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Abstract

Aluminum has been used prolifically as an impedance matching standard in the multimegabar

regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnet-

ically driven flyer plate experiments. The accuracy of these impedance matching measurements

depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum.

Here we present the results of several adiabatic release measurements of aluminum from ∼400-1200

GPa states along the principal Hugoniot using full density polymethylpentene (commonly known

as TPX), and both ∼190 and ∼110 mg/cc silica aerogel standards. These data were analyzed

within the framework of a simple, analytical model that was motivated by a first-principles molec-

ular dynamics investigation into the release response of aluminum, as well as by a survey of the

release response determined from several tabular equations of state for aluminum. Combined, this

theoretical and experimental study provides a method to perform impedance matching calcula-

tions without the need to appeal to any tabular equation of state for aluminum. As an analytical

model, this method allows for propagation of all uncertainty, including the random measurement

uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum.

This work establishes aluminum for use as a high-precision standard for impedance matching in

the multimegabar regime.
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I. INTRODUCTION8

The high-pressure equation of state (EOS) of materials is important for various applica-9

tions ranging from, among others, planetary physics1–3 to inertial confinement fusion.4,5 The10

predominant method of obtaining EOS data in the multimegabar regime (1 Mbar = 10011

GPa) is through dynamic shock wave compression. Various techniques have been used to12

perform such experiments, including chemical-explosive drivers,6 conventional and modified13

light gas guns,7,8 explosively driven striker plates,9–14 high-intensity lasers,15–20 magnetically14

driven flyer plates,21–25 and nuclear explosions.26–32 The vast majority of these techniques15

utilize a relative or impedance matching (IM) method7,33 to infer the high-pressure response16

of the material of interest. In this method, the shock response of the unknown material17

is compared to that of a standard. The EOS of the standard is assumed to be known to18

the extent that by comparing a kinematic measurement of the unknown material, usually19

the shock velocity, Us, with that of the standard, the high-pressure response of the un-20

known material can be determined through the use of the Rankine-Hugoniot conservation21

equations.3422

In the past, aluminum has been the foremost IM standard in shock wave experiments.23

Well characterized through gas gun,7 explosively driven striker plates,10,11 magnetically24

driven flyer plates,21 and nuclear driven techniques,26,27,29–31 Us of aluminum would be used25

to infer the pressure state of a baseplate upon which a sample of interest was placed. Mea-26

surement of Us of the sample of interest and the known response of aluminum would then27

allow the shocked state of the sample to be inferred. However, the accuracy of the inferred28

shock response of the sample of interest depends not only upon the Hugoniot response, but29

also the reshock or release response, depending upon the sample’s relative shock impedance30

with respect to aluminum. This is particularly true in the multimegabar regime, where the31

often used reflected Hugoniot (RH) approximation33 breaks down due to significant entropy32

and temperature increases associated with large amplitude shock waves.34 Several examples33

of the use of aluminum as an IM standard can be found in the literature, including, among34

others, α-quartz,18 LiF,15 Be,32 polyimide,16 polystyrene,19 H2O,17,25 LiD,29 LiH,30 N2,
8 and35

D2.
12–14,20,23 In all of these cases, the sample impedance is less than that of aluminum, and36

thus the release response is crucial to accurately infer the shock response through the IM37

technique.38
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Here we present a detailed study of the release response of aluminum, with the goal of39

characterizing the use of aluminum as an IM standard for lower-impedance materials in the40

multimegabar regime. In particular, we set out to develop a simple, analytical model for41

IM calculations that would not require the use of a particular tabular EOS. Such a method42

would facilitate not only the IM calculation, but would also simplify the use of Monte Carlo43

methods for propagation of uncertainties in the inferred results.3544

This goal was accomplished through both theoretical and experimental investigation of45

the release of aluminum, similar to that used recently in the characterization of α-quartz as46

a high-precision standard.36 First-principles molecular dynamics (FPMD) calculations were47

performed and several tabular EOS models for aluminum37–42 were analyzed to provide in-48

sight into the release behavior. Analysis of the FPMD release calculations and tabular EOS49

release response led to a model framework that was used as the basis to analyze a series50

of plate-impact, adiabatic release experiments performed at the Sandia Z machine, similar51

to the concept used previously to investigate the adiabatic release response of aluminum,4352

and more recently α-quartz.36 Three different low-impedance materials, full density poly-53

methylpentene (commonly known as TPX), and both ∼190 and ∼110 mg/cc silica aerogel,54

were used as standards to determine release states at various pressures along the aluminum55

release path. The results of these experiments validated the model framework motivated by56

the FPMD calculations and tabular EOS models, and provided experimentally determined57

parameters for the model.58

As a consistency check, this analytical release model was used to perform IM calculations59

to infer Hugoniot states of the standards for all of the release experiments. This allowed60

comparison of the IM results with previous direct impact experiments used to define the61

standards.44,45 In all three cases the IM results were found to be very consistent with the62

direct impact results, lending confidence that the analytical release model can be used over a63

wide range of pressures along the Hugoniot and a wide range of shock impedances. Finally,64

this model was used to reanalyze laser driven Hugoniot experiments on liquid deuterium,2065

to illustrate how the model developed here differs from other methods used in the literature66

to perform IM with aluminum as the standard.67

Section II discusses the FPMD calculations and tabular EOS analysis performed to inves-68

tigate the release behavior of aluminum. Section III describes the results of the plate-impact69

release experiments. Section IV demonstrates the use of the analytical release model to per-70

3



form IM calculations of the release experiments and to reanalyze laser driven experiments71

on liquid deuterium. The main findings are summarized in Sec. V.72

II. FIRST-PRINCIPLES MOLECULAR DYNAMICS AND TABULAR EQUA-73

TION OF STATE INVESTIGATION OF THE RELEASE RESPONSE OF ALU-74

MINUM75

To investigate the release response of aluminum, first-principles molecular dynamics76

