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We develop statistical mechanical methods to predict the thermodynamic properties of dilute
vacancies in multi-component solids from first principles. The approach relies on a coarse graining
procedure to predict dilute vacancy concentrations with Monte Carlo simulations in alloys exhibiting
varying degrees of short and long-range order. We apply this approach to a study of vacancies in hcp
based Ti-Al binary alloys and find a strong dependence of the equilibrium vacancy concentration
on the Al concentration and the degree of long-range order, especially at low temperature.
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I. INTRODUCTION

All crystalline solids contain imperfections, the most
common of which are vacancy and interstitial point de-
fects. Their thermodynamic origin is often entropic as
defect formation energies tend to be positive. While
the nature of point defects in single component solids
or highly ordered compounds has received much exper-
imental and theoretical attention1–8, far less effort has
been devoted to understanding the nature and concen-
tration dependence of point defects in disordered multi-
component solids or ordered compounds that can toler-
ate a high degree of off-stoichiometry. Almost all met-
als used in structural applications are alloys contain-
ing a variety of elements that are added to optimize a
mix of mechanical, kinetic and phase stability related
properties9,10. Alloys of semiconducting compounds are
increasingly utilized in electronic applications and are
also actively pursued in thermoelectrics as a way to re-
duce thermal conductivity11–14. Changing the overall
concentration of an alloy should affect the equilibrium
point defect concentration, as point defects will inter-
act differently with the various components of the solid.
Furthermore, point defect concentrations are likely to de-
pend on the degree of short and long-range order, which
itself is a function of temperature and overall concentra-
tion. In ordered compounds, point defects play a cru-
cial role in accommodating off-stoichiometry, with some
intermetallic compounds having sublattice vacancy con-
centrations that can reach several percent15.

Even low concentrations of point defects can have a
dramatic effect on a range of properties that include elec-
tronic and atomic mobilities. Vacancies, interstitials, and
more complex anti-site or dumbbell-like defects scatter
Bloch states thereby resulting in lower electronic conduc-
tivity. In semiconductors, they can also alter the Fermi
level and thereby modify the number of free carriers,
either by trapping them or donating them to the con-
duction band. Point defects are especially important in

mediating atomic transport within the crystalline state.
Interstitial point defects are typically more mobile16–20,
but vacancies are essential to redistribute substitutional
elements within alloys21. The Kirkendall effect is among
the most pronounced manifestations of vacancy mediated
substitutional diffusion within alloys and arises due to
a difference in vacancy exchange frequencies among the
various components of the alloy21–24. Any concentration
gradient in such alloys results in a net vacancy flux in a
direction opposite to the flux of the fastest diffuser. In
the presence of vacancy sources and sinks such as dislo-
cations and grain boundaries, a net vacancy flux results
in a rigid drift of the crystal frame of reference, often
causing deleterious effects within the solid, such as void
formation.

Substitutional diffusion coefficients are to first order
proportional to the vacancy concentration21. Varia-
tions in alloy concentration or the degree of short or
long-range order will affect the vacancy concentration
and thereby the mobility of the constituents of the al-
loy. There is limited understanding of the dependence
of the equilibrium vacancy concentration on alloy con-
centration and degree of order due to difficulties in di-
rectly and precisely measuring vacancy concentrations in
multi-component solids. Such understanding is crucial
in high temperature applications relying on heterostruc-
tures with strong built in chemical potential gradients
that drive interdiffusion24,25. It is also of importance in
thermoelectric applications where temperature gradients
can result in driving forces for demixing, which can be
enhanced by high concentrations of point defects.

Here, we develop statistical mechanical methods to
predict the thermodynamic properties of dilute vacancies
within multi-component solids from first principles. We
introduce a coarse graining procedure that enables the
prediction of very dilute vacancy concentrations and their
associated thermodynamic properties with Monte Carlo
simulations. When applied to hcp based Ti-Al binary
alloys, we find a strong dependence of the equilibrium



2

vacancy concentration on Al concentration and degree of
long-range order, especially at low temperature.

II. METHODS

A. Alloy Hamiltonian and vacancies

As an alloy Hamiltonian, we use a cluster expansion,
which is a mathematical tool to describe any property
of a multi-component crystalline solid that depends on
how the various components of the solid are arranged
within a particular parent crystal structure26,27. It relies
on occupation variables assigned to each site within a
crystal that can take on discrete values depending on the
specie occupying the site. In a binary A-B alloy, spin-like
occupation variables, σi, are typically used, which take a
value of +1 if site i in the crystal is occupied by B and −1
if it is occupied by A. Polynomials constructed by taking
products of occupation variables belonging to all possible
clusters of sites, including clusters containing only one
site (a point cluster), pair clusters, triplet clusters, etc.,
can then be shown to form a complete and orthonormal
basis in configuration space26. Hence, any property of
the crystal that depends on how the A and B atoms are
arranged on the crystal can be expanded in terms of these
polynomial basis functions. The fully relaxed energy of
the crystal, for example, can be written as

E (~σ) = V0 +
∑

α

Vα · Φα (~σ) , (1)

where ~σ = {σ1, ..., σi, ..., σM} denotes the collection of
all occupation variables in the crystal having M sites,
V0 and Vα are expansion coefficients to be parameterized
with a first-principles total energy method, and

Φα (~σ) =
∏

i∈α

σi (2)

are cluster functions defined as the product of occupation
variables of sites belonging to a cluster of crystal sites α.

The constant term, V0 in Eq. 1 is equal to the average
energy of the crystal in the fully disordered state when
there are an equal number of A and B atoms. In the fully
disordered state at an alloy concentration x = 1/2, the
averages of all the cluster functions are zero because the
occupation variables of different sites are uncorrelated
and the averages of the spin-like occupation variables at
x = 1/2 are zero. The above expression for the configu-
rational energy of the crystal can thus be viewed as an
expansion around the fully disordered alloy at x = 1/2.
This feature is a result of the particular choice of values
that the occupation variables σi can take.

