

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

M. D. Knudson, M. P. Desjarlais, and Aurora Pribram-Jones
 Phys. Rev. B **91**, 224105 — Published 15 June 2015
 DOI: 10.1103/PhysRevB.91.224105

1	Adiabatic release measurements in aluminum between 400-1200
2	GPa: characterization of aluminum as a shock standard in the
3	multimegabar regime
4	M.D. Knudson [*] and M.P. Desjarlais
5	Sandia National Laboratories, Albuquerque, New Mexico 87185-1195, USA
6	Aurora Pribram-Jones
7	Department of Chemistry, University of California, Irvine, California 92697, USA

Abstract

Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here we present the results of several adiabatic release measurements of aluminum from $\sim 400-1200$ GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~ 190 and ~ 110 mg/cc silica aerogel standards. These data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. As an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

8 I. INTRODUCTION

⁹ The high-pressure equation of state (EOS) of materials is important for various applica-¹⁰ tions ranging from, among others, planetary physics^{1–3} to inertial confinement fusion.^{4,5} The ¹¹ predominant method of obtaining EOS data in the multimegabar regime (1 Mbar = 100 ¹² GPa) is through dynamic shock wave compression. Various techniques have been used to ¹³ perform such experiments, including chemical-explosive drivers,⁶ conventional and modified ¹⁴ light gas guns,^{7,8} explosively driven striker plates,^{9–14} high-intensity lasers,^{15–20} magnetically ¹⁵ driven flyer plates,^{21–25} and nuclear explosions.^{26–32} The vast majority of these techniques ¹⁶ utilize a relative or impedance matching (IM) method^{7,33} to infer the high-pressure response ¹⁷ of the material of interest. In this method, the shock response of the unknown material ¹⁸ is compared to that of a standard. The EOS of the standard is assumed to be known to ¹⁹ the extent that by comparing a kinematic measurement of the unknown material, usually ²⁰ the shock velocity, U_s , with that of the standard, the high-pressure response of the un-²¹ known material can be determined through the use of the Rankine-Hugoniot conservation ²² equations.³⁴

In the past, aluminum has been the foremost IM standard in shock wave experiments. 23 ²⁴ Well characterized through gas gun,⁷ explosively driven striker plates,^{10,11} magnetically ²⁵ driven flyer plates,²¹ and nuclear driven techniques,^{26,27,29–31} U_s of aluminum would be used ²⁶ to infer the pressure state of a baseplate upon which a sample of interest was placed. Mea- $_{27}$ surement of U_s of the sample of interest and the known response of aluminum would then 28 allow the shocked state of the sample to be inferred. However, the accuracy of the inferred ²⁹ shock response of the sample of interest depends not only upon the Hugoniot response, but ³⁰ also the reshock or release response, depending upon the sample's relative shock impedance ³¹ with respect to aluminum. This is particularly true in the multimegabar regime, where the ³² often used reflected Hugoniot (RH) approximation³³ breaks down due to significant entropy ³³ and temperature increases associated with large amplitude shock waves.³⁴ Several examples ³⁴ of the use of aluminum as an IM standard can be found in the literature, including, among ³⁵ others, α -quartz,¹⁸ LiF,¹⁵ Be,³² polyimide,¹⁶ polystyrene,¹⁹ H₂O,^{17,25} LiD,²⁹ LiH,³⁰ N₂,⁸ and ³⁶ D₂.^{12-14,20,23} In all of these cases, the sample impedance is less than that of aluminum, and ³⁷ thus the release response is crucial to accurately infer the shock response through the IM 38 technique.

Here we present a detailed study of the release response of aluminum, with the goal of the characterizing the use of aluminum as an IM standard for lower-impedance materials in the multimegabar regime. In particular, we set out to develop a simple, analytical model for IM calculations that would not require the use of a particular tabular EOS. Such a method would facilitate not only the IM calculation, but would also simplify the use of Monte Carlo methods for propagation of uncertainties in the inferred results.³⁵

⁴⁵ This goal was accomplished through both theoretical and experimental investigation of ⁴⁶ the release of aluminum, similar to that used recently in the characterization of α -quartz as ⁴⁷ a high-precision standard.³⁶ First-principles molecular dynamics (FPMD) calculations were ⁴⁸ performed and several tabular EOS models for aluminum^{37–42} were analyzed to provide in-⁴⁹ sight into the release behavior. Analysis of the FPMD release calculations and tabular EOS ⁵⁰ release response led to a model framework that was used as the basis to analyze a series ⁵¹ of plate-impact, adiabatic release experiments performed at the Sandia Z machine, similar ⁵² to the concept used previously to investigate the adiabatic release response of aluminum,⁴³ ⁵³ and more recently α -quartz.³⁶ Three different low-impedance materials, full density poly-⁵⁴ methylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel, ⁵⁵ were used as standards to determine release states at various pressures along the aluminum ⁵⁶ release path. The results of these experiments validated the model framework motivated by ⁵⁷ the FPMD calculations and tabular EOS models, and provided experimentally determined ⁵⁸ parameters for the model.

As a consistency check, this analytical release model was used to perform IM calculations to infer Hugoniot states of the standards for all of the release experiments. This allowed comparison of the IM results with previous direct impact experiments used to define the standards.^{44,45} In all three cases the IM results were found to be very consistent with the direct impact results, lending confidence that the analytical release model can be used over a wide range of pressures along the Hugoniot and a wide range of shock impedances. Finally, this model was used to reanalyze laser driven Hugoniot experiments on liquid deuterium,²⁰ to illustrate how the model developed here differs from other methods used in the literature of to perform IM with aluminum as the standard.

Section II discusses the FPMD calculations and tabular EOS analysis performed to investigate the release behavior of aluminum. Section III describes the results of the plate-impact release experiments. Section IV demonstrates the use of the analytical release model to per⁷¹ form IM calculations of the release experiments and to reanalyze laser driven experiments⁷² on liquid deuterium. The main findings are summarized in Sec. V.

⁷³ II. FIRST-PRINCIPLES MOLECULAR DYNAMICS AND TABULAR EQUA ⁷⁴ TION OF STATE INVESTIGATION OF THE RELEASE RESPONSE OF ALU ⁷⁵ MINUM

To investigate the release response of aluminum, first-principles molecular dynamics 77 (FPMD) calculations were performed using VASP (Vienna *ab-initio* simulation program⁴⁶), 78 a plane-wave density functional theory code developed at the Technical University of Vienna. 79 We used a method similar to that used recently in an investigation of the release response 80 of α -quartz.³⁶ Specifically, the aluminum atoms were represented with projector augmented 81 wave (PAW) potentials^{47,48} and exchange and correlation was modeled with the Perdew- 82 Burke-Ernzerhof (PBE) functional.⁴⁹ A total of 108 atoms were included in the supercell, 83 with a plane wave cutoff energy of 280 and 650 eV for lower pressure (P) and higher P 84 adiabats, respectively. Simulations were performed in the canonical ensemble, with simple 85 velocity scaling as a thermostat, and typically covered a few to several picoseconds of real 86 time. We used the Baldereschi mean value point⁵⁰ of the supercell for the evaluation of the 87 Brillouin zone.

The release paths were calculated using the method outlined in Ref. 36. In short, we took advantage of the fact that at the initial reference state, the isentrope and the Hugoniot have a second order contact,³⁴ which is most easily seen by considering a Taylor series expansion of the entropy as a function of volume (V). Thus for small V changes the isentrope is well approximated by the Hugoniot. We therefore approximated each release path as a series of small Hugoniot jumps, where each calculated Hugoniot state along the approximated release path served as the initial reference state for the subsequent Hugoniot calculation. Typical V jumps were of the order of 5%, resulting in P jumps of ~5-10%, with a total of ~12-15 individual calculations per release path. More details can be found in Ref. 36.

