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We derive expressions for density-density and spin-spin correlation functions in the (greatly en-
hanced) pseudogap phase of spin-orbit coupled Fermi gases. Density-density correlation functions
are found to be relatively insensitive to the presence of these Rashba spin-orbit effects. To arrive at
spin-spin correlation functions we derive new f -sum rules, valid even in the absence of a spin con-
servation law. Our spin-spin correlation functions are shown to be fully consistent with these f -sum
rules. Importantly, they provide a clear signature of the Rashba band-structure and separately help
to establish the presence of a pseudogap.

Introduction.− Spin-orbit coupling (SOC) in supercon-
ductors and superfluids is a topic of much current inter-
est [1–3]. This is in large part because there is some
hope that (particularly in the presence of a magnetic
field) they may relate to the much sought after spinless
px + ipy superfluid [4]. Two communities have united
around these issues: those working on cold Fermi super-
fluids with intrinsic Rashba SOC [5, 6] and those studying
superconductivity that is proximity induced in a spin-
orbit coupled material [7]. To achieve this ultimate goal
it is important to establish that a given candidate for the
px + ipy superfluid simultaneously exhibits signatures of
both pairing and spin-orbit coupling. This would pro-
vide minimal evidence for a properly engineered ultracold
atomic gas. One therefore needs experimental signatures
of these simultaneous effects and this provides a central
goal for the present paper.

Here we address the signatures of this anomalous spin-
orbit coupled superfluid as reflected in spin-spin and
density-density correlation functions. Our work builds
on the observation [8–13] that in the presence of Rashba
SOC, pairing (in the form of pseudogap effects [14, 15])
is significantly enhanced. For this reason (and because
the correlation functions are free of the complications of
collective mode effects) we focus here on the anomalous
normal phase. We show how even without condensation,
the frequency dependent spin response exhibits features
which relate to the Rashba ring band-structure, as well
as to the presence of a pairing gap. In contrast, the den-
sity response is relatively unaffected by SOC. Previous
work has focused on identifying SOC without [16, 17] or
with pairing [18] via the one body spectral function. As
compared with Ref. [18], we find less subtle features in
the two particle response. At the very least the spin-spin
correlation functions provide complementary and acces-
sible (via neutrons or two photon Bragg scattering [19])
information.

Validating any theory of correlation functions requires
satisfying important constraints [20]. Indeed, the ab-
sence of conservation laws complicates all spin transport
in spin-orbit coupled materials. Thus, it is extremely
important to find underlying principles for establishing
self consistency. To address this issue, here we use the
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FIG. 1. Phase diagrams for a degenerate fermi gas without
(a) and with (b) SOC. Plotted is T ∗ as a function of inverse
scattering length, 1/kF a, indicating where pairing first sets
in, while Tc marks the onset of condensation to the superfluid
phase. The plot shows the weakly interacting regime with
1/kF a < 0. As spin-orbit coupling is turned on, pairing is
enhanced leading to a larger pseudogap region. The inset in
(a) indicates the temperature dependences of the component
gap parameters (defined in the text) at unitarity, 1/kF a = 0.

Heisenberg equations of motion to derive f -sum rules for
the spin-spin correlation functions, which also provides
important constraints on our numerical calculations. In
order to avoid technical complexity, we ignore the com-
plication of a magnetic field (which is necessary for arriv-
ing at topological order). Our formalism leading to the
phase diagram and response functions can be extended
to include arbitrary SOC and Zeeman fields. However,
we expect the Rashba case to be representative of a large
class of spin-orbit coupled Hamiltonians. We note there
is a substantial literature investigating correlation func-
tions in the superfluid phase (without pseudogap effects)
which we cite here [21–24].

In this Rapid Communication we present two main re-
sults. The first is a consistent derivation of spin-spin
correlation functions in spin-orbit coupled Fermi gases.
The second establishes qualitative experimental signa-
tures reflecting separately the presence of a pairing gap
and of SOC. Readers interested in the experimental sig-
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natures need only a cursory exploration of the mathe-
matical derivation that precedes it.