Alternative choices for the values of the occupation
variables are possible28,29 and may be more convenient
for particular applications. Most metallic alloys and
multi-component ceramics of technological importance

have a solvent, which is the dominant specie, and a va-
riety of solutes that have significantly lower concentra-
tions than the solvent. Important examples include al-
loyed steels, which are Fe rich, and Ni-based super-alloys,
which are Ni rich. Especially the vacancies within a sub-
stitutional alloy, which need to be treated as an explicit
component, will have very low concentrations. For these
cases, it is more convenient to use an array of occupation
variables pBi assigned to each site, which are 1 if site i
is occupied by specie B and zero otherwise. For an n-
component solid, n − 1 such occupation variables must
be assigned to each site. These occupation variables are
linearly related to the spin like occupation variables σi

30.
While there is no restriction on the choice of n− 1 occu-
pation variables to explicitly work with, it is most con-
venient to introduce occupation variables for the solutes
only. For a binary A-B alloy also containing vacancies
(where A is the solvent) , we would then use pBi and pVa

i

corresponding to the occupation variables for the solute
B and the vacancy ‘Va’. In terms of these occupation
variables, the total energy of the crystal can be written
as

E (~p) = E0 +
∑

α

E
~D
α · Λ

~D
α (~p) , (3)

where ~p =
{

pB1 , ..., p
B
i , ..., p

B
M , pVa1 , ..., pVai , ..., pVaM

}

is the
collection of all occupation variables for each crystallo-

graphic site, and E0 and E
~D
α are expansion coefficients,

again to be determined with a first-principles total energy
method. The basis functions are products of occupation
variables belonging to the sites of a cluster α and can be
written as

Λ
~D
α (~p) =

∏

i∈α

p
D(i)
i . (4)

In this expression, the index i runs over the sites of a

cluster α while ~D = {D(i)} labels the type of occupation
variable at each site i (i.e. pBi or pVa

i ). All cluster ba-
sis functions that can be mapped onto each other by a
space group symmetry operation of the crystal will have

the same expansion coefficient E
~D
α . In contrast to a clus-

ter expansion expressed in terms of spin-like occupation
variabes, σi, the constant term, E0, in Eq. 3, is now the
energy of the pure solvent, as then all of the occupation
variables are equal to zero. The above expression can
therefore be viewed as an expansion relative to the energy
of the crystal containing only solvent atoms A. Hence,
for solvent rich alloys we can expect the above expression
to converge more rapidly than an equivalent expansion
in terms of spin occupation variables. In this work, we
develop a multi-component cluster expansion using occu-
pation variables pBi and pVa

i (as opposed to spin occupa-
tion variables) to describe the configurational energy of a
multi-component solid containing a dilute concentration
of vacancies. This contrasts with a local cluster expan-
sion approach to treat vacancies in a binary alloy when
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using spin-like occupation variables15,31.

B. Thermodynamics of a binary alloy containing

vacancies

Most alloys of technological interest contain disloca-
tions and grain boundaries that act as local vacancy
sources and sinks. These extended defects can regulate
an equilibrium vacancy concentration within the crys-
talline regions of the alloy. While a binary substitutional
solid contains two atomic species with the amounts of
A and B controlled experimentally, in the crystalline re-
gions away from dislocations and grain boundaries, the
solid is effectively a ternary system as the number of crys-
tal sites there is conserved and each site can be occupied
by A, B or a vacancy. We denote the Gibbs free energy
of a crystalline region of M sites that does not include
dislocations or grain boundaries with G. Its differential
form at constant temperature T and pressure P can be
written as

dG = µAdNA + µBdNB + µVadNVa,

where the µi are the chemical potentials of component i
and the Ni refer to the number of each component i. This
free energy can be normalized by M to yield the Gibbs
free energy per crystal site g = G/M . The chemical
potential of component i, formally defined as

µi =

(

∂G

∂Ni

)

T,P,Nj 6=i

(5)

can be expressed in terms of g according to32

µi = g + (δi,B − xB)
∂g

∂xB
+ (δi,Va − xVa)

∂g

∂xVa
(6)

where δi,j is the Kronecker delta and the xi = Ni/M are
mole fractions. Due to the conservation of crystal sites in
single crystalline regions xA+xB+xVa = 1 and only two
of the three mole fractions are independent. Graphically,
the chemical potentials, µi, correspond to the intercept
of the plane tangent to the Gibbs free energy g(xB, xV a)
with the xi = 1 axis as illustrated in Figure 1.
In the presence of vacancy sources and sinks, the va-

cancy concentration within crystalline regions cannot be
controlled experimentally and is an internal degree of
freedom. The solid will then pick the equilibrium va-
cancy concentration that minimizes the Gibbs free en-
ergy at constant T , P , NA, and NB. Mathematically
this is equivalent to setting the vacancy chemical poten-
tial equal to zero

µVa =

(

∂G

∂NVa

)

T,P,NA,NB

= 0. (7)

Any deviations in the local vacancy concentration from
its equilibrium value will result in a vacancy chemical

B

μA

g(xB, xVa) μVa=0

μB

A

Va

xB

μ
Va

=μ
Va 

- μ
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~
μ
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=μ
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- μ
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~
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FIG. 1: Ternary free energy diagram with a schematic of the
chemical potentials and the zero vacancy chemical potential.

potential that differs from zero. Using Eq. 6, the vacancy
chemical potential can be written in terms of the free
energy per crystal site g as

µVa = g (xB , xVa)− xB
∂g

∂xB
+ (1− xVa)

∂g

∂xVa
, (8)

Once the Gibbs free energy per crystal site, g(xB , xV a),
is known, it is possible to determine the equilibrium va-
cancy concentration as a function of the alloy concentra-
tion xB by setting Eq. 8 equal to zero and solving for
xVa. This is shown graphically in Figure 1.

The thermodynamic quantities introduced so far can
be calculated with results from semi-grand canonical
Monte Carlo simulations. The number of crystal sites,
M , remains fixed in a lattice Monte Carlo simulation.
Hence, the number of atoms of each component are not
independent due to the constraint that NA+NB+NVa =
M . Since A is the solvent, it is convenient to explicitly
trackNB andNVa. Then using dNA = dM−dNB−dNVa,
the differential of the Gibbs free energy can be rewritten
as

dG = µ̃BdNB + µ̃VadNVa + µAdM. (9)

with the exchange chemical potentials defined as µ̃B =
µB − µA and µ̃Va = µVa − µA. At constant M (i.e.
dM = 0), the exhange chemical potentials, µ̃B and µ̃Va

are conjugate to NB and NVa respectively. Eq. 9 also
shows that the exchange chemical potentials, µ̃B and µ̃Va,
are related to the Gibbs free energy per crystal site g =
G/M according to

µ̃B =
∂g

∂xB
µ̃Va =

∂g

∂xVa
(10)

These relations suggest that it is natural to work within
the semi-grand canonical ensemble in which µ̃B and µ̃Va

are controlled at constant temperature. The partition
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function within this semi-grand canonical ensemble when
considering only configurational excitations can be writ-
ten as