⁹⁷ A release path calculated in this way from ~900 GPa is shown as the green line in Fig. 1. ⁹⁸ Also shown for comparison (black line) is a reflection of the aluminum principal Hugoniot ⁹⁹ about the particle velocity (u_p) of the shocked state (see Table I). This so-called reflected ¹⁰⁰ Hugoniot (RH) is often times used to approximate the release path in the $P - u_p$ plane.³³

FIG. 1. Comparison of the FPMD release path (green) to the RH (black). Also shown are the Hugoniots of polyimide (dashed dark gray), polystyrene (solid dark gray), H_2O (dot-dashed dark gray), D_2 (solid light gray), H_2 (dotted light gray), TPX (dot-dashed blue), 190 mg/cc aerogel (dashed blue), and 110 mg/cc aerogel (solid blue). The right panel shows the particle velocity residual of the FPMD release with respect to the RH.

¹⁰¹ The right panel of Fig. 1 shows a useful metric, the particle velocity residual, defined to be ¹⁰² the percent difference in particle velocity of the FPMD release with respect to the RH. At ¹⁰³ low stress or P states on the principal Hugoniot, the RH approximation is reasonably good; ¹⁰⁴ recall that the isentrope and Hugoniot have a second order contact. However, at sufficiently ¹⁰⁵ high Hugoniot P, the RH approximation breaks down, as can be seen in Fig. 1.

For reference, shown as gray lines in Fig. 1, are Hugoniots for several materials that have been studied in dynamic compression experiments using aluminum as a standard. As can been seen in the right panel of Fig. 1, for moderate impedance materials, such as polyimide, polystyrene, and H₂O, the correction to the RH in u_p is ~1% negative, while for low impedance materials, such as D₂ and H₂ the correction to u_p is significantly larger, $\sim 2-6\%$, but opposite sign. This is significant given that errors in u_p are magnified by a factor of roughly $(\rho/\rho_0 - 1)$ when expressed in terms of density, ρ (the subscript 0 denotes the initial value), i.e. $\delta \rho / \rho \sim (\rho / \rho_0 - 1) \delta u_p / u_p$. These materials exhibit density compression $\sim (\rho / \rho_0)$ between 3-4 in the multimegabar regime, and thus errors in ρ are 2-3 times larger

TABLE I. Aluminum^{7,10,11,21,26,27,29–31,51} $U_s - u_p$ coefficients and covariance matrix elements ($U_s = C_0 + Su_p$). Note that in this study we only consider the high-P branch of the aluminum Hugoniot ($u_p > 6.25$ km/s).

	C_0	S	$\sigma_{C_0}^2$	σ_S^2	$\sigma_{C_0}\sigma_S$
	$(\rm km/s)$		$(x10^{-3})$	$(x10^{-3})$	$(x10^{-3})$
$\operatorname{high}-P$	6.322	1.189	53.581	0.4196	-4.605

115 than the errors in u_p .

In accordance with the previous study on the release response of α -quartz,³⁶ we evaluated the aluminum release curves using a Mie-Grüneisen (MG) model with a linear $U_s - u_p$ Hugonis niot response as the reference curve, which we will call the MG, linear reference (MGLR) model. In this model the Grüneisen parameter, $\Gamma = V(dP/dE)_V$, is held constant along a given release path. In the α -quartz study, such a model was found to quite accurately reproduce the FPMD calculated release paths along nearly their entirety over a very wide P range. The MGLR model has two parameters; Γ and the slope, S, of the linear $U_s - u_p$ Hugoniot ($U_s = C_0 + Su_p$) used for the reference curve. Note that for a given value of S, which we will denote as S_1 , there is a unique value of C_{01} that will produce (P_1, u_{p1}) along the Hugoniot;

$$C_{01} = \frac{P_1}{\rho_0 u_{p1}} - S_1 u_{p1}.$$
(1)

The values of Γ and S can be simultaneously optimized to minimize the integral:

$$\int_{P_{\min}}^{P_1} \left[u_p^{\text{rel}}(P') - u_p^{\text{Calc}}(P') \right]^2 dP'$$
(2)

¹²⁷ where u_p^{rel} and u_p^{Calc} are the particle velocities along the MGLR and the calculated release ¹²⁸ paths (either from FPMD simulations or a tabular EOS), respectively. These optimizations ¹²⁹ were performed for a total of three FPMD calculated release paths, as well as 8-10 release ¹³⁰ paths obtained from several different tabular EOS models for aluminum, including 3700 ¹³¹ (Refs. 37,38), 3715 (Refs. 39,40), and 3719 (Refs. 41,42). These release paths emanated ¹³² from various states along the principal Hugoniot ranging from ~300-3500 GPa. The results ¹³³ of several of these optimizations are shown in Fig. 2, and the values for Γ and S of all the

FIG. 2. Comparison of the MGLR release paths (black) with the FPMD release paths (green) and release paths from the 3700 EOS^{37,38} (red), each from three different principal Hugoniot states of aluminum. Here both Γ and S are optimized for each release path; the values are listed in Tables II and III. Also shown for reference are the Hugoniots for TPX (dot-dashed blue), 190 mg/cc aerogel (dashed blue), and 110 mg/cc aerogel (solid blue). The right panel shows the particle velocity residuals of the MGLR release paths with respect to the FPMD and 3700 release paths. Note the change in scale on the residual plot with respect to Fig. 1.

$P_{\rm al}$	u_p^{al}	Γ, S or	Γ, S optimized		Γopt	imized
(GPa)	$(\rm km/s)$	Г	S		Γ	$S(u_p^{\mathrm{al}})$
489	9.980	1.399	1.510		1.320	1.444
603	11.337	1.284	1.484		1.215	1.422
911	14.339	1.071	1.408		1.041	1.381

TABLE II. Values for Γ and S for the FPMD release paths using the MGLR model for both cases (*i*) Γ and S optimized, and (*ii*) Γ optimized and $S(u_p^{\text{al}})$ given by Eq. (3).

134 optimizations are displayed in Tables II-V.

As can be seen in Fig. 2, the MGLR model is able to reproduce quite well the FPMD and tabular EOS release paths over the entire regime studied here. However, in contrast to the

$P_{\rm al}$	u_p^{al}	Γ, S op	Γ, S optimized		Γ opt	imized
(GPa)	$(\rm km/s)$	Г	S		Г	$S(u_p^{\mathrm{al}})$
300.8	7.393	1.411	1.466		1.450	1.491
491.6	9.985	1.188	1.411		1.232	1.444
599.6	11.236	1.117	1.394		1.155	1.424
774.2	13.045	1.041	1.376		1.067	1.398
923.6	14.438	0.995	1.364		1.012	1.379
1115.9	16.073	0.962	1.359		0.963	1.360
1309.7	17.587	0.935	1.357		0.921	1.344
1537.3	19.226	0.900	1.350		0.879	1.328

TABLE III. Values for Γ and S for release paths from the 3700 EOS^{37,38} using the MGLR model for both cases (i) Γ and S optimized, and (ii) Γ optimized and $S(u_p^{\rm al})$ given by Eq. (3).

TABLE IV. Values for Γ and S for release paths from the 3715 EOS^{39,40} using the MGLR model for both cases (i) Γ and S optimized, and (ii) Γ optimized and $S(u_p^{\rm al})$ given by Eq. (3).

$P_{\rm al}$	u_p^{al}	Γ, S or	Γ, S optimized		$\Gamma \text{ opt}$	imized
(GPa)	$(\rm km/s)$	Г	S		Г	$S(u_p^{\mathrm{al}})$
303.1	7.470	1.789	1.568		1.686	1.489
499.2	10.156	1.398	1.515		1.312	1.441
602.6	11.348	1.288	1.492		1.210	1.422
761.8	12.990	1.191	1.474		1.113	1.398
917.3	14.448	1.146	1.475		1.054	1.379
1106.1	16.072	1.108	1.473		1.001	1.360
1317.8	17.744	1.042	1.445		0.955	1.342
2022.8	22.568	0.882	1.364		0.831	1.301
2685.6	26.386	0.745	1.306		0.719	1.276
3516.5	30.553	0.602	1.222		0.635	1.256

$P_{\rm al}$	u_p^{al}	Γ, S of	Γ, S optimized		Γopt	imized
(GPa)	$(\rm km/s)$	Г	S	-	Г	$S(u_p^{\mathrm{al}})$
306.2	7.526	1.302	1.385		1.463	1.488
490.1	9.999	1.105	1.355		1.229	1.443
600.6	11.277	1.035	1.338		1.148	1.423
771.7	13.058	0.921	1.324		1.033	1.397
919.4	14.400	0.877	1.292		0.982	1.380
1105.5	16.040	0.828	1.278		0.927	1.360
1317.0	17.708	0.785	1.266		0.874	1.343
2008.7	22.406	0.691	1.236		0.764	1.302
2702.4	26.362	0.638	1.220		0.698	1.276
3535.3	30.489	0.601	1.209		0.649	1.256

TABLE V. Values for Γ and S for release paths from the 3719 EOS^{41,42} using the MGLR model for both cases (i) Γ and S optimized, and (ii) Γ optimized and $S(u_p^{\text{al}})$ given by Eq. 3.