(FPMD) calculations were performed using VASP (Vienna ab-initio simulation program46),77

a plane-wave density functional theory code developed at the Technical University of Vienna.78

We used a method similar to that used recently in an investigation of the release response79

of α-quartz.36 Specifically, the aluminum atoms were represented with projector augmented80

wave (PAW) potentials47,48 and exchange and correlation was modeled with the Perdew-81

Burke-Ernzerhof (PBE) functional.49 A total of 108 atoms were included in the supercell,82

with a plane wave cutoff energy of 280 and 650 eV for lower pressure (P ) and higher P83

adiabats, respectively. Simulations were performed in the canonical ensemble, with simple84

velocity scaling as a thermostat, and typically covered a few to several picoseconds of real85

time. We used the Baldereschi mean value point50 of the supercell for the evaluation of the86

Brillouin zone.87

The release paths were calculated using the method outlined in Ref. 36. In short, we took88

advantage of the fact that at the initial reference state, the isentrope and the Hugoniot have89

a second order contact,34 which is most easily seen by considering a Taylor series expansion90

of the entropy as a function of volume (V ). Thus for small V changes the isentrope is well91

approximated by the Hugoniot. We therefore approximated each release path as a series of92

small Hugoniot jumps, where each calculated Hugoniot state along the approximated release93

path served as the initial reference state for the subsequent Hugoniot calculation. Typical94

V jumps were of the order of 5%, resulting in P jumps of ∼5-10%, with a total of ∼12-1595

individual calculations per release path. More details can be found in Ref. 36.96

A release path calculated in this way from ∼900 GPa is shown as the green line in Fig. 1.97

Also shown for comparison (black line) is a reflection of the aluminum principal Hugoniot98

about the particle velocity (up) of the shocked state (see Table I). This so-called reflected99

Hugoniot (RH) is often times used to approximate the release path in the P − up plane.33100
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FIG. 1. Comparison of the FPMD release path (green) to the RH (black). Also shown are the

Hugoniots of polyimide (dashed dark gray), polystyrene (solid dark gray), H2O (dot-dashed dark

gray), D2 (solid light gray), H2 (dotted light gray), TPX (dot-dashed blue), 190 mg/cc aerogel

(dashed blue), and 110 mg/cc aerogel (solid blue). The right panel shows the particle velocity

residual of the FPMD release with respect to the RH.

The right panel of Fig. 1 shows a useful metric, the particle velocity residual, defined to be101

the percent difference in particle velocity of the FPMD release with respect to the RH. At102

low stress or P states on the principal Hugoniot, the RH approximation is reasonably good;103

recall that the isentrope and Hugoniot have a second order contact. However, at sufficiently104

high Hugoniot P , the RH approximation breaks down, as can be seen in Fig. 1.105

For reference, shown as gray lines in Fig. 1, are Hugoniots for several materials that106

have been studied in dynamic compression experiments using aluminum as a standard.107

As can been seen in the right panel of Fig. 1, for moderate impedance materials, such as108

polyimide, polystyrene, and H2O, the correction to the RH in up is ∼1% negative, while109

for low impedance materials, such as D2 and H2 the correction to up is significantly larger,110

∼2-6%, but opposite sign. This is significant given that errors in up are magnified by a111

factor of roughly (ρ/ρ0 − 1) when expressed in terms of density, ρ (the subscript 0 denotes112

the initial value), i.e. δρ/ρ ∼ (ρ/ρ0−1)δup/up. These materials exhibit density compression113

(ρ/ρ0) between 3-4 in the multimegabar regime, and thus errors in ρ are 2-3 times larger114
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TABLE I. Aluminum7,10,11,21,26,27,29–31,51 Us−up coefficients and covariance matrix elements (Us =

C0 +Sup). Note that in this study we only consider the high-P branch of the aluminum Hugoniot

(up > 6.25 km/s).

C0 S σ2
C0

σ2
S σC0

σS

(km/s) (x10−3) (x10−3) (x10−3)

high-P 6.322 1.189 53.581 0.4196 −4.605

than the errors in up.115

In accordance with the previous study on the release response of α-quartz,36 we evaluated116

the aluminum release curves using a Mie-Grüneisen (MG) model with a linear Us−up Hugo-117

niot response as the reference curve, which we will call the MG, linear reference (MGLR)118

model. In this model the Grüneisen parameter, Γ = V (dP/dE)V , is held constant along119

a given release path. In the α-quartz study, such a model was found to quite accurately120

reproduce the FPMD calculated release paths along nearly their entirety over a very wide121

P range. The MGLR model has two parameters; Γ and the slope, S, of the linear Us − up122

Hugoniot (Us = C0 + Sup) used for the reference curve. Note that for a given value of S,123

which we will denote as S1, there is a unique value of C01 that will produce (P1, up1) along124

the Hugoniot;125

C01 =
P1

ρ0up1

− S1up1. (1)

The values of Γ and S can be simultaneously optimized to minimize the integral:126

∫ P1

Pmin

[

urel
p (P ′)− uCalc

p (P ′)
]2
dP ′ (2)

where urel
p and uCalc

p are the particle velocities along the MGLR and the calculated release127

paths (either from FPMD simulations or a tabular EOS), respectively. These optimizations128

were performed for a total of three FPMD calculated release paths, as well as 8-10 release129

paths obtained from several different tabular EOS models for aluminum, including 3700130

(Refs. 37,38), 3715 (Refs. 39,40), and 3719 (Refs. 41,42). These release paths emanated131

from various states along the principal Hugoniot ranging from ∼300-3500 GPa. The results132

of several of these optimizations are shown in Fig. 2, and the values for Γ and S of all the133
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FIG. 2. Comparison of the MGLR release paths (black) with the FPMD release paths (green) and

release paths from the 3700 EOS37,38 (red), each from three different principal Hugoniot states of

aluminum. Here both Γ and S are optimized for each release path; the values are listed in Tables II

and III. Also shown for reference are the Hugoniots for TPX (dot-dashed blue), 190 mg/cc aerogel

(dashed blue), and 110 mg/cc aerogel (solid blue). The right panel shows the particle velocity

residuals of the MGLR release paths with respect to the FPMD and 3700 release paths. Note the

change in scale on the residual plot with respect to Fig. 1.

