logarithms (11) and (12). Similarly, the specific heat does
not follow the double-logarithmic form, C = a ln[b ln(cL)]
(see inset of Fig. 18). Instead, the data for large system
sizes L ≥ 768 are best described by the single logarithmic
form, C = a ln (bL) expected at the clean Ising critical
point.
How can we explain these observations? In the present

system, both the bare disorder strength and the coupling
ǫ are rather weak. The renormalization group flow (Fig.
1) therefore does not travel too far from the origin, ex-
plaining that our effective exponents are very close to
the clean Ising ones. Note, however, that the renormal-
ization group “time” (flow parameter) and, correspond-
ingly, the system size range needed to go around the loop
in Fig. 1 do not vary much with the size of the loop.
As the bare disorder is weak, the system thus does not
reach the falling, asymptotic part of the loop even for
L = 1600. This may also explain why the effective cor-
relation length exponent νeff = 0.93(2) that we extract
from the slope of the Binder cumulant vs. temperature
curves in this weakly disordered system does not fulfill
the Chayes’ inequality20 dν ≥ 2. Because of the expo-
nential dependence of the breakup length Lb on the dis-
order strength, confirming this picture numerically would
likely require enormous system sizes.

V. CONCLUSIONS

In summary, we have performed high-accuracy Monte
Carlo simulations of the disordered three-color Ashkin-
Teller model in two dimensions using systems with up
to 16002 lattice sites. We have investigated two types
of disorder, random site dilution and random interac-

tions (bond randomness). Our results show that the first-
order phase transition of the clean Ashkin-Teller model
is destroyed by the randomness, in agreement with the
Aizenman-Wehr theorem.1,3

We have carefully analyzed the critical behavior of the
emerging continuous phase transition and found strong
evidence that the asymptotic critical behavior is univer-
sal and agrees with the predictions of Cardy’s renormal-
ization group theory.17 This means, the critical expo-
nents coincide with those of the clean two-dimensional
Ising model, but with additional logarithmic corrections
to scaling analogous to those found in the disordered two-
dimensional Ising model. For example, the specific heat
takes the characteristic double-logarithmic form (10).

What could be the reason for the differences between
our results and the unusual behavior (nonuniversal criti-
cal exponents and violations of the inequality dν ≥ 2 due
to Chayes et al.20) reported in Refs. 18 and 19? First,
our systems are significantly larger: Refs. 18 and 19 used
systems with up to 322 and 1282 sites, respectively, while
our systems have up to 16002 sites. As the Ashkin-Teller
model crosses over very slowly from the first-order tran-
sition of the clean problem to the continuous transition
of the disordered one, simulations of smaller systems are,
perhaps, not sufficient to reach the asymptotic regime.
Large systems are particularly important if the disorder
strength is small. In fact, our own simulations for the
weak dilution p = 0.1 show that, depending on ǫ, the
asymptotic regime may only be reached for L ≥ 400.
The random-bond system with Jh = 6/5 and Jl = 4/5
is especially weakly disordered; correspondingly, it does
not reach the asymptotic regime even for L = 1600.

This interplay between the disorder strength and the
cross-over between first-order and continuous transitions
is also borne out by the analysis of the correlation length
exponent ν. The asymptotic finite-size scaling (14) of
dimensionless quantities such as the Binder cumulant
leads to an effective exponent νeff > 1. This is what
we have observed in all our systems except for the one
with the weakest disorder, viz., the random-bond system
with with Jh = 6/5 and Jl = 4/5. This supports the
notion that the correlation length exponents reported in
Refs. 18 and 19 may be effective exponents outside the
asymptotic regime.

We note, however, that a significant discrepancy be-
tween our data and those reported in Ref. 18 is manifest
already in the clean phase diagram, Fig. 3, where system
size effects should be less important. Our phase bound-
ary agrees with the old data by Grest and Widom13 but
disagrees with Ref. 18.

As a byproduct, our simulations for ǫ = 0 (where the
Ashkin-Teller Hamiltonian is equivalent to three indepen-
dent Ising models) also help to resolve the long-standing
controversy about the critical behavior of the disor-
dered two-dimensional Ising model. Our large-scale data
for systems with up to 22402 sites provide strong sup-
port for the logarithmic-correction (strong-universality)
scenario25–28 according to which the critical behavior is
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characterized by the clean Ising exponents and universal
logarithmic corrections.

We now put our results in the general context of
phase transitions of two-dimensional disordered sys-
tems. Following the analytical results on the disor-
dered two-dimensional Ising25–28 and Ashkin Teller17

models, it was conjectured that all critical behavior in
two-dimensional disordered systems belongs to the dis-
ordered Ising universality class. This belief in super-
universal critical behavior was further strengthened by
early numerical results for disordered Ising,56–58 Ashkin-
Teller,22 and Potts22,59 models as well as heuristic inter-
face arguments.60 However, later simulations of the disor-
dered q-state Potts model61,62 belied these expectations:
They showed that the exponent β/ν does depend on the
value of q and generally differs from the Ising value of
1/8. Recently, unexpectedly complex behavior was also
found in the two-dimensional random-bond Blume-Capel
model,63–65 an Ising-like spin-1 model with an additional
single-ion anisotropy.