¹³⁷ previous α -quartz study, where S was found to be essentially independent of the Hugoniot ¹³⁸ P, S was found to decrease monotonically with Hugoniot P in the present aluminum study. ¹³⁹ This difference in behavior is likely related to the fact that in this regime aluminum is a monatomic, metallic fluid while α -quartz is a molecular fluid that exhibits significant 140 disordering and dissociation as the temperature and pressure are increased.⁶⁰ It was also 141 ¹⁴² found that for a given release path there exists a broad, shallow minimum in the evaluated integral [Eq. (2)] along a line in Γ -S space, as illustrated in Fig. 3. This broad minimum 143 allowed us to consider prescribing a particular S(P), or more appropriately for the purposes of an IM model, $S(u_p^{\rm al})$, with only a negligible degradation in the agreement between the 145 MGLR and FPMD release paths; i.e. for a reasonable prescribed value of S, a value of Γ 146 can be found that results in essentially the same minimum for Eq. (2). Since S was found 147 to monotonically decrease with increased Hugoniot P, and S appears to asymptote to ~ 1.2 , 148 ¹⁴⁹ a value very close to the actual Hugoniot slope (see Table I), we chose to fit the various $_{150}$ values of S in Tables II-V to a simple exponential functional form that exhibits this type of

TABLE VI. Fit parameters for $S(u_p^{\text{al}})$ [Eq. (3)].

FIG. 3. Integrated difference between the MGLR and the FPMD release paths [Eq. (2)] as a function of both Γ and S. Note the shallow minimum along a line in Γ -S space.

151 behavior:

$$S(u_p^{\rm al}) = a_1 - a_2 \exp\left[-a_3 u_p^{\rm al}\right],\tag{3}$$

¹⁵² where a_1 was fixed to the actual Hugoniot slope of 1.189 (see Table I). The best fit values ¹⁵³ of the other two free parameters are listed in Table VI.

¹⁵⁴ We then repeated the optimization process, this time optimizing only Γ while determining ¹⁵⁵ $S(u_p^{\rm al})$ through Eq. (3). The results of this optimization are shown in Fig. 4 and the values ¹⁵⁶ of Γ and $S(u_p^{\rm al})$ are displayed in Tables II-V. Comparison of Figs. 2 and 4 indicate that, as ¹⁵⁷ expected, simplification in the MGLR model by prescribing $S(u_p^{\rm al})$ through Eq. (3) results ¹⁵⁸ in only a negligible degradation in the agreement between the MGLR and FPMD release ¹⁵⁹ paths.

¹⁶⁰ Γ was also found to have a strong dependence on the Hugoniot *P*. Γ is relatively large at ¹⁶¹ low *P*, decreases with increasing *P*, and appears to asymptote to a value of ~0.6. This is ¹⁶² very similar to the asymptotic value found on the α -quartz study³⁶ and is quite close to the

FIG. 4. Comparison of the MGLR release paths (black) with the FPMD release paths (green) and release paths from the 3700 EOS (red), each from three different principal Hugoniot states of aluminum. Here $S(u_p^{\rm al})$ is given by Eq. (3) and only Γ is optimized for each release path; the values are listed in Tables II and III. Also shown for reference are the Hugoniots for TPX (dot-dashed blue), 190 mg/cc aerogel (dashed blue), and 110 mg/cc aerogel (solid blue). The right panel shows the particle velocity residuals of the MGLR release paths with respect to the FPMD and 3700 release paths.

¹⁶³ value of 2/3 that one would expect for an ideal gas. As was the case in the α -quartz study, ¹⁶⁴ the asymptotic behavior of Γ and S is quite intriguing. However, it is not clear whether ¹⁶⁵ the behaviors of Γ and S are the result of underlying physics, or merely a coincidence. ¹⁶⁶ To understand this further would require a rather extensive FPMD investigation, which is ¹⁶⁷ outside of the scope of this study.

It should be emphasized that the MGLR model discussed here is only intended to calulate kinematic variables for aluminum upon release, in particular the release paths in the $P - u_p$ plane for purposes of impedance matching. For instance, it is anticipated that the model do not reflect the behavior of aluminum in this regime. To underscore this, we choose to refer to Γ in the MGLR model as the effective Γ , or Γ_{eff} , from this point forward.

¹⁷⁴ This investigation of the release response of aluminum suggests that from a given alu-

	C_0	S	$\sigma^2_{C_0}$	σ_S^2	$\sigma_{C_0}\sigma_S$
	$(\rm km/s)$		$(x10^{-3})$	$(x10^{-3})$	$(x10^{-3})$
TPX	2.691	1.310	3.667	0.0152	-0.2155
190 mg/cc aerogel	-0.393	1.248	34.17	0.100	-1.822
110 mg/cc aerogel	-0.703	1.232	66.82	0.159	-3.193

TABLE VII. TPX and silica aerogel $U_s - u_p$ coefficients and covariance matrix elements^{44,45}

¹⁷⁵ minum Hugoniot state, the release path can be calculated using a MGLR model with a ¹⁷⁶ constant Γ_{eff} . Γ_{eff} is a function of P, or more appropriately for the purposes of an IM model, ¹⁷⁷ a function of u_p^{al} along the aluminum Hugoniot. S of the linear $U_s - u_p$ Hugoniot used as ¹⁷⁸ the reference for the MG model is also a function of u_p^{al} , and is given by Eq. (3). C_{01} is then ¹⁷⁹ determined through Eq. (1). This model serves as the framework for analysis of the release ¹⁸⁰ measurements that will be discussed in the next section.

181 III. EXPERIMENTAL RESULTS AND DISCUSSION

A series of planar, plate-impact, shock wave experiments were performed at the Sandia 182 Z machine⁵² to investigate the release response of aluminum, using the experimental config-183 urations described in Ref. 36. Three different low-impedance standards were used to obtain 184 release states from shocked aluminum: polymethylpentene (commonly known as TPX), and 185 both ~ 190 and ~ 110 mg/cc silica aerogel. The shock response of these standards have been 186 previously investigated on the Z machine.^{44,45} Since these samples are solid, they could be 187 directly impacted by the flyer plate, and thus the Hugoniot states could be inferred through 188 simple IM with a luminum under compression, to relatively high-precision. The linear U_s-u_p 189 coefficients and associated uncertainties for these three materials, which were used in the 190 analysis of the release experiments described here, are listed in Table VII. 191

The aluminum (6061-T6), TPX (obtained from Mitsui Chemicals America), and ~ 190 and ~ 110 mg/cc silica aerogel (fabricated by General Atomics) samples were all nominally mm in lateral dimension. The thickness of the aluminum was nominally 300 microns, while the thicknesses of the release standards were all nominally 1000 microns. The sam¹⁹⁷ interferometer to measure thickness to a precision of ~ 5 microns and less than 1 micron, re-¹⁹⁸ spectively. Density of the silica aerogel was inferred from high-precision mass measurements ¹⁹⁹ and inferred volume assuming the samples were right-circular cylinders. Slight departure ²⁰⁰ from the right-circular cylinder assumption resulted in density uncertainty of $\sim 2\%$ and $\sim 5\%$ ²⁰¹ for the 190 and 110 mg/cc aerogel, respectively.