TABLE II. Values for Γ and S for the FPMD release paths using the MGLR model for both cases

(i) Γ and S optimized, and (ii) Γ optimized and S(ualp ) given by Eq. (3).

Pal ualp Γ, S optimized Γ optimized

(GPa) (km/s) Γ S Γ S(ualp )

489 9.980 1.399 1.510 1.320 1.444

603 11.337 1.284 1.484 1.215 1.422

911 14.339 1.071 1.408 1.041 1.381

optimizations are displayed in Tables II-V.134

As can be seen in Fig. 2, the MGLR model is able to reproduce quite well the FPMD and135

tabular EOS release paths over the entire regime studied here. However, in contrast to the136
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TABLE III. Values for Γ and S for release paths from the 3700 EOS37,38 using the MGLR model

for both cases (i) Γ and S optimized, and (ii) Γ optimized and S(ualp ) given by Eq. (3).

Pal ualp Γ, S optimized Γ optimized

(GPa) (km/s) Γ S Γ S(ualp )

300.8 7.393 1.411 1.466 1.450 1.491

491.6 9.985 1.188 1.411 1.232 1.444

599.6 11.236 1.117 1.394 1.155 1.424

774.2 13.045 1.041 1.376 1.067 1.398

923.6 14.438 0.995 1.364 1.012 1.379

1115.9 16.073 0.962 1.359 0.963 1.360

1309.7 17.587 0.935 1.357 0.921 1.344

1537.3 19.226 0.900 1.350 0.879 1.328

TABLE IV. Values for Γ and S for release paths from the 3715 EOS39,40 using the MGLR model

for both cases (i) Γ and S optimized, and (ii) Γ optimized and S(ualp ) given by Eq. (3).

Pal ualp Γ, S optimized Γ optimized

(GPa) (km/s) Γ S Γ S(ualp )

303.1 7.470 1.789 1.568 1.686 1.489

499.2 10.156 1.398 1.515 1.312 1.441

602.6 11.348 1.288 1.492 1.210 1.422

761.8 12.990 1.191 1.474 1.113 1.398

917.3 14.448 1.146 1.475 1.054 1.379

1106.1 16.072 1.108 1.473 1.001 1.360

1317.8 17.744 1.042 1.445 0.955 1.342

2022.8 22.568 0.882 1.364 0.831 1.301

2685.6 26.386 0.745 1.306 0.719 1.276

3516.5 30.553 0.602 1.222 0.635 1.256
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TABLE V. Values for Γ and S for release paths from the 3719 EOS41,42 using the MGLR model

for both cases (i) Γ and S optimized, and (ii) Γ optimized and S(ualp ) given by Eq. 3.

Pal ualp Γ, S optimized Γ optimized

(GPa) (km/s) Γ S Γ S(ualp )

306.2 7.526 1.302 1.385 1.463 1.488

490.1 9.999 1.105 1.355 1.229 1.443

600.6 11.277 1.035 1.338 1.148 1.423

771.7 13.058 0.921 1.324 1.033 1.397

919.4 14.400 0.877 1.292 0.982 1.380

1105.5 16.040 0.828 1.278 0.927 1.360

1317.0 17.708 0.785 1.266 0.874 1.343

2008.7 22.406 0.691 1.236 0.764 1.302

2702.4 26.362 0.638 1.220 0.698 1.276

3535.3 30.489 0.601 1.209 0.649 1.256

previous α-quartz study, where S was found to be essentially independent of the Hugoniot137

P , S was found to decrease monotonically with Hugoniot P in the present aluminum study.138

This difference in behavior is likely related to the fact that in this regime aluminum is139

a monatomic, metallic fluid while α-quartz is a molecular fluid that exhibits significant140

disordering and dissociation as the temperature and pressure are increased.60 It was also141

found that for a given release path there exists a broad, shallow minimum in the evaluated142

integral [Eq. (2)] along a line in Γ-S space, as illustrated in Fig. 3. This broad minimum143

allowed us to consider prescribing a particular S(P ), or more appropriately for the purposes144

of an IM model, S(ual
p ), with only a negligible degradation in the agreement between the145

MGLR and FPMD release paths; i.e. for a reasonable prescribed value of S, a value of Γ146

can be found that results in essentially the same minimum for Eq. (2). Since S was found147

to monotonically decrease with increased Hugoniot P , and S appears to asymptote to ∼1.2,148

a value very close to the actual Hugoniot slope (see Table I), we chose to fit the various149

values of S in Tables II-V to a simple exponential functional form that exhibits this type of150
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TABLE VI. Fit parameters for S(ualp ) [Eq. (3)].

a1 a2 a3

(km/s)−1

1.189 0.4883 0.0652

FIG. 3. Integrated difference between the MGLR and the FPMD release paths [Eq. (2)] as a

function of both Γ and S. Note the shallow minimum along a line in Γ-S space.

behavior:151

S(ual
p ) = a1 − a2exp

[

−a3u
al
p

]

, (3)

where a1 was fixed to the actual Hugoniot slope of 1.189 (see Table I). The best fit values152

of the other two free parameters are listed in Table VI.153

We then repeated the optimization process, this time optimizing only Γ while determining154