Z =
∑

~p

e−βΩ(~p), (11)

where β = 1/kT and k is the Boltzmann constant. The
semi-grand canonical energy, Ω(~p), appearing in Eq. 11
is defined as

Ω (~p) = E (~p)−NBµ̃B −NVaµ̃Va (12)

with E (~p) the energy of configuration ~p.
Semi-grand canonical Monte Carlo simulations of a

crystal containing A, B and vacancies enable the cal-
culation of ensemble averages of the semi-grand canoni-
cal energy Ω and the averages of the number of B and
vacancies, NB and NVa, all as a function of tempera-
ture, T , and exchange chemical potentials, µ̃B and µ̃Va.
The free energy per crystal site at constant temperature,
g(xB, xVa), can then be calculated by integrating Eq. 10
along a path for which xB = NB/M and xVa = NVa/M
has been calculated as a function of µ̃B and µ̃Va. More
details about free energy integration methods can be
found for example in References15,33.
A simplification in the determination of the equilib-

rium vacancy concentration is possible for substitutional
alloys having very dilute equilibrium vacancy concentra-
tions. Combining Eq. 8 and Eq. 10 we can solve for µ̃Va

as a function of µ̃B along the path corresponding to an
equilibrium vacancy concentration (i.e. µVa = 0)

µ̃Va = −
g (xB, xVa)− xB µ̃B

(1− xVa)
. (13)

When the equilibrium vacancy concentration is very di-
lute, we can accurately approximate the free energy per
crystal site, g(xB , xVa), with that of the strict binary,
g(xB, xVa = 0). Furthermore, 1 − xVa can be approx-
imated as 1. The resulting expression then allows us
to determine a path in µ̃Va and µ̃B space correspond-
ing to an equilibrium vacancy concentration with knowl-
edge only of the binary free energy g(xB, xVa = 0). The
resulting values of µ̃Va and µ̃B can then be used as in-
put for semi-grand canonical Monte Carlo simulations of
the ternary alloy (A, B and vacancies) to calculate the
equilibrium vacancy concentration as a function of alloy
concentration xB .

C. Coarse graining the vacancies in an alloy

partition function

The equilibrium vacancy concentrations on the sub-
stitutional sites of many alloys are exceedingly low. The
vacancy formation energy in hcp Ti as predicted with ap-
proximations to DFT, for example, are in the vicinity of 2
eV34,35. Effective vacancy formation energies of 1.55±0.2

eV and 1.8±0.2 eV have been reported in ordered Ti3Al
at off-stoichiometric concentrations as determined with
positron lifetime measurements36. A large fraction of
substitutional binary alloys and multi-component solids
contain thermal vacancies, which are usually substan-
tially more dilute than structural vacancies that accom-
modate off-stoichiometry as occurs in some intermetallic
compounds such as Al rich B2-NiAl15. Calculating the
equilibrium vacancy concentration in binary alloys when
their concentrations are very low using a cluster expan-
sion and Monte Carlo simulations requires a very large
number of Monte Carlo passes31. An equilibrium vacancy
concentration of 10−12 in an fcc or hcp based alloy, for
example, will require on average 109 Monte Carlo passes
in a 10 × 10× 10 Monte Carlo cell to sample the occur-
rence of a single vacancy. The statistics using traditional
Metropolis Monte Carlo will therefore be poor and will
require exorbitant simulation times. Since the occurrence
of vacancies at these equilibrium vacancy concentrations
is so rare, though, it becomes feasible and sufficiently ac-
curate to perform a coarse graining procedure combined
with a low-temperature-like expansion of the partition
function.

Configurations with vacancies in alloys where the equi-
librium vacancy concentration is very low, have much
higher grand canonical energies than configurations with-
out vacancies, and therefore have a much lower probabil-
ity of occurrence compared to purely binary A-B configu-
rations. We can use this fact to develop a coarse graining
scheme valid for a grand canonical Monte Carlo simula-
tion of a crystal having periodic boundary conditions.
We proceed by writing the sum over all configurations ~p
as first a sum over binary configurations ~s followed by
a sum over all configurations obtained by inserting va-
cancies into the binary A-B configuration ~s, which we
denote by ~q (~s). To avoid double counting of configu-
rations containing vacancies, we only sum over vacancy
configurations ~q (~s) obtained from ~s by exchanging either
A or B with a vacancy, but not both.

Z =
∑

~s







e−βΩ(~s) +
∑

~q(~s)

e−βΩ(~q(~s))







(14)

Z =
∑

~s

e−βΩ(~s)







1 +
∑

~q(~s)

e−β∆Ω(~q(~s))







(15)

with

∆Ω (~q (~s)) = Ω (~q (~s))− Ω (~s) (16)

equal to the cost in the grand canonical energy of intro-
ducing vacancies having configuration ~q (~s) derived from
a binary configuration ~s at constant µ̃B and µ̃Va. For a
fixed binary configuration ~s, it is convenient to introduce
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a vacancy partition function defined as

zvac (~s) =
∑

~q(~s)

e−β∆Ω(~q(~s)) (17)

The sum in Eq. 17 extends over all configurations with at
least one vacancy derived from the binary configuration
~s.

It will prove useful to write the ternary partition func-
tion, Eq. 15, in terms of the binary partition function

Z̃ =
∑

~s

e−βΩ(~s) (18)

as

Z = Z̃ (1 + ξ) (19)

with

ξ =
∑

~s

e−βΩ(~s)

Z̃
· zvac (~s) =

〈

zvac (~s)
〉

binary
(20)

being the average of the vacancy partition function taken
over the binary ensemble.

D. Equilibrium vacancy concentration

The equilibrium number of vacancies is equal to the
ensemble average of vacancies given by

N̄Va =
1

Z

∑

~p

NVa (~p) · e
−βΩ(~p) (21)

where NVa (~p) is the number of vacancies in configuration
~p. The expression for the equilibrium number vacancies
can be rewritten using Eq. 19 as

N̄Va =
1

(1 + ξ)

∑

~s

e−βΩ(~s)

Z̃





∑

~q(~s)

NVa (~q (~s)) e
−β∆Ω(~q(~s))



 . (22)

The expression in brackets is equivalent to the partial
derivative of the vacancy partition function, Eq. 17, with
respect to βµ̃Va, i.e.