The aluminum samples and release standards were glued together to form experimen-202 tal "stacks" using the techniques described in Ref. 36. The flyer plates and experimental 203 "stacks" were diagnosed using a velocity interferometer (VISAR⁵³). Since the aluminum is 204 opaque, the 532 nm laser light would pass through the transparent low-impedance standard 205 and reflect off the aluminum/standard interface, as illustrated in the inset of Fig. 5. Shock 206 breakout into the release standard resulted in a 10-100's of GPa shock that was of sufficient 207 magnitude that the release standard became weakly reflecting, allowing direct measure of the 208 shock velocity in the release standard with the VISAR diagnostic. As in the α -quartz study, 209 the measured apparent velocity of the shock in the release standards was reduced by a factor 210 equal to the refractive index of the un-shocked material: $v = v_a/n_0$. The values of n_0 used 211 in this study for TPX and the ~ 190 and $\sim 110 \text{ mg/cc}$ silica aerogel were, 1.46, 1.038, and 212 1.02 respectively.^{44,54–56} Representative velocity profiles are shown in Fig. 5. The inferred 213 shocked state of the aluminum sample relied on flyer plate velocity measurements directly 214 above and below the sample "stack" obtained from the VISAR diagnostic, as illustrated in 215 Fig. 5. The impact velocity was taken to be the average of these two measurements, which 216 $_{\rm 217}$ typically differed by less than 1%. $u_p^{\rm al}$ of the shocked state was then 1/2 the impact velocity, as a result of the symmetric impact. Uncertainties in the flyer plate and shock velocities 218 were a few tenths of a percent. 219

The aluminum release experiments were analyzed within the framework of the MGLR model described in the previous section, which is graphically illustrated in Fig. 6. The measured impact velocity and known Hugoniot of aluminum (fit parameters and uncertainties are listed in Table I) defined the initial state in the $P - u_p$ plane, (P_1, u_{p1}) . The measured shock velocity and the known Hugoniot of the release standard defined the release state along the aluminum release path, (P_r, u_{pr}) . The MGLR model, with S_1 and C_{01} given by Eqs. (3) and (1), respectively, was then used to determine the value of Γ_{eff} such that the release path release path (P_1, u_{p1}) went through the point (P_r, u_{pr}) . Uncertainties in the inferred guantities were determined using the Monte Carlo method described in Ref. 36. Note that

FIG. 5. Representative experimental VISAR data. Black (blue) line, aluminum flyer plate velocity below (above) release sample stack; cyan line, release standard shock velocity. The inset shows a schematic of the experimental configuration. Note the dimensions are not to scale.

²²⁹ the uncertainty in u_{pr} that arises from both the uncertainty of the standard Hugoniot and ²³⁰ the measured U_s^{standard} is less than 1%, and provides a tight constraint on the value of Γ_{eff} ²³¹ that connects (P_1, u_{p1}) and (P_r, u_{pr}) . This translates into an uncertainty in Γ_{eff} of between ²³² 0.04-0.17 for the individual release measurements.

A total of 7, 7, and 5 aluminum release experiments were performed with TPX, ~ 190 233 and $\sim 110 \text{ mg/cc}$ silica aerogel, respectively. The pertinent parameters for these experiments 234 are listed in Tables VIII-X. $u_p^{\text{al}}, U_s^{\text{standard}}$ and ρ_0^{standard} denote the measured particle velocity 235 in the aluminum sample, shock velocity in the release standard, and density of the release 236 standard, respectively. Γ_{eff} denotes the inferred value of the effective Γ for the MGLR model 237 obtained using the method described above. u_p^{IM} is the inferred particle velocity in the 238 shocked standard as determined through IM calculations using the MGLR model. These 239 calculations will be discussed in the next section. 240

The values for Γ_{eff} inferred from all three release standards are plotted as a function of u_p^{al} in Fig. 7. Also plotted in the figure are the optimized Γ_{eff} obtained from the MGLR model with $S(u_p^{\text{al}})$ given by Eq. (3) that best matched the FPMD release paths and the release paths from various tabular EOS models for aluminum, including 3700 (Refs. 37,38), 3711 (Refs. 57), 3715 (Refs. 39,40), 3719 (Refs. 41,42), and 3720 (Ref. 58). The trend exhibited by the experimentally determined Γ_{eff} is very similar to that exhibited by the FPMD and tabular EOS derived values. Furthermore, the data for all three release standards, which vary by

FIG. 6. Aluminum release measurements. Black line, aluminum principal Hugoniot; black circles, initial shocked states of aluminum; dot-dashed blue line, TPX Hugoniot; dashed (solid) blue line, 190 mg/cc (110 mg/cc) aerogel Hugoniot; red diamonds, measured release states; solid (dashed) gray lines, release paths for the best fit Γ_{eff} (one-sigma standard deviation). Right panels shown for more detail.

²⁴⁸ roughly an order of magnitude in shock impedance, all fall along the same trend line. These ²⁴⁹ two observations are a strong indicator that the MGLR framework adequately describes the ²⁵⁰ release response of aluminum in the multimegabar regime over a fairly substantial P range ²⁵¹ along the Hugoniot and over a wide range of shock impedances.

Just as in the case of the FPMD and tabular EOS derived Γ_{eff} , the experimentally deter-²⁵³ mined Γ_{eff} appears to asymptote at high *P*. We therefore fit the experimentally determined ²⁵⁴ Γ_{eff} to a simple exponential functional form that exhibits this type of behavior:

$$\Gamma_{\text{eff}}(u_p^{\text{al}}) = a_1 - a_2 \exp\left[-a_3 u_p^{\text{al}}\right],\tag{4}$$

²⁵⁵ where a_1 was fixed at 0.6, similar to the asymptotic value that was observed in the α -quartz ²⁵⁶ release study.³⁶ As can be seen in Fig. 7, the weighted fit to this functional form provides ²⁵⁷ a reasonably good description of the experimentally determined Γ_{eff} . Also shown in the ²⁵⁸ figure are the one-sigma uncertainty bands, which take into account the correlation of the ²⁵⁹ uncertainty in the parameters from the weighted fit. The best fit values and the covariance

TABLE VIII. Γ_{eff} for the TPX release experiments. u_p^{al} , U_s^{TPX} , and ρ_0^{TPX} are the measured particle velocity of the aluminum (half the measured impact velocity), the measured shock velocity of the TPX samples, and the measured TPX initial density, respectively. Γ_{eff} is the inferred value of the effective Γ for the MGLR model. u_p^{IM} is the inferred particle velocity in the shocked TPX determined from the MGLR model as described in Sec. IV.

Et	u_p^{al}	U_s^{TPX}	$ ho_0^{\mathrm{TPX}}$	Г	u_p^{IM}
Expt	$(\rm km/s)$	$(\rm km/s)$	(g/cc)	$^{1}\mathrm{eff}$	$(\rm km/s)$
Z2450N	8.86 ± 0.03	18.72 ± 0.03	0.83 ± 0.004	1.425 ± 0.087	12.26 ± 0.06
Z2450S	9.75 ± 0.03	20.21 ± 0.03	0.83 ± 0.004	1.343 ± 0.072	13.42 ± 0.05
Z2345N	11.97 ± 0.03	23.99 ± 0.03	0.83 ± 0.004	1.246 ± 0.055	16.26 ± 0.05
Z2345S	12.98 ± 0.03	25.68 ± 0.03	0.83 ± 0.004	1.192 ± 0.047	17.55 ± 0.05
Z2333N	12.98 ± 0.03	25.73 ± 0.03	0.83 ± 0.004	1.231 ± 0.049	17.54 ± 0.05
Z2333S	13.82 ± 0.03	27.04 ± 0.03	0.83 ± 0.004	1.121 ± 0.044	18.62 ± 0.06
Z2375	15.80 ± 0.07	30.31 ± 0.03	0.83 ± 0.004	1.035 ± 0.074	21.13 ± 0.13

²⁶⁰ matrix elements are listed in Table XI.

We caution the use of this model outside of the range of the experimental data, specifically ²⁶¹ We caution the use of this model outside of the range of the experimental data, specifically ²⁶² for $u_p^{\rm al}$ below and above ~9 and ~17 km/s, respectively. This is particularly true for $u_p^{\rm al}$ ²⁶³ below ~9 km/s, where there is no data and it is unclear how best to extrapolate. Because ²⁶⁴ both S and $\Gamma_{\rm eff}$ seem to asymptote at high P, one could likely use this fit for $u_p^{\rm al}$ above ~17 ²⁶⁵ km/s with some confidence. At P above this limit, roughly 1200 GPa, S asymptotes to the ²⁶⁶ actual Hugoniot slope and $\Gamma_{\rm eff}$ approaches a value close to what one would expect for an ²⁶⁷ ideal gas.