S(ual
p ) through Eq. (3). The results of this optimization are shown in Fig. 4 and the values155

of Γ and S(ual
p ) are displayed in Tables II-V. Comparison of Figs. 2 and 4 indicate that, as156

expected, simplification in the MGLR model by prescribing S(ual
p ) through Eq. (3) results157

in only a negligible degradation in the agreement between the MGLR and FPMD release158

paths.159

Γ was also found to have a strong dependence on the Hugoniot P . Γ is relatively large at160

low P , decreases with increasing P , and appears to asymptote to a value of ∼0.6. This is161

very similar to the asymptotic value found on the α-quartz study36 and is quite close to the162
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FIG. 4. Comparison of the MGLR release paths (black) with the FPMD release paths (green)

and release paths from the 3700 EOS (red), each from three different principal Hugoniot states of

aluminum. Here S(ualp ) is given by Eq. (3) and only Γ is optimized for each release path; the values

are listed in Tables II and III. Also shown for reference are the Hugoniots for TPX (dot-dashed

blue), 190 mg/cc aerogel (dashed blue), and 110 mg/cc aerogel (solid blue). The right panel shows

the particle velocity residuals of the MGLR release paths with respect to the FPMD and 3700

release paths.

value of 2/3 that one would expect for an ideal gas. As was the case in the α-quartz study,163

the asymptotic behavior of Γ and S is quite intriguing. However, it is not clear whether164

the behaviors of Γ and S are the result of underlying physics, or merely a coincidence.165

To understand this further would require a rather extensive FPMD investigation, which is166

outside of the scope of this study.167

It should be emphasized that the MGLR model discussed here is only intended to cal-168

culate kinematic variables for aluminum upon release, in particular the release paths in the169

P − up plane for purposes of impedance matching. For instance, it is anticipated that the170

temperatures and specific heats of the MGLR model do not reflect the behavior of alu-171

minum in this regime. To underscore this, we choose to refer to Γ in the MGLR model as172

the effective Γ, or Γeff, from this point forward.173

This investigation of the release response of aluminum suggests that from a given alu-174
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TABLE VII. TPX and silica aerogel Us − up coefficients and covariance matrix elements44,45

C0 S σ2
C0

σ2
S σC0

σS

(km/s) (x10−3) (x10−3) (x10−3)

TPX 2.691 1.310 3.667 0.0152 −0.2155

190 mg/cc aerogel −0.393 1.248 34.17 0.100 −1.822

110 mg/cc aerogel −0.703 1.232 66.82 0.159 −3.193

minum Hugoniot state, the release path can be calculated using a MGLR model with a175

constant Γeff. Γeff is a function of P , or more appropriately for the purposes of an IM model,176

a function of ual
p along the aluminum Hugoniot. S of the linear Us − up Hugoniot used as177

the reference for the MG model is also a function of ual
p , and is given by Eq. (3). C01 is then178

determined through Eq. (1). This model serves as the framework for analysis of the release179

measurements that will be discussed in the next section.180

III. EXPERIMENTAL RESULTS AND DISCUSSION181

A series of planar, plate-impact, shock wave experiments were performed at the Sandia182

Z machine52 to investigate the release response of aluminum, using the experimental config-183

urations described in Ref. 36. Three different low-impedance standards were used to obtain184

release states from shocked aluminum: polymethylpentene (commonly known as TPX), and185

both ∼190 and ∼110 mg/cc silica aerogel. The shock response of these standards have been186

previously investigated on the Z machine.44,45 Since these samples are solid, they could be187

directly impacted by the flyer plate, and thus the Hugoniot states could be inferred through188

simple IM with aluminum under compression, to relatively high-precision. The linear Us−up189

coefficients and associated uncertainties for these three materials, which were used in the190

analysis of the release experiments described here, are listed in Table VII.191

The aluminum (6061-T6), TPX (obtained from Mitsui Chemicals America), and ∼190192

and ∼110 mg/cc silica aerogel (fabricated by General Atomics) samples were all nominally193

5 mm in lateral dimension. The thickness of the aluminum was nominally 300 microns,194

while the thicknesses of the release standards were all nominally 1000 microns. The sam-195

ples were metrologized using a measuring microscope to determine sample diameters and an196
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interferometer to measure thickness to a precision of ∼5 microns and less than 1 micron, re-197

spectively. Density of the silica aerogel was inferred from high-precision mass measurements198

and inferred volume assuming the samples were right-circular cylinders. Slight departure199

from the right-circular cylinder assumption resulted in density uncertainty of ∼2% and ∼5%200

for the 190 and 110 mg/cc aerogel, respectively.201

The aluminum samples and release standards were glued together to form experimen-202

tal “stacks” using the techniques described in Ref. 36. The flyer plates and experimental203

“stacks” were diagnosed using a velocity interferometer (VISAR53). Since the aluminum is204

opaque, the 532 nm laser light would pass through the transparent low-impedance standard205

and reflect off the aluminum/standard interface, as illustrated in the inset of Fig. 5. Shock206

breakout into the release standard resulted in a 10-100’s of GPa shock that was of sufficient207

magnitude that the release standard became weakly reflecting, allowing direct measure of the208

shock velocity in the release standard with the VISAR diagnostic. As in the α-quartz study,209

the measured apparent velocity of the shock in the release standards was reduced by a factor210

equal to the refractive index of the un-shocked material: v = va/n0. The values of n0 used211

in this study for TPX and the ∼190 and ∼110 mg/cc silica aerogel were, 1.46, 1.038, and212

1.02 respectively.44,54–56 Representative velocity profiles are shown in Fig. 5. The inferred213

shocked state of the aluminum sample relied on flyer plate velocity measurements directly214

above and below the sample “stack” obtained from the VISAR diagnostic, as illustrated in215