1

β

∂zvac (~s)

∂µ̃Va
=

∑

~q(~s)

NVa (~q (~s)) e
−β∆Ω(~q(~s)) (23)

Inserting Eq. 23 into Eq. 22, we can write the equilibrium
number of vacancies as

N̄Va =
1

(1 + ξ)

∑

~s

e−βΩ(~s)

Z̃

(

1

β

∂zvac (~s)

∂µ̃Va

)

(24)

or, because the binary grand canonical energy, Ω (~s), and

the binary partition function, Z̃, do not depend on µ̃Va,
we can write using Eq. 20

N̄Va =
1

β (1 + ξ)

∂ξ

∂µ̃Va
. (25)

No approximations have been made up to this point.
Equation 25 shows that the equilibrium vacancy concen-
tration should be accessible with a binary Monte Carlo
simulation provided that the vacancy partition function,
Eq. 17, can be evaluated in each binary configuration.
The number of ternary vacancy configurations, ~q (~s), for
each binary configuration, ~s, is unfortunately too large to
be explicitly enumerated. However, if the equilibrium va-

cancy concentration is very low and the size of the crystal
in the Monte Carlo cell is not too large, then microstates
with two or more vacancies can be neglected in the va-
cancy partition function, Eq. 17, and we can approximate
the vacancy partition function as

zvac ≈ z′vac (~s) =
∑

~q(~s)′

e−β∆Ω(~q(~s)′), (26)

where the sum now extends only over microstates con-
taining one vacancy. This approximation is similar to
that of a low temperature expansion. Within this ap-
proximation,

1

β

∂z′vac (~s)

∂µ̃Va
= z′vac (~s) , (27)

allowing us to rewrite the expression for the equilibrium
number of vacancies, Eq. 25, as

N̄Va ≈
ξ′

(1 + ξ′)
, (28)

where

ξ′ = 〈z′vac (~s)〉binary . (29)

The approximate vacancy partition function, z′vac (~s), can
be readily evaluated in a binary Monte Carlo simulation.
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The equilibrium vacancy concentration is defined as

xVa =
N̄Va

M
≈

ξ′

M (1 + ξ′)
. (30)

This expression makes it possible to calculate the equilib-
rium vacancy concentration in a binary alloy with an ar-
bitrary degree of disorder using a binary grand canonical
Monte Carlo simulation. For each binary configuration
sampled in the simulation, it is then necessary to calcu-
late the grand canonical energy change of replacing each
B atom at a time (or A, but not both) with a vacancy
such that the vacancy partition function can be approxi-
mated using Eq. 26. The binary ensemble average of the
vacancy partition function then yields ξ′, Eq. 29, which
is then to be inserted into Eq. 30. We emphasize that Eq.
30 is only valid if the equilibrium vacancy concentration
is very dilute.

III. RESULTS

As an application of this approach, we study the ther-
modynamics of vacancies in hcp based Ti-Al binary al-
loys. The hcp crystal is a thermodynamically stable
phase in the Ti-Al system for Al concentrations between
0 to 0.35, forming an hcp based solid solution at Ti rich
concentrations and an ordered compound with stoichiom-
etry around Ti3Al. The hcp derived Ti3Al compound has
the DO19 ordering (2×2×1 supercell of the hcp unit cell)
and is shown in Figure 2. The solubility of Al in the hcp
based Ti-Al solid solution, commonly referred to as α, is
large, reaching values above xAl = 0.25 at 1170◦C37. The
DO19 ordered phase, referred to as α2, is stable over a
wide concentration range around the perfect stoichiome-
try of x = 0.25. The rich variety of long and short-range
order as well as large degrees of off-stoichiometry make
the Ti-Al binary alloy a useful model system to explore
the effect of alloy concentration and degree of ordering
on the equilibrium vacancy concentration.

A. First-principles parameterization of alloy

Hamiltonian

We parameterized a cluster expansion by fitting the
coefficients of a truncated form of Eq. 3 to reproduce
the formation energies of different arrangements of Ti,
Al, and dilute vacancies over the sites of the hcp crys-
tal structure (Figure 3). The energies of these config-
urations were calculated with density functional theory
(DFT) as implemented in the Vienna ab initio Simula-
tion Package (VASP)38–42. We used the projector aug-
mented wave (PAW) pseudopotential method to treat the
interaction between valence and core electronic states. A
10×10×5 k-point mesh, yielding a convergence to within
1.0 meV per atom, was used for the hcp primitive cell
and scaled accordingly to achieve equivalent (or greater)

(a)

(b)

FIG. 2: Crystal structure schematics of the DO19 (α2) ordered
phase, including a 3D representation and a projection view
down the c-axis.

k-point densities in supercells of the hcp primitive cell.
The atomic positions, lattice parameters, and cell shape
were allowed to relax fully. An energy cutoff of 450 eV
was chosen for the plane wave basis set. These calcula-
tions were performed without the inclusion of spin po-
larization. We calculated the energies of over 600 binary
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FIG. 3: DFT (blue diamonds) and cluster expansion pre-
dicted (pink circles) formation energies for the Ti-Al binary
system as a function of Al concentration. Blue lines denote
the convex hull and correspond to two-phase regions.
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configurations by enumerating the symmetrically unique
orderings of Ti and Al in all distinct supercells contain-
ing up to 6 hcp unit cells (up to 12 atoms per cell). In
addition to these configurations, we also systematically
enumerated dilute perturbations around the ground state
configurations, which for the hcp based Ti-Al alloy are
pure Ti and the ordered DO19 Ti3Al phase. These dilute
configurational perturbations were enumerated in a 128
atom, 4 × 4 × 4 supercell of the hcp unit cell. For pure
Ti, in the 4 × 4 × 4 supercell, we calculated the energy
of configurations generated by substituting one Ti for an
Al, two Ti for a pair of Al, and three Ti for a triplet
of Al. For the pair and triplet substitutions, we consid-
ered all symmetrically distinct Al-Al pairs up to the 8th
nearest neighbor and a variety of symmetrically distinct
Al-Al-Al triplets of increasing radius. Similar configura-
tions were enumerated in a 128 atom supercell of DO19

(i.e. a 2× 2× 4 supercell of the DO19 unit cell). Within
this supercell, we calculated the energies of all anti-site
defects (i.e. an Al on the Ti sublattice and a Ti on the
Al sublattice), all symmetrically distinct pairs of anti-
site defects up to the 8th nearest neighbor, and several
symmetrically distinct triplets of anti-site defects.