268 IV. ANALYTICAL RELEASE MODEL

As examples of this analytical release model, and as a consistency check, this IM method 270 was used to determine the shocked states of the release standards for all of the aluminum 271 release measurements listed in Tables VIII-X. Measurement of $u_p^{\rm al}$ (in this case directly 272 through impact velocity measurements, but could also be inferred through measured $U_s^{\rm al}$ and

TABLE IX. Γ_{eff} for the ~190 mg/cc silica aerogel release experiments. u_p^{al} , U_s^{gel} , and ρ_0^{gel} are the measured particle velocity of the aluminum (half the measured impact velocity), the measured shock velocity of the aerogel samples, and the measured aerogel initial density, respectively. Γ_{eff} is the inferred value of the effective Γ for the MGLR model. u_p^{IM} is the inferred particle velocity in the shocked aerogel determined from the MGLR model as described in Sec. IV.

Frent	u_p^{al}	$U_s^{ m gel}$	$\rho_0^{\rm gel}$	Г	u_p^{IM}
Expt	$(\rm km/s)$	$(\rm km/s)$	(mg/cc)	1 eff	$(\rm km/s)$
Z1452	11.91 ± 0.07	25.45 ± 0.14	202 ± 4	1.138 ± 0.165	20.82 ± 0.15
Z1474	12.86 ± 0.07	27.68 ± 0.14	197 ± 4	1.236 ± 0.171	22.42 ± 0.16
Z1421	13.38 ± 0.07	28.65 ± 0.14	202 ± 4	1.203 ± 0.154	23.20 ± 0.16
Z1472	13.55 ± 0.07	28.99 ± 0.14	203 ± 4	1.203 ± 0.153	23.46 ± 0.16
Z1473	14.00 ± 0.07	29.71 ± 0.14	200 ± 4	1.033 ± 0.124	24.27 ± 0.16
Z1451	14.35 ± 0.07	30.71 ± 0.14	202 ± 4	1.203 ± 0.142	24.76 ± 0.16
Z1490	16.85 ± 0.15	35.45 ± 0.25	201 ± 4	0.947 ± 0.163	28.94 ± 0.31

TABLE X. Γ_{eff} for the ~110 mg/cc silica aerogel release experiments. u_p^{al} , U_s^{gel} , and ρ_0^{gel} are the measured particle velocity of the aluminum (half the measured impact velocity), the measured shock velocity of the aerogel samples, and the measured aerogel initial density, respectively. Γ_{eff} is the inferred value of the effective Γ for the MGLR model. u_p^{IM} is the inferred particle velocity in the shocked aerogel determined from the MGLR model as described in Sec. IV.

Ermt	u_p^{al} U_s^{gel} $ ho_0^{\mathrm{gel}}$		Г	u_p^{IM}	
Expt	$(\rm km/s)$	$(\rm km/s)$	(mg/cc)	$^{1}\mathrm{eff}$	$(\rm km/s)$
Z2450S	9.76 ± 0.03	22.16 ± 0.06	107 ± 6	1.353 ± 0.136	18.59 ± 0.12
Z2333N	12.95 ± 0.03	29.03 ± 0.06	111 ± 6	1.084 ± 0.108	24.21 ± 0.16
Z2333S	13.95 ± 0.03	31.3 ± 0.06	111 ± 6	1.092 ± 0.114	25.97 ± 0.18
Z2375	15.74 ± 0.07	35.25 ± 0.06	107 ± 6	0.978 ± 0.106	29.36 ± 0.25
Z2332	16.10 ± 0.07	35.88 ± 0.06	108 ± 6	0.921 ± 0.103	29.94 ± 0.25

FIG. 7. Γ_{eff} as a function of the aluminum particle velocity along the Hugoniot, u_p^{al} . Open diamonds, TPX release measurements; blue (red) diamonds, ~190 (~110) mg/cc silica aerogel release measurements; green circles, FPMD release calculations; black solid (dashed) line, 3700 (3719) EOS; green solid (dashed) line, 3711 (3720) EOS; magenta solid line, 3715 EOS; blue solid (dashed) line, best fit (one sigma deviation) to the experimental data.

TABLE XI. Fit parameters and covariance matrix elements for $\Gamma_{\text{eff}}(u_p^{\text{al}})$ [Eq. (4)].

	a_1	a_2	a_3	$\sigma_{a_2}^2$	$\sigma_{a_3}^2$	$\sigma_{a_2}\sigma_{a_3}$
			$(\mathrm{km/s})^{-1}$	$(x10^{-2})$	$(x10^{-4})$	$(x10^{-3})$
-	0.6	1.942	0.0951	6.882	1.167	2.793

²⁷³ the known aluminum Hugoniot) determines (*i*) the Hugoniot state of the aluminum, and thus ²⁷⁴ (P_1, u_{p1}) from which the release path emanates, (*ii*) the value of S_1 and therefore C_{01} that ²⁷⁵ defines the Hugoniot reference curve for the MGLR model [Eqs. (3) and (1), respectively], ²⁷⁶ and (*iii*) the value of Γ_{eff} [Eq. (4)]. One then solves a set of coupled ordinary differential ²⁷⁷ equations (ODEs), as described in detail in Ref. 36, to determine (P, u_p) along the release ²⁷⁸ path emanating from (P_1, u_{p1}). P_1^{sample} and u_{p1}^{sample} in the shocked state of the sample material ²⁷⁹ are then determined by the intersection of (P, u_p) along the release path and the chord defined ²⁸⁰ by $P = (\rho_0^{\text{sample}} U_s^{\text{sample}}) u_p$.

²⁸¹ For each series of IM calculations the coefficients of the aluminum Hugoniot are sampled

²⁸² within their uncertainty defined by the covariance matrix (Table I). This propagates the uncertainty in the initial state (P_1, u_{p1}) as well as uncertainties in S_1 and C_{01} . Then for each ²⁸⁴ IM calculation in the series of measurements, u_p^{al} , Γ_{eff} , U_s^{sample} , and ρ_0^{sample} are all sampled within their one-sigma uncertainty. $(P_1^{\text{sample}}, u_{p1}^{\text{sample}})$ is then determined as the intersection of the chord and release path, and the remaining kinematic variables can be evaluated 286 through the use of the Rankine-Hugoniot jump conditions.³⁴ This process is repeated for 10^6 287 iterations, and the reported values and one-sigma uncertainties of the inferred quantities are 288 taken to be the mean and standard deviations of the Monte Carlo distributions, respectively. 289 The resulting $U_s - u_p$ points from the IM method using the analytical release model (the 290 ²⁹¹ inferred u_p are listed in the last column of Tables VIII-X) are in excellent agreement with the direct impact results.^{44,45,59} This provides a consistency check, and indicates that the 292 assumptions of the analytical model, namely that $\Gamma_{\rm eff}$ can be treated as a constant regardless of the impedance of the unknown material, is justified. Furthermore, the uncertainty in the 294 inferred u_p is roughly equivalent for both the analytical IM release model and for the direct impact experiments. This suggests that there is very little loss in precision or accuracy in 296 using aluminum as an IM standard as opposed to performing direct impact experiments 297 with aluminum. This is significant in that impact type experiments in the multimegabar 298 regime are currently limited to explosively driven striker plate and magnetically driven flyer 299 300 plate platforms.