Fig. 5. The impact velocity was taken to be the average of these two measurements, which216

typically differed by less than 1%. ual
p of the shocked state was then 1/2 the impact velocity,217

as a result of the symmetric impact. Uncertainties in the flyer plate and shock velocities218

were a few tenths of a percent.219

The aluminum release experiments were analyzed within the framework of the MGLR220

model described in the previous section, which is graphically illustrated in Fig. 6. The mea-221

sured impact velocity and known Hugoniot of aluminum (fit parameters and uncertainties222

are listed in Table I) defined the initial state in the P − up plane, (P1, up1). The measured223

shock velocity and the known Hugoniot of the release standard defined the release state along224

the aluminum release path, (Pr, upr). The MGLR model, with S1 and C01 given by Eqs. (3)225

and (1), respectively, was then used to determine the value of Γeff such that the release path226

emanating from (P1, up1) went through the point (Pr, upr). Uncertainties in the inferred227

quantities were determined using the Monte Carlo method described in Ref. 36. Note that228
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FIG. 5. Representative experimental VISAR data. Black (blue) line, aluminum flyer plate velocity

below (above) release sample stack; cyan line, release standard shock velocity. The inset shows a

schematic of the experimental configuration. Note the dimensions are not to scale.

the uncertainty in upr that arises from both the uncertainty of the standard Hugoniot and229

the measured U standard
s is less than 1%, and provides a tight constraint on the value of Γeff230

that connects (P1, up1) and (Pr, upr). This translates into an uncertainty in Γeff of between231

0.04-0.17 for the individual release measurements.232

A total of 7, 7, and 5 aluminum release experiments were performed with TPX, ∼190233

and ∼110 mg/cc silica aerogel, respectively. The pertinent parameters for these experiments234

are listed in Tables VIII-X. ual
p , U

standard
s and ρstandard0 denote the measured particle velocity235

in the aluminum sample, shock velocity in the release standard, and density of the release236

standard, respectively. Γeff denotes the inferred value of the effective Γ for the MGLR model237

obtained using the method described above. uIM
p is the inferred particle velocity in the238

shocked standard as determined through IM calculations using the MGLR model. These239

calculations will be discussed in the next section.240

The values for Γeff inferred from all three release standards are plotted as a function of ual
p241

in Fig. 7. Also plotted in the figure are the optimized Γeff obtained from the MGLR model242

with S(ual
p ) given by Eq. (3) that best matched the FPMD release paths and the release243

paths from various tabular EOS models for aluminum, including 3700 (Refs. 37,38), 3711244

(Ref. 57), 3715 (Refs. 39,40), 3719 (Refs. 41,42), and 3720 (Ref. 58). The trend exhibited by245

the experimentally determined Γeff is very similar to that exhibited by the FPMD and tabular246

EOS derived values. Furthermore, the data for all three release standards, which vary by247
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FIG. 6. Aluminum release measurements. Black line, aluminum principal Hugoniot; black circles,

initial shocked states of aluminum; dot-dashed blue line, TPX Hugoniot; dashed (solid) blue line,

190 mg/cc (110 mg/cc) aerogel Hugoniot; red diamonds, measured release states; solid (dashed)

gray lines, release paths for the best fit Γeff (one-sigma standard deviation). Right panels shown

for more detail.

roughly an order of magnitude in shock impedance, all fall along the same trend line. These248

two observations are a strong indicator that the MGLR framework adequately describes the249

release response of aluminum in the multimegabar regime over a fairly substantial P range250

along the Hugoniot and over a wide range of shock impedances.251

Just as in the case of the FPMD and tabular EOS derived Γeff, the experimentally deter-252

mined Γeff appears to asymptote at high P . We therefore fit the experimentally determined253

Γeff to a simple exponential functional form that exhibits this type of behavior:254

Γeff(u
al
p ) = a1 − a2exp

[

−a3u
al
p

]

, (4)

where a1 was fixed at 0.6, similar to the asymptotic value that was observed in the α-quartz255

release study.36 As can be seen in Fig. 7, the weighted fit to this functional form provides256

a reasonably good description of the experimentally determined Γeff. Also shown in the257

figure are the one-sigma uncertainty bands, which take into account the correlation of the258

uncertainty in the parameters from the weighted fit. The best fit values and the covariance259
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TABLE VIII. Γeff for the TPX release experiments. ualp , U
TPX
s , and ρTPX

0 are the measured particle

velocity of the aluminum (half the measured impact velocity), the measured shock velocity of the

TPX samples, and the measured TPX initial density, respectively. Γeff is the inferred value of

the effective Γ for the MGLR model. uIMp is the inferred particle velocity in the shocked TPX

determined from the MGLR model as described in Sec. IV.

Expt
ualp UTPX

s ρTPX
0

Γeff

uIMp

(km/s) (km/s) (g/cc) (km/s)

Z2450N 8.86 ± 0.03 18.72 ± 0.03 0.83 ± 0.004 1.425 ± 0.087 12.26 ± 0.06

Z2450S 9.75 ± 0.03 20.21 ± 0.03 0.83 ± 0.004 1.343 ± 0.072 13.42 ± 0.05

Z2345N 11.97 ± 0.03 23.99 ± 0.03 0.83 ± 0.004 1.246 ± 0.055 16.26 ± 0.05

Z2345S 12.98 ± 0.03 25.68 ± 0.03 0.83 ± 0.004 1.192 ± 0.047 17.55 ± 0.05

Z2333N 12.98 ± 0.03 25.73 ± 0.03 0.83 ± 0.004 1.231 ± 0.049 17.54 ± 0.05

Z2333S 13.82 ± 0.03 27.04 ± 0.03 0.83 ± 0.004 1.121 ± 0.044 18.62 ± 0.06

Z2375 15.80 ± 0.07 30.31 ± 0.03 0.83 ± 0.004 1.035 ± 0.074 21.13 ± 0.13

matrix elements are listed in Table XI.260

We caution the use of this model outside of the range of the experimental data, specifically261

for ual
p below and above ∼9 and ∼17 km/s, respectively. This is particularly true for ual

p262

below ∼9 km/s, where there is no data and it is unclear how best to extrapolate. Because263

both S and Γeff seem to asymptote at high P , one could likely use this fit for ual
p above ∼17264

km/s with some confidence. At P above this limit, roughly 1200 GPa, S asymptotes to the265

actual Hugoniot slope and Γeff approaches a value close to what one would expect for an266

ideal gas.267

IV. ANALYTICAL RELEASE MODEL268

As examples of this analytical release model, and as a consistency check, this IM method269

was used to determine the shocked states of the release standards for all of the aluminum270

release measurements listed in Tables VIII-X. Measurement of ual
p (in this case directly271

through impact velocity measurements, but could also be inferred through measured Ual
s and272
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TABLE IX. Γeff for the ∼190 mg/cc silica aerogel release experiments. ualp , U
gel
s , and ρgel0 are the

measured particle velocity of the aluminum (half the measured impact velocity), the measured

shock velocity of the aerogel samples, and the measured aerogel initial density, respectively. Γeff is

the inferred value of the effective Γ for the MGLR model. uIMp is the inferred particle velocity in

the shocked aerogel determined from the MGLR model as described in Sec. IV.