The 4 × 4 × 4 supercells were also used to enumer-
ate different Al arrangements around a single vacancy.
The choice of the 4 × 4 × 4 supercell was motivated by
a convergence analysis of the vacancy formation energy
as a function of supercell size. We calculated the va-
cancy formation energy using supercells ranging from 42
to 162 atoms, allowing both the volume and lattice pa-
rameters to relax fully. We find that a 128 atom super-
cell yields a vacancy formation energy to within about 25
meV with respect to the largest 162 atom cell considered.
Additionally, we find that smaller cells are noticeably less
suitable as they differ by up to 50 meV from the most
accurate value. This is shown in Fig. 4. Furthermore,
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FIG. 4: Convergence test data for the vacancy formation en-
ergy in pure hcp Ti as a function of supercell size and shape.

using the 128 atom 4× 4× 4 supercell of pure Ti, we cal-

culated the energy of a single vacancy, of symmetrically
distinct Al-vacancy pairs up to the 8th nearest neighbor,
and of a variety of Al-Al-vacancy triplets. Similar con-
figurations were enumerated in the 128 atom supercell of
DO19. A single vacancy was placed on both the Al and Ti
sublattices. We also enumerated symmetrically distinct
vacancy-anti-site pairs up to the 8th nearest neighbor as
well as several symmetrically distinct triplets containing
two anti-sites and one vacancy. Configurations contain-
ing more than one vacancy were not considered due to
the very dilute vacancy concentration in the alloy.

A large number of the more than 600 hcp based con-
figurations considered here were found to be dynamically
unstable and relaxed to fcc based orderings. This is con-
sistent with the fact that the Ti-Al alloy forms fcc based
compounds at aluminum concentrations of x = 1/2 and
above. We did not include the energies of the dynami-
cally unstable hcp-based orderings when fitting the co-
efficients of the cluster expansion. We identified con-
figurations that relax to an fcc-based ordering based on
the coordination number in the third and fourth nearest
neighbor shells. The fcc crystal has 24 and 12 third and
fourth nearest neighbors while the hcp crystal has 2 and
18. We only included the energies of configurations that
can be mapped onto an hcp parent crystal if their near-
est neighbor tables matched those of the primitive cell
with a 0.2 Å tolerance on mapping any given atom into a
shell. This leaves only 317 configurations, most of them
Ti-rich.

The coefficients of the cluster expansion were deter-
mined by fitting to the fully relaxed DFT energies of
317 configurations using a genetic algorithm43 followed
by a depth-first-search algorithm to determine the opti-
mal set of non-zero terms in the expansion44 to minimize
the cross validation score45 and a penalty to minimize the
number of coefficients in the expansion46. We use a num-
ber of different metrics to verify the predictive capability
of the cluster expansion. The root mean square error
between the original DFT energies and the correspond-
ing energies predicted by the cluster expansion is 0.004
eV per primitive cell (containing two atoms). We also
ensured that key trends in the first-principles data are
reproduced by the cluster expansion. We verified, for ex-
ample, that the energies of Al-Al and Al-Va pairs within a
Ti hcp crystal have the same qualitative dependence on
distance. The DFT calculations predict that the third
nearest neighbor Al-Al pair in pure Ti is energetically
more favorable than the first or second nearest neighbor
pairs (Fig. 5b), while the energy varies negligibly beyond
the fifth nearest neighbor distance. With Al-Va pairs,
the energy spikes for the second NN, drops for the third,
and spikes again for the fourth. These trends are all re-
produced with the cluster expansion and shown in Fig. 5.
One exception is the failure of the cluster expansion to
capture the spike in the energy for a fifth-nearest neigh-
bor Al-Al pair in pure Ti. Similar trends were repro-
duced between a pair of anti-site defects and a vacancy-
anti-site defect in DO19. We also ensured that the cluster
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expansion predicts the correct ground states along the bi-
nary Ti-Al concentration axis between xAl = 0 and 0.35
by calculating the energies of many additional configu-
rations using the cluster expansion and by performing
cooling runs in semi-grand canonical Monte Carlo sim-
ulations over a wide range of chemical potentials. The
only ground states found to be stable on hcp at low Al
concentrations are pure Ti and DO19 Ti3Al.
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FIG. 5: Comparison of (a) Al-Va and (b) Al-Al pair cluster
relative energies as calculated with DFT (blue diamonds) and
predicted with the cluster expansion (pink circles).

As a final test of the quality of the cluster expan-
sion, we sampled representative configurations within
grand canonical Monte Carlo simulations at tempera-
tures slightly above the order-disorder transition tem-
perature of DO19 and compared their DFT energies with
the energies predicted with the cluster expansion. The
DFT-PBE energies of eight disordered configurations as
sampled in a 4×4×4 supercell of the primitive cell within
Monte Carlo simulations were calculated with VASP. The
rms between the DFT energies and those predicted by
the cluster expansion for these eight configurations was 2
meV per hcp primitive unit cell. This low value, which is
of the same order as the numerical accuracy of the direct
DFT calculations, indicates that the cluster expansion

has a predictive capability with first-principles accuracy.

B. Monte Carlo simulations

The cluster expansion was subjected to grand Canoni-
cal Monte Carlo simulations to predict a variety of ther-
modynamic properties, including the temperature con-
centration phase diagram of hcp based Ti-Al and the
equilibrium vacancy concentration as a function of tem-
perature and alloy concentration.

1. Phase equilibrium

Monte Carlo simulations were used to determine the
binary temperature-concentration phase diagram. Since
the vacancy concentration is very dilute in hcp Ti-Al,
we performed binary semi-grand canonical Monte Carlo
simulations (i.e. xVa = 0) to calculate bulk thermo-
dynamic properties. Two-phase bounds separating the
Ti1−xAlx solid solution and DO19 Ti3Al at low to in-
termediate temperatures were determined by minimizing
over Gibbs free energies and grand canonical free energies
as obtained with integration techniques of Monte Carlo
calculated averages33,44. The two-phase bounds at high
temperature were determined by tracking discontinuities
in the concentration versus temperature curves obtained
with heating and cooling grand canonical Monte Carlo
simulations. At high temperature, there is very little
hysteresis between heating and cooling runs. Figure 6
shows the resulting phase diagram for Ti-rich hcp Ti-Al.
The DO19 Ti3Al ordered phase, also referred to as α2, is
predicted to be stable up to approximately 1970 K (about
1700◦C) and is stable over a wide concentration range. A
wide two-phase coexistence region separates DO19 from
a Ti-rich solid solution, α, while a narrower two-phase
region separates DO19 from a high Al concentration hcp
solid solution. At low temperature, DO19 can coexist
with an fcc based ordering having TiAl stoichiometry.
We did not consider phase stability between the hcp and
fcc parent crystal structures. The lines in the phase dia-
gram show the dependence of the average concentration
xAl on temperature T at constant µ̃Al = µAl − µTi (i.e.
iso-chemical potential lines). Figure 7 shows several bi-
nary Gibbs free energy curves (g(xAl) with xVa = 0) as
calculated at different temperatures. The reference states
of the free energies shown in Fig. 7 are pure hcp Ti and
fcc Al. These free energies were obtained by integrating
µ̃Al as a function of alloy concentration xAl according to

g (xAl) = g
(

xref
Al

)

+

∫ xAl

xref

Al

µ̃AldxAl (31)

where g
(

xref
Al

)

is the Gibbs free energy at a reference con-

centration, xref
Al , and the relation between µ̃Al and xAl is

calculated with binary semi-grand canonical Monte Carlo
simulations (xVa = 0). As the reference concentration
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for the free energy of the Ti-rich solid solution, we used
xref
Al = 0 where g

(

xref
Al

)

= 0 is the formation energy of

pure Ti (the configurational entropy is zero at xref
Al = 0).