As a final example we discuss previously published laser driven Hugoniot experiments 301 on deuterium reported by Hicks et al.²⁰ In that study, a laser driven shock in aluminum 302 was driven into both a liquid deuterium sample and an α -quartz sample used to better 303 determine the shocked state of the aluminum drive plate. To perform the IM analysis, an 304 experimentally determined mapping was used to infer the shocked state of the aluminum 305 from the measured $U_s^{\rm q}$. The inferred $U_s^{\rm al}$ along with a fit of available absolute Hugoniot data 306 for aluminum then defined (P_1, u_{p1}) of the shocked aluminum. The release response was 307 then determined through a model developed by comparing the difference between the RH 308 and the calculated release response of several different tabular EOS models from aluminum, 309 as described in Ref. 20. 310

For this reanalysis we take advantage of the recent, significant improvement in precision ³¹² of the α -quartz Hugoniot^{36,60} and the present aluminum release model. In particular, we ³¹³ used the measured $U_s^{\rm q}$ and the known α -quartz Hugoniot^{36,60} to define a point $(P_{\rm q}, u_p^{\rm q})$

FIG. 8. $P - \rho/\rho_0$ Hugoniot for laser driven deuterium experiments.²⁰ Black solid (dashed) line, Hugoniot from the Kerley03 EOS⁶¹ (Holst FPMD⁶²). Gray circles, Hugoniot data as published in Ref. 20; red circles, this reanalysis.

³¹⁴ through which the aluminum release must pass through. To do this we first reconstructed ³¹⁵ the measured $U_s^{\rm q}$ in Ref. 20 from the reported $U_s^{\rm al}$ by inverting the relationship between $U_s^{\rm al}$ ³¹⁶ and $U_s^{\rm q}$:

 $U_s^{\rm q} = \beta + \left(U_s^{\rm al} - a_0\right)/a_1,\tag{5}$

317

$$\delta U_{s}^{q} = \frac{\left[\left[\left(\delta U_{s}^{al}\right)^{2} - \sigma_{a0}^{2}\right] - \left(U_{s}^{q} - \beta\right)^{2} \sigma_{a1}^{2}\right)\right]^{1/2}}{a_{1}},$$
(6)

³¹⁸ where $\beta = 20.57$, $a_0 = 21.14$ km/s, $a_1 = 0.91$, $\sigma_{a0} = 0.12$, and $\sigma_{a1} = 0.03$. The resulting ³¹⁹ values of $U_s^{\rm q}$ and $\delta U_s^{\rm q}$ are listed in Table XII.

For each experiment we then used the MGLR model to determine (P_1, u_{p1}) for the shocked ³²¹ state of aluminum such that the release path passed through (P_q, u_p^q) determined from the ³²² measured U_s^q . The intersection of this release path with the chord defined by $P = (\rho_0^{D2} U_s^{D2}) u_p$ ³²³ then provided (P_{D2}, u_p^{D2}) . The remaining kinematic variables for the deuterium were deter-³²⁴ mined using the Rankine-Hugoniot relations.³⁴ The inferred values from this reanalysis are ³²⁵ listed in Table XII and displayed in Fig. 8.

As can be seen in Table XII and Fig. 8, the reanalysis results in a systemically lower den-327 sity compression with respect to the published values.²⁰ This is predominantly due to the im-

TABLE XII. Comparison of the inferred P and ρ/ρ_0 for laser driven experiments on deuterium using the aluminum IM method, as described in the text. The uncertainties in P and ρ/ρ_0 from Ref. 20 list the random and systematic components of the uncertainties explicitly in parentheses: (ran, sys). The quadrature sum of these individual components of uncertainty are displayed in Fig. 8.

C1 4	U_s^{al}	U_s^{q}	U_s^{D2}	Hic	ks et al. ²⁰	this re	eanalysis
Snot	$(\rm km/s)$	$(\rm km/s)$	$(\rm km/s)$	P (GPa)	$ ho/ ho_0$	P (GPa)	$ ho/ ho_0$
31700	26.07 ± 0.34	25.99 ± 0.30	36.87 ± 0.33	$186 \pm (4,3)$	$4.66 \pm (0.37, 0.26)$	184 ± 3	4.47 ± 0.31
31692	21.88 ± 0.25	21.38 ± 0.24	28.89 ± 0.32	$116\pm(2,2)$	$4.94 \pm (0.42, 0.27)$	113 ± 2	4.56 ± 0.34
31912	18.75 ± 0.25	17.94 ± 0.22	23.83 ± 0.32	$77\pm(2,1)$	$4.47 \pm (0.42, 0.21)$	75 ± 2	4.16 ± 0.32
31910	15.51 ± 0.31	14.38 ± 0.24	18.96 ± 0.31	$45\pm(2,1)$	$3.65 \pm (0.40, 0.17)$	45 ± 1	3.57 ± 0.28
32248	23.30 ± 0.25	22.94 ± 0.23	32.03 ± 0.32	$139 \pm (3,2)$	$4.56 \pm (0.32, 0.23)$	137 ± 2	4.28 ± 0.26
32252	25.65 ± 0.29	25.53 ± 0.24	35.48 ± 0.39	$176 \pm (3,3)$	$5.03 \pm (0.42, 0.31)$	173 ± 3	4.79 ± 0.34
32254	27.08 ± 0.31	27.10 ± 0.23	38.81 ± 0.31	$205\pm(4,3)$	$4.61 \pm (0.32, 0.26)$	203 ± 3	4.46 ± 0.24
32258	27.96 ± 0.32	28.06 ± 0.21	40.13 ± 0.31	$221\pm(4,4)$	$4.74 \pm (0.33, 0.28)$	220 ± 3	4.63 ± 0.24
32864	19.45 ± 0.29	18.71 ± 0.28	25.76 ± 0.34	$87\pm(2,1)$	$4.07 \pm (0.36, 0.17)$	85 ± 2	3.81 ± 0.29
32866	21.67 ± 0.27	21.15 ± 0.27	28.57 ± 0.39	$113 \pm (3,2)$	$4.90 \pm (0.47, 0.26)$	111 ± 2	4.52 ± 0.39
33190	25.89 ± 0.31	25.79 ± 0.26	36.26 ± 0.34	$181 \pm (3,3)$	$4.82 \pm (0.38, 0.28)$	179 ± 3	4.61 ± 0.30
33194	23.24 ± 0.27	22.88 ± 0.25	32.14 ± 0.34	$139 \pm (3,2)$	$4.44 \pm (0.32, 0.22)$	137 ± 3	4.17 ± 0.27
34135	20.55 ± 0.28	19.92 ± 0.28	27.67 ± 0.34	$101 \pm (2,1)$	$4.16 \pm (0.34, 0.18)$	99 ± 2	3.88 ± 0.28
34139	23.58 ± 0.26	23.25 ± 0.24	31.89 ± 0.31	$141 \pm (3,2)$	$4.97 \pm (0.39, 0.29)$	139 ± 2	4.64 ± 0.31
34144	22.51 ± 0.27	22.08 ± 0.26	30.27 ± 0.37	$126 \pm (3,2)$	$4.76 \pm (0.41, 0.25)$	123 ± 2	4.43 ± 0.34

³²⁸ proved description of the α -quartz Hugoniot; the recently published α -quartz Hugoniot^{36,60} ³²⁹ is significantly less compressible than the effective Hugoniot used in Ref. 20 (linear mapping ³³⁰ relating $U_s^{\rm q}$ to $U_s^{\rm al}$), resulting in lower inferred density compression for the deuterium. A ³³¹ close comparison of Fig. 5 from Ref. 60, which essentially only corrected for the difference ³³² in the α -quartz Hugoniot, with Fig. 8 from the present work shows that the effect of the ³³³ present aluminum release model somewhat compensates for this error. This would indicate ³³⁴ that the present aluminum release model results in systematically slightly higher inferred u_p ³³⁵ along the release path when compared to the release model used in Ref. 60, which was based ³³⁶ mainly on the difference between the release path and the RH for the 3700 EOS model, ³³⁷ in accordance with a previous aluminum release study.⁴³ This difference is consistent with ³³⁸ Fig. 7 in that the best fit trend line of the experimentally determined Γ_{eff} is systematically ³³⁹ higher than that determined from the 3700 EOS table, which would result in a slightly ³⁴⁰ higher inferred u_p along the aluminum release path and therefore a slightly higher inferred ³⁴¹ ρ/ρ_0 for deuterium.