Expt
ualp Ugel

s ρgel0
Γeff

uIMp

(km/s) (km/s) (mg/cc) (km/s)

Z1452 11.91 ± 0.07 25.45 ± 0.14 202± 4 1.138 ± 0.165 20.82 ± 0.15

Z1474 12.86 ± 0.07 27.68 ± 0.14 197± 4 1.236 ± 0.171 22.42 ± 0.16

Z1421 13.38 ± 0.07 28.65 ± 0.14 202± 4 1.203 ± 0.154 23.20 ± 0.16

Z1472 13.55 ± 0.07 28.99 ± 0.14 203± 4 1.203 ± 0.153 23.46 ± 0.16

Z1473 14.00 ± 0.07 29.71 ± 0.14 200± 4 1.033 ± 0.124 24.27 ± 0.16

Z1451 14.35 ± 0.07 30.71 ± 0.14 202± 4 1.203 ± 0.142 24.76 ± 0.16

Z1490 16.85 ± 0.15 35.45 ± 0.25 201± 4 0.947 ± 0.163 28.94 ± 0.31

TABLE X. Γeff for the ∼110 mg/cc silica aerogel release experiments. ualp , U
gel
s , and ρgel0 are the

measured particle velocity of the aluminum (half the measured impact velocity), the measured

shock velocity of the aerogel samples, and the measured aerogel initial density, respectively. Γeff is

the inferred value of the effective Γ for the MGLR model. uIMp is the inferred particle velocity in

the shocked aerogel determined from the MGLR model as described in Sec. IV.

Expt
ualp Ugel

s ρgel0
Γeff

uIMp

(km/s) (km/s) (mg/cc) (km/s)

Z2450S 9.76± 0.03 22.16 ± 0.06 107± 6 1.353 ± 0.136 18.59 ± 0.12

Z2333N 12.95 ± 0.03 29.03 ± 0.06 111± 6 1.084 ± 0.108 24.21 ± 0.16

Z2333S 13.95 ± 0.03 31.3 ± 0.06 111± 6 1.092 ± 0.114 25.97 ± 0.18

Z2375 15.74 ± 0.07 35.25 ± 0.06 107± 6 0.978 ± 0.106 29.36 ± 0.25

Z2332 16.10 ± 0.07 35.88 ± 0.06 108± 6 0.921 ± 0.103 29.94 ± 0.25
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FIG. 7. Γeff as a function of the aluminum particle velocity along the Hugoniot, ualp . Open

diamonds, TPX release measurements; blue (red) diamonds, ∼190 (∼110) mg/cc silica aerogel

release measurements; green circles, FPMD release calculations; black solid (dashed) line, 3700

(3719) EOS; green solid (dashed) line, 3711 (3720) EOS; magenta solid line, 3715 EOS; blue solid

(dashed) line, best fit (one sigma deviation) to the experimental data.

TABLE XI. Fit parameters and covariance matrix elements for Γeff(u
al
p ) [Eq. (4)].

a1 a2 a3 σ2
a2 σ2

a3 σa2σa3

(km/s)−1
(x10−2) (x10−4) (x10−3)

0.6 1.942 0.0951 6.882 1.167 2.793

the known aluminum Hugoniot) determines (i) the Hugoniot state of the aluminum, and thus273

(P1, up1) from which the release path emanates, (ii) the value of S1 and therefore C01 that274

defines the Hugoniot reference curve for the MGLR model [Eqs. (3) and (1), respectively],275

and (iii) the value of Γeff [Eq. (4)]. One then solves a set of coupled ordinary differential276

equations (ODEs), as described in detail in Ref. 36, to determine (P, up) along the release277

path emanating from (P1, up1). P
sample
1 and usample

p1 in the shocked state of the sample material278

are then determined by the intersection of (P, up) along the release path and the chord defined279

by P = (ρsample
0 U sample

s )up.280

For each series of IM calculations the coefficients of the aluminum Hugoniot are sampled281
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within their uncertainty defined by the covariance matrix (Table I). This propagates the282

uncertainty in the initial state (P1, up1) as well as uncertainties in S1 and C01. Then for each283

IM calculation in the series of measurements, ual
p , Γeff, U

sample
s , and ρsample

0 are all sampled284

within their one-sigma uncertainty. (P sample
1 , usample

p1 ) is then determined as the intersection285

of the chord and release path, and the remaining kinematic variables can be evaluated286

through the use of the Rankine-Hugoniot jump conditions.34 This process is repeated for 106287

iterations, and the reported values and one-sigma uncertainties of the inferred quantities are288

taken to be the mean and standard deviations of the Monte Carlo distributions, respectively.289