For the free energy of DO19, we used a value for xref
Al

within the α2 stability domain and determined the refer-
ence Gibbs free energy g

(

xref
Al

)

by integrating the grand
canonical free energy, φ = g− µ̃AlxAl, at constant µ̃Al as
a function of temperature using33

βφ (µ̃Al, T ) = βrefφ (µ̃Al, Tref) +

∫ β

βref

ωdβ, (32)

where ω = e − µ̃AlxAl is the average grand canonical
energy calculated with the Monte Carlo simulations. As
reference for the above integral, we used the ground state
grand canonical energy of DO19 at low temperature (i.e.
φ (µ̃ref, Tref) = ωDO19

).
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FIG. 6: Calculated temperature-concentration phase diagram
for the Ti-Al binary system. Triangles represent points along
the predicted phase boundary. Blue (cooling) and red (heat-
ing) lines are lines of constant chemical potential.

The Gibbs free energy, in addition to enabling the cal-
culation of the equilibrium phase diagram is also needed
to determine the values of µ̃Va corresponding to an equi-
librium vacancy concentration (i.e. µVa = 0) according
to Eq. 13. Because the vacancy concentration in the Ti-
Al alloy is exceedingly low (about 10−17 to 10−6), we
can use the Gibbs free energy of the binary alloy in the
absence of vacancies and neglect xVa in Eq. 13. The re-
sulting expression, µ̃Va = g(xAl) − xAlµ̃Al then yields a
relation between µ̃Va and µ̃Al consistent with an equilib-
rium vacancy concentration. Figure 8 (a and b) shows
µ̃Al and µ̃Va as a function of alloy concentration calcu-
lated in this way. Figure 8c shows the relation between
µ̃Va and µ̃Al.
The exchange chemical potentials µ̃Al and µ̃Va of Fig-

ure 8 appear in the expression for the semi-grand canon-
ical energy, Eq. 12. The Al exchange chemical potential,
µ̃Al, of Figure 8 increases with alloy concentration. The
plateau (coinciding with a discontinuity in concentra-
tion) in µ̃Al as a function of alloy concentration (Fig.8a)
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FIG. 7: Gibbs free energy curves for the hcp based Ti-Al
binary at different temperatures: (a) 600 K (blue squares) and
(b) 1600 K (red diamonds). The free energies are calculated
using pure hcp Ti and fcc Al as references.

corresponds to the two-phase region separating the Ti
rich solid solution and the DO19 ordered phase. The
vacancy exchange chemical potential, µ̃Va, when vacan-
cies are in equilibrium, is equal to −µTi, which using
Eq. 6 and Eq. 10 can be shown to be related to the semi-
grand canonical free energy (per crystal site) according
to µTi = φ = g−xAlµ̃Al−xVaµ̃Va. The vacancy exchange
chemical potential, µ̃Va, also increases with alloy concen-
tration. Both µ̃Al and µ̃Va increase very steeply at the
stoichiometric Ti3Al concentration due to the energetic
preference for DO19 ordering and the energy penalty of
anti-site defects that are needed when deviating from sto-
ichiometry.

2. Equilibrium vacancy concentration and the effect of

order

The large vacancy formation energy of approximately
2.15 eV in pure hcp Ti (Fig. 4) suggests that the equilib-
rium vacancy concentration will be very low in dilute
hcp Ti-Al solid solutions. In addition to being ther-
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mal defects, vacancies can also serve as structural defects
in ordered compounds to accommodate deviations from
perfect stoichiometry. While anti-site defects are com-
monly the dominant defect in many off-stoichiometric in-
termetallic compounds, compounds such as B2-NiAl can
achieve substantial deviations from perfect stoichiome-
try through the introduction of very large concentrations
of vacancies on one of the sublattices. The dominant
point defects in a particular compound can be assessed
by comparing defect formation energies defined as dif-
ferences in the grand canonical energy of the compound
with and without the point defect4. We find, using point
defect energies calculated in 128 atom supercells, that
the defect formation energies for vacancies are substan-
tially larger than that for forming anti-site defects (by
1 to 2 eV) in the chemical potential interval stabilizing
DO19 Ti3Al. This indicates that anti-site defects accom-
modate off-stoichiometry in DO19 Ti3Al (i.e. Al on the
Ti sublattice or Ti on the Al sublattice) and that the
concentration of anti-site defects are much higher than
the equilibrium vacancy concentration. This is consis-
tent with a previous analysis of point defects in DO19

Ti3Al using point defect energies calculated with embed-
ded atom interatomic potentials57.

We calculated the equilibrium vacancy concentration
at finite temperature within grand canonical Monte Carlo
simulations applied to the ternary cluster expansion
by explicitly sampling microstates in the full Ti-Al-Va
ternary and by using the coarse-grained binary Monte
Carlo algorithm introduced in Sec. II D. We used the
relation between µ̃Al and µ̃Va of Figure 8 in the Monte
Carlo simulations to ensure a path corresponding to an
equilibrium vacancy concentration consistent with µVa =
0. Figure 9 compares the equilibrium vacancy concentra-
tions at 1600 K as calculated with both approaches. The
agreement between the full ternary Monte Carlo simula-
tions and the coarse grained binary Monte Carlo simula-
tions is very good. In the full ternary simulations, 6 to 12
million Monte Carlo passes were required (a Monte Carlo
pass is the number of attempted site occupant exchanges
per site) to attain well-averaged vacancy concentrations.
The coarse-grained binary Monte Carlo required only
of the order of several thousand Monte Carlo passes to
achieve the same quality in the average vacancy concen-
tration. Figure 10 shows the calculated equilibrium va-
cancy concentrations at several temperatures. Only the
coarse-grained binary Monte Carlo algorithm was viable
at the lower temperatures.