More significantly, comparison of the two analyses displayed in Fig. 8 demonstrates that 342 the uncertainty in the inferred shock state is significantly smaller for the MGLR analysis 343 as compared to the analysis used in Ref. 20. This is undoubtably due to experimental 344 constraint on the release behavior from this work. With little direct experimental guidance, 345 Hicks et al. were forced to resort to examination of various EOS models in an attempt 346 to constrain the release behavior of aluminum, with resultantly large contributions from 347 potential systematic uncertainty (note the large systematic spread in Γ_{eff} between the various 348 tabular EOS models displayed in Fig. 7). The experiments described in Sec. III enabled a 349 determination of Γ_{eff} with relatively tight constraint. As a result, the inferred quantities, 350 ³⁵¹ particularly ρ/ρ_0 , exhibit significantly lower uncertainty, thereby increasing the precision of ³⁵² the IM method with aluminum as the standard.

353 V. CONCLUSION

The release response of aluminum was investigated within the framework of first-principles molecular dynamics (FPMD) and several tabular equation of state (EOS) models for aluminum. These calculations provided insight into the release response of aluminum, and motivated a simple Mie-Grüneisen model with a linear $U_s - u_p$ Hugoniot as the reference, referred to as the MGLR model. This model was shown to reproduce the FPMD and tabular EOS release paths extremely well with a constant Γ_{eff} along the release path, with both S, the slope of the Hugoniot reference for the MG model, and Γ_{eff} being functions of u_p^{al} [see and Eqs. (3) and (4)].

³⁶² A series of plate impact, shock wave experiments were performed on the Sandia Z machine ³⁶³ to obtain release data for aluminum from ~400-1200 GPa states on the principal Hugoniot. ³⁶⁴ Three different low-impedance standards were used, TPX, ~190 and ~110 mg/cc silica ³⁶⁵ aerogel, which vary in shock impedance by roughly an order of magnitude. These data ³⁶⁶ validated the MGLR model that was motivated by the FPMD and tabular EOS study, and ³⁶⁷ provided an experimentally determined Γ_{eff} as a function of u_p^{al} .

This theoretical and experimental study of the release response of aluminum provides a 368 ³⁶⁹ simple, analytical model for performing IM calculations without the need to appeal to any ³⁷⁰ particular tabular EOS for aluminum. Since the model is analytical, it is well suited for the use of Monte Carlo analysis methods, enabling all uncertainty, including the random 371 measurement uncertainty and any systematic uncertainty in the Hugoniot and release re-372 sponse of aluminum, to be propagated to the inferred quantities. We also note that the 373 experimentally validated model framework should prove to be useful in the development of 374 wide range equations of state for aluminum, in that it constrains the kinematic variables of 375 aluminum upon release over a wide range of P and ρ . 376

It is emphasized that the MGLR model discussed here is only intended to calculate 377 $_{378}$ kinematic variables for aluminum upon release, in particular the release paths in the $P-u_p$ plane for purposes of impedance matching. It is fully expected that other aspects of the 379 MGLR model will be incorrect. In particular, it is anticipated that the temperatures and 380 specific heats of the MGLR model do not reflect the behavior of aluminum in this regime. 381 Furthermore, we caution the use of this model outside of the range of the experimental data, 382 ₃₈₃ specifically for $u_p^{\rm al}$ below and above ~9 and ~17 km/s, respectively. This is particularly true $_{384}$ for $u_p^{\rm al}$ below ~ 9 km/s, where there is no data and it is unclear how best to extrapolate. ₃₈₅ Because both S and Γ_{eff} seem to asymptote at high P, one could likely use this fit for $_{\rm 386}~u_p^{\rm al}$ above ${\sim}17$ km/s with some confidence. At P above this limit, roughly 1200 GPa, S $_{387}$ asymptotes to the actual Hugoniot slope and $\Gamma_{\rm eff}$ approaches a value close to what one would expect for an ideal gas. 388

As an example of its use, the MGLR model was used to infer Hugoniot states through 389 the IM method for all of the aluminum release measurements performed for this study. 390 This provided a consistency check in that the IM results could be compared to the direct 391 impact Hugoniot measurements of the standards. Not only did the IM Hugoniot response 392 agree extremely well with the direct impact Hugoniot results, but the uncertainties from 393 the two methods were found to be roughly equivalent. This suggests that the IM method 394 can confidently be used to obtain high-precision Hugoniot measurements regardless of the 395 shock impedance of the unknown material. In particular, given the prolific use of aluminum 396 as an IM standard, the present IM model will enable reanalysis of numerous multimegabar 397 ³⁹⁸ experiments in the literature. Such reanalyses will improve both the accuracy and precision ³⁹⁹ of the inferred shock response by taking advantage of recent refinement of the Hugoniot ⁴⁰⁰ response of aluminum, as well as an experimentally validated release model which tightly ⁴⁰¹ constrains the release response of aluminum in the multimegabar regime.

402 ACKNOWLEDGMENTS

The authors would like to thank the large team at Sandia that contributed to the design 404 and fabrication of the flyer plate loads and the fielding of the shock diagnostics. San-405 dia National Laboratories is a multiprogram laboratory managed and operated by Sandia 406 Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. De-407 partment of Energy's National Nuclear Security Administration under Contract No. DE-408 AC04-94AL85000. APJ was supported by DOE grant DE-FG02-97ER25308.

409 * mdknuds@sandia.gov

- ⁴¹⁰ ¹ T. Guillot, Science **286**, 72 (1999).
- ⁴¹¹ ² I. Baraffe, G. Chabrier, and T. Barman, Astron. Astrophys. **482**, 315 (2008).
- ⁴¹² ³ J. Fortney and N. Nettelmann, Space Sci. Rev. **152**, 423 (2009).
- ⁴¹³ ⁴ J. Lindl, Inertial Confinement Fusion (Springer, New York, 1998).
- ⁴¹⁴ ⁵ J. Lindl, Phys. Plasmas **2**, 3933 (1995).
- ⁴¹⁵ ⁶ R. G. McQueen, S. P. Marsh, J. W. Taylor, . N. Fritz, and W. J. Carter, "High velocity impact
- ⁴¹⁶ phenomena," (Academic, New York, 1970) p. 515.
- ⁴¹⁷ ⁷ A. C. Mitchell and W. J. Nellis, J. Appl. Phys. **52**, 3363 (1981).
- ⁴¹⁸ ⁸ W. J. Nellis, H. B. Radousky, D. C. Hamilton, A. C. Mitchall, N. C. Holmes, K. B. Christianson,
- and M. Thiel, J. Chem. Phys. 94, 2244 (1991).
- ⁴²⁰ ⁹ L. V. Al'tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, Zh. Eksp. Teor. Fiz. 38,
 ⁴²¹ 790 (1960), [Sov. Phys.-JETP 11, 573 (1960)].
- ⁴²² ¹⁰ S. B. Kormer, A. I. Funtikov, V. D. Urlin, and A. N. Kolesnikova, Zh. Eksp. Teor. Fiz. **42**, 626
 ⁴²³ (1962), [Sov. Phys.-JETP **15**, 477 (1962)].
- ⁴²⁴ ¹¹ B. L. Glushak, A. P. Zharkov, M. V. Zhernokletov, V. Y. Ternovoi, A. S. Filimonov, and V. E.
- 425 Fortov, Zh. Eksp. Teor. Fiz. **96**, 1301 (1989), [Sov. Phys.-JETP **69**, 739 (1989)].
- ⁴²⁶ ¹² S. I. Belov, G. V. Boriskov, A. I. Bykov, R. I. Il'kaev, N. B. Luk'yanov, A. Ya. Matveev, O. L.