The resulting Us −up points from the IM method using the analytical release model (the290

inferred up are listed in the last column of Tables VIII-X) are in excellent agreement with291

the direct impact results.44,45,59 This provides a consistency check, and indicates that the292

assumptions of the analytical model, namely that Γeff can be treated as a constant regardless293

of the impedance of the unknown material, is justified. Furthermore, the uncertainty in the294

inferred up is roughly equivalent for both the analytical IM release model and for the direct295

impact experiments. This suggests that there is very little loss in precision or accuracy in296

using aluminum as an IM standard as opposed to performing direct impact experiments297

with aluminum. This is significant in that impact type experiments in the multimegabar298

regime are currently limited to explosively driven striker plate and magnetically driven flyer299

plate platforms.300

As a final example we discuss previously published laser driven Hugoniot experiments301

on deuterium reported by Hicks et al.20 In that study, a laser driven shock in aluminum302

was driven into both a liquid deuterium sample and an α-quartz sample used to better303

determine the shocked state of the aluminum drive plate. To perform the IM analysis, an304

experimentally determined mapping was used to infer the shocked state of the aluminum305

from the measured Uq
s . The inferred Ual

s along with a fit of available absolute Hugoniot data306

for aluminum then defined (P1, up1) of the shocked aluminum. The release response was307

then determined through a model developed by comparing the difference between the RH308

and the calculated release response of several different tabular EOS models from aluminum,309

as described in Ref. 20.310

For this reanalysis we take advantage of the recent, significant improvement in precision311

of the α-quartz Hugoniot36,60 and the present aluminum release model. In particular, we312

used the measured Uq
s and the known α-quartz Hugoniot36,60 to define a point (Pq, u

q
p)313
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FIG. 8. P - ρ/ρ0 Hugoniot for laser driven deuterium experiments.20 Black solid (dashed) line,

Hugoniot from the Kerley03 EOS61 (Holst FPMD62). Gray circles, Hugoniot data as published in

Ref. 20; red circles, this reanalysis.

through which the aluminum release must pass through. To do this we first reconstructed314

the measured Uq
s in Ref. 20 from the reported Ual

s by inverting the relationship between Ual
s315

and Uq
s :316

Uq
s = β +

(

Ual
s − a0

)

/a1, (5)
317

δUq
s =

[[

(

δUal
s

)2
− σ2

a0

]

− (Uq
s − β)2 σ2

a1)
]1/2

a1
, (6)

where β = 20.57, a0 = 21.14 km/s, a1 = 0.91, σa0 = 0.12, and σa1 = 0.03. The resulting318

values of Uq
s and δUq

s are listed in Table XII.319

For each experiment we then used the MGLR model to determine (P1, up1) for the shocked320

state of aluminum such that the release path passed through (Pq, u
q
p) determined from the321

measured Uq
s . The intersection of this release path with the chord defined by P = (ρD2

0 UD2
s )up322

then provided (PD2, u
D2
p ). The remaining kinematic variables for the deuterium were deter-323

mined using the Rankine-Hugoniot relations.34 The inferred values from this reanalysis are324

listed in Table XII and displayed in Fig. 8.325

As can be seen in Table XII and Fig. 8, the reanalysis results in a systemically lower den-326

sity compression with respect to the published values.20 This is predominantly due to the im-327
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TABLE XII. Comparison of the inferred P and ρ/ρ0 for laser driven experiments on deuterium

using the aluminum IM method, as described in the text. The uncertainties in P and ρ/ρ0 from

Ref. 20 list the random and systematic components of the uncertainties explicitly in parentheses:

(ran, sys). The quadrature sum of these individual components of uncertainty are displayed in

Fig. 8.

Shot
Ual
s Uq

s UD2
s Hicks et al.20 this reanalysis

(km/s) (km/s) (km/s) P (GPa) ρ/ρ0 P (GPa) ρ/ρ0

31700 26.07 ± 0.34 25.99 ± 0.30 36.87 ± 0.33 186± (4, 3) 4.66 ± (0.37, 0.26) 184 ± 3 4.47 ± 0.31

31692 21.88 ± 0.25 21.38 ± 0.24 28.89 ± 0.32 116± (2, 2) 4.94 ± (0.42, 0.27) 113 ± 2 4.56 ± 0.34

31912 18.75 ± 0.25 17.94 ± 0.22 23.83 ± 0.32 77 ± (2, 1) 4.47 ± (0.42, 0.21) 75± 2 4.16 ± 0.32

31910 15.51 ± 0.31 14.38 ± 0.24 18.96 ± 0.31 45 ± (2, 1) 3.65 ± (0.40, 0.17) 45± 1 3.57 ± 0.28

32248 23.30 ± 0.25 22.94 ± 0.23 32.03 ± 0.32 139± (3, 2) 4.56 ± (0.32, 0.23) 137 ± 2 4.28 ± 0.26

32252 25.65 ± 0.29 25.53 ± 0.24 35.48 ± 0.39 176± (3, 3) 5.03 ± (0.42, 0.31) 173 ± 3 4.79 ± 0.34

32254 27.08 ± 0.31 27.10 ± 0.23 38.81 ± 0.31 205± (4, 3) 4.61 ± (0.32, 0.26) 203 ± 3 4.46 ± 0.24

32258 27.96 ± 0.32 28.06 ± 0.21 40.13 ± 0.31 221± (4, 4) 4.74 ± (0.33, 0.28) 220 ± 3 4.63 ± 0.24

32864 19.45 ± 0.29 18.71 ± 0.28 25.76 ± 0.34 87 ± (2, 1) 4.07 ± (0.36, 0.17) 85± 2 3.81 ± 0.29

32866 21.67 ± 0.27 21.15 ± 0.27 28.57 ± 0.39 113± (3, 2) 4.90 ± (0.47, 0.26) 111 ± 2 4.52 ± 0.39

33190 25.89 ± 0.31 25.79 ± 0.26 36.26 ± 0.34 181± (3, 3) 4.82 ± (0.38, 0.28) 179 ± 3 4.61 ± 0.30

33194 23.24 ± 0.27 22.88 ± 0.25 32.14 ± 0.34 139± (3, 2) 4.44 ± (0.32, 0.22) 137 ± 3 4.17 ± 0.27