The calculated equilibrium vacancy concentration has
a strong dependence on the alloy concentration, espe-
cially at lower temperatures. At both 600 K and 1100 K,
the vacancy concentration varies by almost two orders
of magnitude with alloy concentration. At all temper-
atures, the equilibrium vacancy concentration decreases
with increasing Al concentration in the solid solution. It
drops further when passing through the two-phase re-
gion from the solid solution to DO19. Within DO19, the
equilibrium vacancy concentration decreases until the Al

concentration reaches x = 0.25, then increases abruptly
at x = 0.25, and finally levels off above x = 0.25. At
600 K, for example, the vacancy concentration increases
by almost two orders of magnitude over a very narrow
concentration range (about 0.01) around x = 0.25.
The equilibrium vacancy concentration is affected by

the availability of energetically favorable local environ-
ments. This is determined by the equilibrium degree of
short and long-range order between Al and Ti. Figure 11
shows the average Al concentrations within successive
neighboring shells surrounding a vacancy (Figure 11 a
and c) and an Al atom (Figure 11 b and d) as a func-
tion of alloy concentration, calculated at 1600 K. If the
alloy is completely random, all shell concentrations will
equal the Al concentration of the alloy. Deviations from
xAl indicate short-range order in the solid solution and
long-range order in DO19.
Figure 11 c and d shows that there is some degree of

short-range order between Al, even at temperatures as
high as 1600 K in the solid solution. At x = 0, all of the
shell concentrations are zero as there are no Al atoms
present in pure α-Ti. In the DO19 at x = 0.25, how-
ever, the calculated shell concentrations around Al (Fig-
ure 11d) show a strong preference for Al occupancy in
the 3rd, 4th, and 8th neighbor shells, which is consistent
with the Al long-range ordering in this phase. Figure 11c
shows some degree of short-range order around vacan-
cies, with a clear tendency for vacancies to prefer local
environments in which the fourth nearest neighbor has a
lower than average Al concentration. The fourth nearest
neighbor as shown in Figure 11a corresponds to a pair
parallel to the c-axis of the hcp crystal structure that
connects sites separated by one close-packed layer. As
shown in Figure 5a, the energy of a 128 atom Ti super cell
containing a fourth nearest neighbor vacancy-aluminum
pair is substantially higher than that of other vacancy-
aluminum pairs in the same Ti supercell. As a result,
vacancies prefer sites that have a low average Al concen-
tration in the fourth nearest neighbor shell. Figure 11b
shows slightly more short-range order in the neighbor-
ing shells of Al in the solid solution than exists around
vacancies. The short-range order that Al prefers in the
solid solution is similar to that of DO19, though not as
pronounced. In DO19, the average Al concentrations of
neighboring shells around a vacancy indicate that the va-
cancy prefers the Ti sublattice to the Al sublattice.

IV. DISCUSSION

We have explored the role of alloy concentration and
variations in the degree of short and long-range or-
der on the equilibrium vacancy concentration in multi-
component crystalline solids, using the binary hcp based
Ti-Al alloy as an example. A multi-component solid at
finite temperature can exhibit a range of short and long-
range order. The hcp based Ti-Al alloy exhibits both
a solid solution and a stable ordered phase at x = 0.25
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with a substantial tolerance to deviations from this ideal
stoichiometric concentration. Variations in temperature
and concentration in this alloy therefore result in differ-
ent degrees of short and long-range order.

Explicitly accounting for vacancies in a two-component
solid turns it into a ternary problem. Here we have used
a ternary cluster expansion expressed in terms of polyno-
mials of occupation variables to describe the interactions
among Al and between Al and vacancies in an otherwise
Ti-rich hcp crystal. The equilibrium vacancy concentra-
tion is determined by setting the vacancy chemical po-
tential equal to zero, which is equivalent to minimizing
the free energy of the solid with respect to the number
of vacancies, holding the number of other components
of the solid constant. Because vacancies usually have
very low equilibrium concentrations, direct sampling us-
ing ternary grand canonical Monte Carlo simulations be-
comes intractable, especially at low temperature. Ex-
ploiting the exceedingly low equilibrium vacancy con-
centrations of most solids, we have developed a coarse
graining scheme combined with a low-temperature-like
expansion to calculate equilibrium vacancy concentra-
tions with Monte Carlo simulations applied to the bi-
nary alloy. This is achieved by integrating out all di-
lute vacancy configurations within a disordered binary
solid to obtain a vacancy partition function for each ex-
plicitly sampled binary configuration. The approach is
similar in spirit to that followed by Benedek et al60 to
predict the thermodynamics of dilute ternary alloying
additions to a binary alloy. A comparison between pre-
dictions of the full ternary grand canonical Monte Carlo
simulations that explicitly account for vacancies and the
coarse-grained binary Monte Carlo at high temperatures
demonstrates the validity of the approximations inher-
ent to the coarse graining procedure. The approxima-
tions within the coarse grained algorithm become more
accurate with decreasing temperature, where the errors
incurred by neglecting microstates involving more than
one vacancy at a time in a Monte Carlo sized cell become
negligible.

To ensure that the equilibrium short-range order sam-
pled in Monte Carlo simulations is representative of that
predicted by density functional theory, we fit the ternary
cluster expansion to a large (> 300) database of DFT
energies of Ti-Al-vacancy orderings on hcp. Among the
configurations used to parameterize the cluster expan-
sion were symmetrically distinct arrangements of a large
number of point, pair, and triplet Al and vacancy ar-
rangements within a large supercell of pure Ti and within
a supercell of DO19 Ti3Al. We ensured that the cluster
expansion accurately reproduces the trends in Al-Al and
Al-vacancy pair energies in pure Ti as well as anti-site-
anti-site and anti-site-vacancy pair energies in DO19. A
comparison with representative high temperature config-
urations sampled at high temperature with Monte Carlo
simulations also demonstrated that the cluster expansion
has a predictive capability that matches the numerical ac-
curacy of direct DFT calculations. The calculated phase

diagram using this cluster expansion is similar to previ-
ous predictions of the α+ α2 phase bounds and predicts
a transition temperature around 1970 K (about 1700◦C),
a value that is close to that predicted by van de Walle
and Asta33.