- 427 Mikhailova, V. D. Selemir, G. V. Simakov, R. F. Trunin, I. P. Trusov, V. D. Urlin, V. E. Fortov,
- and A. N. Shuikin, Pis'ma Zh. Eksp. Teor. Fiz. 76, 508 (2002), [JETP Lett. 76, 433 (2002)].
- 429 ¹³ G. V. Boriskov, A. I. Bykov, R. I. Il'kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D.
- ⁴³⁰ Urlin, V. E. Fortov, and A. N. Shuikin, Dokl. Akad. Nauk. **392**, 755 (2003), [Dokl. Phys. **48**,
 ⁴³¹ 553 (2003)].
- ⁴³² ¹⁴ G. V. Boriskov, A. I. Bykov, R. I. Il'kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D.
 ⁴³³ Urlin, A. N. Shuikin, and W. J. Nellis, Phys. Rev. B **71**, 092104 (2005).
- ⁴³⁴ ¹⁵ D. G. Hicks, P. M. Celliers, G. W. Collins, J. H. Eggert, and S. J. Moon, Phys. Rev. Lett. **91**,
 ⁴³⁵ 035502 (2003).
- 436 ¹⁶ K. Takamatsu *et al.*, Phys. Rev. E **67**, 056406 (2003).
- 437 ¹⁷ P. M. Celliers *et al.*, Phys. Plasmas **11**, L41 (2004).
- ⁴³⁸ ¹⁸ D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert, E. Vianello, D. D. Meyerhofer, and ⁴³⁹ G. W. Collins, Phys. Plasmas **12**, 082702 (2005).
- ⁴⁴⁰ ¹⁹ N. Ozaki *et al.*, Phys. Plasmas **12**, 124503 (2005).
- ⁴⁴¹ ²⁰ D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert, S. J. Moon, D. D. Meyerhofer, and
 ⁴⁴² G. W. Collins, Phys. Rev. B **79**, 014112 (2009).
- ⁴⁴³ ²¹ M. D. Knudson, R. W. Lemke, D. B. Hayes, C. A. Hall, C. Deeney, and J. R. Asay, J. Appl.
 ⁴⁴⁴ Phys. **94**, 4420 (2003).
- ⁴⁴⁵ ²² R. Lemke, M. D. Knudson, A. Robinson, T. Haill, K. Struve, J. Asay, and T. Mehlhorn, Phys.
 ⁴⁴⁶ Plasmas 10, 1867 (2003).
- ⁴⁴⁷ ²³ M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay, and C. Deeney, Phys. Rev.
 ⁴⁴⁸ B 69, 144209 (2004).
- 449 ²⁴ R. Lemke, M. D. Knudson, and J.-P. Davis, Int. J. Impact Eng. **38**, 480 (2011).
- ⁴⁵⁰ ²⁵ M. D. Knudson, M. P. Desjarlais, R. W. Lemke, T. R. Mattsson, M. French, N. Nettelmann,
 ⁴⁵¹ and R. Redmer, Phys. Rev. Lett **108**, 091102 (2012).
- ⁴⁵² ²⁶ L. V. Al'tshuler, N. N. Kalitkin, L. V. Kuz'mina, and B. S. Chekin, Zh. Eksp. Teor. Fiz. **72**,
 ⁴⁵³ 317 (1977), [Sov. Phys.-JETP **45**, 167 (1977)].
- ⁴⁵⁴ ²⁷ L. P. Volkov, N. P. Voloshin, A. S. Vladimirov, V. N. Nogin, and V. A. Simonenko, Pis'ma Zh.
 ⁴⁵⁵ Eksp. Teor. Fiz. **31**, 623 (1980), [JETP Lett. **31**, 588 (1980)].
- ⁴⁵⁶ ²⁸ L. V. Al'tshuler, A. A. Bakanova, I. P. Dudoladov, E. A. Dynin, R. F. Trunin, and B. S. Chekin,
- ⁴⁵⁷ J. Appl. Mech. Tech. Phys. **22**, 145 (1981).

- ⁴⁵⁸ ²⁹ C. E. Ragan, Phys. Rev. A **25**, 3360 (1982).
- ⁴⁵⁹ ³⁰ C. E. Ragan, Phys. Rev. A **29**, 1391 (1984).
- ⁴⁶⁰ ³¹ V. A. Simonenko, N. P. Voloshin, A. S. Vladimirov, A. P. Nagibin, V. N. Nogin, V. A. Popov,
- V. A. Sal'nikov, and Y. A. Shoidin, Zh. Eksp. Teor. Fiz. 88, 1452 (1985), [Sov. Phys.-JETP
 61, 869 (1985)].
- ⁴⁶³ ³² A. C. Mitchell, W. J. Nellis, J. A. Moriarty, R. A. Heinle, N. C. Holmes, R. E. Tipton, and
 ⁴⁶⁴ G. W. Repp, J. Appl. Phys. **69**, 2981 (1991).
- ⁴⁶⁵ ³³ L. V. Al'tshuler, K. K. Krupnikov, B. N. Ledenev, V. I. Zhuckikhin, and M. I. Brazhnik, Zh.
 ⁴⁶⁶ Eksp. Teor. Fiz. **34**, 874 (1958), [Sov. Phys.-JETP **7**, 606 (1958)].
- ⁴⁶⁷ ³⁴ G. E. Duvall and R. A. Graham, Rev. Mod. Phys. **49**, 523 (1977).
- ⁴⁶⁸ ³⁵ S. Root, R. J. Magyar, J. H. Carpenter, D. L. Hanson, and T. R. Mattsson, Phys. Rev. Lett.
 ⁴⁶⁹ **105**, 085501 (2010).
- ⁴⁷⁰ ³⁶ M. D. Knudson and M. P. Desjarlais, Phys. Rev. B 88, 184107 (2013).
- 471 ³⁷ G. I. Kerley, Int. J. Impact Eng. 5, 441 (1987).
- ⁴⁷² ³⁸ G. Kerley, Kerley Publishing Services Report No. KPS98-1 (Kerley Publishing Services, 1998).
- ⁴⁷³ ³⁹ K. S. Holian, Lawrence Livermore National Laboratory Report No. UCID-118574-82-2 (Lawrence Livermore National Laboratory, 1982).
- ⁴⁷⁵ ⁴⁰ K. S. Holian, Los Alamos National Laboratory Report No. LA-10160-MS (Los Alamos National
 ⁴⁷⁶ Laboratory, 1984).
- ⁴⁷⁷ ⁴¹ TFD variations due to D. Liberman, R. D. Cowan, and J. Ashkin, Phys. Rev. **105**, 144 (1957).
- ⁴⁷⁸ ⁴² Nuclear variation of J. D. Johnson, High Press. Res. 6, 277 (1991).
- ⁴⁷⁹ ⁴³ M. D. Knudson, J. R. Asay, and C. Deeney, J. Appl. Phys. **97**, 073514 (2005).
- ⁴⁸⁰ ⁴⁴ M. D. Knudson and R. W. Lemke, J. Appl. Phys. **114**, 053510 (2013).
- ⁴⁸¹ ⁴⁵ S. Root (unpublished).
- ⁴⁶ G. Kresse and J. Furthmüller, Phys. Rev. B **54**, 11169 (1996).
- ⁴⁸³ ⁴⁷ P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ⁴⁸⁴ ⁴⁸ G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- ⁴⁸⁵ ⁴⁹ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- ⁴⁸⁶ ⁵⁰ A. Baldereschi, Phys. Rev. B **7**, 5212 (1973).
- ⁴⁸⁷ ⁵¹ M. D. Knudson (unpublished).
- ⁴⁸⁸ ⁵² M. Matzen *et al.*, Phys. Plasmas **12**, 055503 (2005).

- ⁵³ L. M. Barker and R. E. Hollenbach, J. Appl. Phys. **43**, 4669 (1972). 489
- ⁵⁴ from manufacturers website: http://www.mitsuichemicals.com/tpx.htm. 490
- A. Danilyuk et al., Nucl. Instr. and Meth. A **494**, 491 (2002). 491

498

- D. Richter and D. Lipka, Nucl. Instr. and Meth. A 513, 635 (2003). 492
- S. L. Thompson, Sandia National Laboratories Report No. SAND89-2951 (Sandia National 57493 Laboratories, 1990). 494
- S. D. Crockett, Los Alamos National Laboratory Report No. LA-UR-04-6442 (Los Alamos 58495 National Laboratory, 2004). 496
- We did not display a comparison of the $U_s u_p$ results from the IM analysis and the direct 59497 impact experiments as they look very similar to Figs. 9-11 in Ref. 36.
- M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett 103, 225501 (2009). 60 499
- G. Kerley, Sandia National Laboratories Report No. SAND2003-3613 (Sandia National Labo-61500 ratories, 2003). 501
- ⁶² B. Holst, R. Redmer, and M. P. Desjarlais, Phys. Rev. B **77**, 184201 (2008). 502