34135 20.55 ± 0.28 19.92 ± 0.28 27.67 ± 0.34 101± (2, 1) 4.16 ± (0.34, 0.18) 99± 2 3.88 ± 0.28

34139 23.58 ± 0.26 23.25 ± 0.24 31.89 ± 0.31 141± (3, 2) 4.97 ± (0.39, 0.29) 139 ± 2 4.64 ± 0.31

34144 22.51 ± 0.27 22.08 ± 0.26 30.27 ± 0.37 126± (3, 2) 4.76 ± (0.41, 0.25) 123 ± 2 4.43 ± 0.34

proved description of the α-quartz Hugoniot; the recently published α-quartz Hugoniot36,60328

is significantly less compressible than the effective Hugoniot used in Ref. 20 (linear mapping329

relating Uq
s to Ual

s ), resulting in lower inferred density compression for the deuterium. A330

close comparison of Fig. 5 from Ref. 60, which essentially only corrected for the difference331

in the α-quartz Hugoniot, with Fig. 8 from the present work shows that the effect of the332

present aluminum release model somewhat compensates for this error. This would indicate333

that the present aluminum release model results in systematically slightly higher inferred up334

along the release path when compared to the release model used in Ref. 60, which was based335

mainly on the difference between the release path and the RH for the 3700 EOS model,336

in accordance with a previous aluminum release study.43 This difference is consistent with337
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Fig. 7 in that the best fit trend line of the experimentally determined Γeff is systematically338

higher than that determined from the 3700 EOS table, which would result in a slightly339

higher inferred up along the aluminum release path and therefore a slightly higher inferred340

ρ/ρ0 for deuterium.341

More significantly, comparison of the two analyses displayed in Fig. 8 demonstrates that342

the uncertainty in the inferred shock state is significantly smaller for the MGLR analysis343

as compared to the analysis used in Ref. 20. This is undoubtably due to experimental344

constraint on the release behavior from this work. With little direct experimental guidance,345

Hicks et al. were forced to resort to examination of various EOS models in an attempt346

to constrain the release behavior of aluminum, with resultantly large contributions from347

potential systematic uncertainty (note the large systematic spread in Γeff between the various348

tabular EOS models displayed in Fig. 7). The experiments described in Sec. III enabled a349

determination of Γeff with relatively tight constraint. As a result, the inferred quantities,350

particularly ρ/ρ0, exhibit significantly lower uncertainty, thereby increasing the precision of351

the IM method with aluminum as the standard.352

V. CONCLUSION353

The release response of aluminum was investigated within the framework of first-principles354

molecular dynamics (FPMD) and several tabular equation of state (EOS) models for alu-355

minum. These calculations provided insight into the release response of aluminum, and356

motivated a simple Mie-Grüneisen model with a linear Us − up Hugoniot as the reference,357

referred to as the MGLR model. This model was shown to reproduce the FPMD and tabular358

EOS release paths extremely well with a constant Γeff along the release path, with both S,359

the slope of the Hugoniot reference for the MG model, and Γeff being functions of ual
p [see360

Eqs. (3) and (4)].361

A series of plate impact, shock wave experiments were performed on the Sandia Z machine362

to obtain release data for aluminum from ∼400-1200 GPa states on the principal Hugoniot.363

Three different low-impedance standards were used, TPX, ∼190 and ∼110 mg/cc silica364

aerogel, which vary in shock impedance by roughly an order of magnitude. These data365

validated the MGLR model that was motivated by the FPMD and tabular EOS study, and366

provided an experimentally determined Γeff as a function of ual
p .367
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This theoretical and experimental study of the release response of aluminum provides a368

simple, analytical model for performing IM calculations without the need to appeal to any369

particular tabular EOS for aluminum. Since the model is analytical, it is well suited for370

the use of Monte Carlo analysis methods, enabling all uncertainty, including the random371

measurement uncertainty and any systematic uncertainty in the Hugoniot and release re-372

sponse of aluminum, to be propagated to the inferred quantities. We also note that the373

experimentally validated model framework should prove to be useful in the development of374

wide range equations of state for aluminum, in that it constrains the kinematic variables of375

aluminum upon release over a wide range of P and ρ.376

It is emphasized that the MGLR model discussed here is only intended to calculate377

kinematic variables for aluminum upon release, in particular the release paths in the P −up378

plane for purposes of impedance matching. It is fully expected that other aspects of the379

MGLR model will be incorrect. In particular, it is anticipated that the temperatures and380

specific heats of the MGLR model do not reflect the behavior of aluminum in this regime.381

Furthermore, we caution the use of this model outside of the range of the experimental data,382

specifically for ual
p below and above ∼9 and ∼17 km/s, respectively. This is particularly true383

for ual
p below ∼9 km/s, where there is no data and it is unclear how best to extrapolate.384

Because both S and Γeff seem to asymptote at high P , one could likely use this fit for385

ual
p above ∼17 km/s with some confidence. At P above this limit, roughly 1200 GPa, S386

asymptotes to the actual Hugoniot slope and Γeff approaches a value close to what one387

would expect for an ideal gas.388

As an example of its use, the MGLR model was used to infer Hugoniot states through389

the IM method for all of the aluminum release measurements performed for this study.390

This provided a consistency check in that the IM results could be compared to the direct391

impact Hugoniot measurements of the standards. Not only did the IM Hugoniot response392

agree extremely well with the direct impact Hugoniot results, but the uncertainties from393

the two methods were found to be roughly equivalent. This suggests that the IM method394

can confidently be used to obtain high-precision Hugoniot measurements regardless of the395

shock impedance of the unknown material. In particular, given the prolific use of aluminum396

as an IM standard, the present IM model will enable reanalysis of numerous multimegabar397

experiments in the literature. Such reanalyses will improve both the accuracy and precision398

of the inferred shock response by taking advantage of recent refinement of the Hugoniot399
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response of aluminum, as well as an experimentally validated release model which tightly400

constrains the release response of aluminum in the multimegabar regime.401
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