The experimental order-disorder transformation tem-
perature is unknown due to the transformation of hcp
Ti-Al to bcc Ti-Al at temperatures where DO19 Ti3Al
is still stable37. While early assessments of the Ti-
Al binary phase diagram depicted an order-disorder
transition temperature below the transformation of hcp
Ti-Al to bcc47–49, more recent assessments have con-
cluded that it occurs at temperatures above the hcp to
bcc transition37,50. The two-phase bounds and order-
disorder transition temperature of approximately 1700◦C
were calculated in the absence of coherency strains. Most
experimental samples, however, consist of a coherent two-
phase mixture of an hcp Ti-rich solid solution, α, and
DO19 Ti3Al, α2

50,51. Coherency strains introduce a free
energy penalty that depresses transition temperatures
and decreases the widths of two-phase bounds51–53. An
additional complexity arises from the fact that hcp Ti
is capable of dissolving very high concentrations of oxy-
gen in its interstitial octahedral sites, reaching concen-
trations as high as TiO1/2. Many of the hcp based Ti-Al
alloys also contain non-negligible oxygen concentrations,
which will have an important effect on the order-disorder
transition temperature of DO19. Only a limited number
of studies have explored the role of oxygen in modify-
ing the equilibrium phase bounds between α and α2

54.
Furthermore, there is a likelihood that dissolved oxygen
can couple with coherency strains, for example by re-
lieving a portion of the coherency strain energy penalty
of two-phase coexistence by redistributing between the
two phases51. This further complicates a comparison of
the calculated order-disorder transition temperature to
experiment.

Our present study only accounts for configurational
degrees of freedom and neglects vibrational excitations.
Van de Walle55 recently incorporated the effect of vi-
brations in calculating the Ti-rich hcp Ti-Al phase di-
agram using length transferable force constants (LDT-
FCs) and a cluster expansion for the coarse-grained vi-
brational free energies. This study showed that the in-
clusion of vibrational excitations substantially decreases
the DO19 order-disorder transition temperature. In fact,
within the LDTFC approximation, the inclusion of vi-
brations decreases the transition temperature to values
that are even below the earliest experimental estimates
of this temperature. As with the phase diagram, the role
of vibrational excitations is also likely to be important in
determining the equilibrium vacancy concentration. In
fact, a recent study has demonstrated the crucial role of
anharmonic contributions in determining the equilibrium
vacancy concentration in pure Al and Cu56. The same
cluster expansion approach as well as the coarse-grained
Monte Carlo algorithm used here can be applied when
accounting for vibrational excitations in addition to con-



12

figurational degrees of freedom.
The results presented here show that the equilibrium

vacancy concentration can vary by several orders of mag-
nitude over relatively small intervals of alloy concentra-
tion. In the absence of long-range order, the vacancy
concentration is predicted to decrease with increasing Al
concentration. In DO19 Ti3Al, the vacancy prefers to
occupy the Ti sublattice rather than the Al sublattice.
This result is in qualitative agreement with predictions
made with embedded atom interatomic potentials as im-
plemented in a mean field framework57. A vacancy pref-
erence for the Ti sublattice of Ti3Al causes the vacancy
concentration to increase abruptly once the Al concentra-
tion increases above the stoichiometric value of x = 0.25.
An increase in the Al concentration above a stoichiomet-
ric Ti3Al can be achieved in two ways: (i) by adding
energetically costly Al anti-site defects to the Ti sublat-
tice and (ii) by adding energetically more costly, vacan-
cies to the Ti sublattice. While the vacancy concentra-
tion increases above x=0.25, Al anti-site defects on the
Ti sublattice dominate to accommodate off stoichiome-
try in DO19. The increase in vacancy concentration with
Al concentration in α2 between x = 0.22 and x = 0.35
agrees qualitatively with the dependence of an effective
vacancy formation energy with Al concentration as de-
termined with positron lifetime measurements36.
An accurate description of vacancy solute interac-

tions is a crucial input for predictions of diffusion co-
efficients in multi-component solids58,59. Interdiffusion
coefficients are to first order proportional to the vacancy
concentration21. The interdiffusion coefficient will there-
fore be very sensitive to large variations in the equilib-
rium vacancy concentration as a function of alloy concen-
tration. The preference of vacancies for the Ti sublattice
of DO19 Ti3Al

31 will have important consequences for
diffusion in the ordered phase57. The Ti sublattice forms
an interconnected network, linked by nearest neighbor
pairs. Hence, vacancies on the Ti sublattice can freely
diffuse through DO19 without introducing any more dis-
order. The correlation factor for vacancies will therefore
be quite high. In contrast, when vacancies prefer the mi-
nority sublattice (such as the Al sublattice in DO19 or

the Li sublattice of L12 Al3Li), which do not form an in-
terconnected network, they will generally be trapped as
typical nearest neighbor vacancy-atom exchanges result
in an increase in disorder. The vacancy correlation fac-
tor is then very low58. The results here in combination
with a prediction of the relevant diffusion coefficients21

are of value in Allen-Cahn and Cahn-Hilliard type ap-
proaches to study precipitation of DO19 in supersatu-
rated hcp based Ti-Al solid solutions.

V. CONCLUSION

We have developed a coarse graining scheme to predict
the equilibrium vacancy concentration in alloys exhibit-
ing arbitrary degrees of long and short-range order. We
have applied this approach to determine the dependence
of the equilibrium vacancy concentration on temperature
and alloy concentration in hcp based Ti-Al binary alloys.
We used a ternary cluster expansion, parameterized with
first-principles DFT energies, to describe the interactions
among solute atoms and vacancies within grand canon-
ical Monte Carlo simulations. In the hcp based Ti-Al
sytem, we find a strong dependence of the equilibrium
vacancy concentration on Al concentration and degree of
long range order.
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FIG. 8: The dependence of the exchange chemical potentials
µ̃Al and µ̃Va on each other and on the Al concentration when
µVa = 0, calculated using approximations that are valid when
xVa is very small. The data is shown at three different tem-
peratures: 600 K (blue squares), 1100 K (purple circles), and
1600 K (red diamonds).
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FIG. 11: Short-range order around a vacanacy and Al in the hcp Ti-Al system. Images (a) and (b) illustrate the collection
of nearest neighbors 1 through 8 around a vacancy and aluminum, respectively, in hcp. The size of the balls correspond
to the strength of the Va-Al and Al-Al interaction (absolute value) in pure titanium. In (c) and (d), the corresponding Al
shell concentration around a vacancy and aluminum, respectively, is plotted as a function of the average Al concentration as
calculated with the full ternary Monte Carlo simulations at 1600 K. The colors in all images consistently correspond to a specific
nearest neighbor shell, as detailed in the plot legends (e.g. orange is always the 4th nearest neighbor).