Cardy’s renormalization group approach17 was gener-
alized by Pujol66 from N coupled Ising models to N cou-
pled q-state Potts models. For q = 2 (the Ising case),
Pujol’s results agree with Cardy’s. For q > 2, however,
he found the emerging critical behavior to be controlled
by a nontrivial random fixed point. Testing these predic-
tions numerically remains a task for the future.

Finally, the quantum version of the Ashkin-Teller
model has recently attracted considerable attention in
connection with the question of how first-order quan-

tum phase transitions react to disorder. Strong-
disorder renormalization group calculations predict
infinite-randomness critical points in different universal-
ity classes, depending on the coupling strength ǫ.8,10,11

Moreover, the two-color model is predicted to feature an
unusual strong-disorder infinite-coupling phase67. Our
Monte Carlo method can be easily generalized from the
two-dimensional classical case to the (1+ 1)-dimensional
quantum case. Some calculations along these lines are
under way.
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Appendix A: Short Monte Carlo runs and unbiased

estimators

Short Monte Carlo runs consisting of only a small
number of measurements per sample introduce biases
into some observables, at least if one employs the usual
estimators. Consider, for example, the magnetic sus-
ceptibility (of a single sample) which is related to the
variance of the magnetization via χ = (L2/T )σ2

M with
σ2
M = 〈m2〉 − 〈m〉2. In a Monte Carlo simulation, the

variance σ2
M is usually replaced by the estimator

s2M =
1

nm

nm
∑

i=1

m2
i −

(

1

nm

nm
∑

i=1

mi

)2

(A1)

where mi is the magnetization of an individual measure-
ment and nm is their number. It is well known in statis-
tics that s2M underestimates the variance, even for uncor-
related mi. This can be seen by evaluating the expecta-
tion value of s2M as

〈s2M 〉 =
1

nm

nm
∑

i=1

〈m2
i 〉 −

1

n2
m

nm
∑

i=1

nm
∑

j=1

〈mimj〉

= 〈m2〉 −
1

nm
〈m2〉 −

nm − 1

nm
〈m〉2

= σ2
M

(

1−
1

nm

)

. (A2)

If the mi are correlated with a correlation time
of τ , the bias becomes even stronger: 〈s2M 〉 ≈
σ2
M (1− (1 +A)/nm) with A ∼ τ . Other quantities de-

fined as variances or covariances develop analogous bi-
ases, including the specific heat C = (L2/T 2)(〈e2〉−〈e〉2).
Note that these biases are not important in normal

Monte Carlo simulations that consist of one (long) run of
nm measurements because the bias decays as n−1

m while

the statistical error decays as n
−1/2
m . The bias is thus

much smaller than the statistical error and can be ne-
glected. However, if the results of short runs are aver-
aged over a large number ns of samples, this argument
changes. The bias still decays as n−1

m but the statisti-
cal error and sample-to-sample fluctuations due to disor-

der are suppressed by an additional factor n
−1/2
s . It is

thus clear that the bias cannot be neglected for a suffi-
ciently large number of samples. (If the disorder-induced
sample-to-sample fluctuations are weaker than the ther-
modynamic fluctuations, this is expected when ns & nm.
In the opposite case, for strong disorder fluctuations, the
bias becomes important roughly when ns & n2

m.)
How can one correct the bias due to short Monte Carlo

runs? If the measurements were completely independent,
one could simply multiply the usual estimator (A1) by
nm/(nm − 1). However, achieving full independence re-
quires long time intervals between consecutive measure-
ments which makes the simulations inefficient. We in-
stead introduce modified, unbiased estimators. To this
end, we split the Monte Carlo run of nm measurements
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into two halfs, each with nm/2 measurements. We also
perform a few extra Monte Carlo sweeps between the two
halfs to ensure that they are independent of each other.
The improved estimator of σ2

M is then given by

s̃2M =
1

nm

nm
∑

i=1

m2
i −





2

nm

nm/2
∑

i=1

mi









2

nm

nm
∑

i=nm/2+1

mi



 .

(A3)
Following the same steps as outlined in (A2), it is
straightforward to show that 〈s̃2M 〉 = σ2

M . This means
s̃2M is unbiased. An analogous unbiased estimator can be
defined for the specific heat C.

In Sec. III D, we defined two magnetic Binder cumu-
lants, gav and ggl, as well as two correlation lengths, ξav
and ξgl. The “average” versions gav and ξav suffer from
short-run biases similar to those discussed above while
the “global” versions ggl and ξgl are unbiased. In princi-
ple, one could correct the biases in gav and ξav by using
improved estimators. However these would have a more
complicated structure than (A3) to deal with the terms
in the denominators of eqs. (6) and (7). For simplicity,
we have not done this. Instead we mostly rely on the
unbiased observables ggl and ξgl. (Interestingly, our nu-
merical data suggest that gav and ξav have significantly
smaller biases than C and χ.)
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