Background Theory.− We consider a gas of fermions
whose single particle Hamiltonian is H0(k) = k2/2m −
µ + λσσσ · k⊥/m for a particle of mass m, spin-orbit cou-
pling momentum λ, momentum k = (kx, ky, kz), in-plane
momentum k⊥ = (kx, ky, 0), and vector of Pauli ma-
trices σσσ = (σx, σy, σz). Throughout this paper we set
~ = kB = 1. To describe our spin-orbit coupled Fermi
gas with pairing, we use a 4 × 4 inverse Nambu Green’s
function

G−1(K) =

(
G−10 (K) ∆

∆ G̃−10 (K)

)
, (1)

that acts on the spinor ΨT
k =

(
ck↑, ck↓,−c†−k↓, c

†
−k↑

)
for a fermion annihilation (creation) operator cks(c

†
ks)

of spin s =↑, ↓ and momentum k. In the Green’s func-
tion ∆ is a pairing gap, the 4-vector K = (iω,k) with
Matsubara frequency iω, and the non-interacting inverse
particle Green’s function is G−10 (K) = iω − H0(k) and

hole Green’s function is G̃−10 (K) = iσy[G−10 (−K)]T iσy =
iω +H0(k).

This superfluid can be studied at the mean field
level [8–13], where one has the usual gap equation:

1 =
g

2

∑
K

Tr
[
G(K)G̃0(K)

]
, (2)

where
∑
K = T

∑
iω

∑
k is a sum over momentum and

Matsubara frequencies at temperature T , and where the
many-body Green’s function G(K) is found from the in-
verse of Eq. (1)

G−1(K)−G−10 (K) = −Σ(K) = −∆2G̃0(K). (3)

Except for the matrix structure in the above equations,
these are the usual definitions of the fermionic Green’s
functions and self energy associated with BCS theory; the
gap equation also appears in the literature [8–13]. As in
the cold atoms literature, we will regularize the gap equa-
tion by replacing the interaction strength g with the scat-
tering length a through 1/g = m/4πa− 1/V

∑
km/k

2.
We now want to include pair fluctuations, or pseudo-

gap (pg) effects, in a fashion fully consistent with both
the ground state and the mean field equations that have
been extensively studied in previous work [8–13]. The
approach we outline below was introduced in the context
of high temperature superconductors [14, 25], but it has
also been applied to spin-orbit coupled superfluids [26].

Pair fluctuations lower the phase transition tempera-
ture Tc relative to its mean field value denoted by T ∗.
The latter is the temperature at which the pairing gap,
determined by Eq. (2), first becomes non zero. (Note that
T ∗ does not reflect a broken symmetry state and is not a
true phase transition). As a result, a central component

of the present theory is that the usual Thouless condi-
tion (on the t-matrix) for the instability of the normal
phase [27] must be modified to include a well developed
excitation gap.

Imposing consistency with mean field theory for the
pairing gap ∆(T ), obtained from Eq. (2), leads to a mod-
ified Thouless condition for the instability temperature:

tpg(Q) ≡ g

1 + gχ(Q)
→∞, as Q→ 0, (4)

where χ(Q) ≡ − 1
2

∑
K Tr

[
G(K)G̃0(K −Q)

]
. This en-

sures that Tc lies on the mean field ∆ vs T curve. Es-
tablishing the specific value of Tc, however, requires that
we find an additional constraint associated with the ex-
istence of a condensate. As reviewed in the Supplement
and discussed in detail elsewhere[14], precisely at Tc we
have the equation ∆2 = −

∑
Q6=0 tpg(Q). The transition

temperature Tc is, then, determined as the temperature
at which this function constraining ∆(T ) intersects with
the mean field gap equation value.

Away from the point T = Tc, as discussed in the
Supplement, the excitation gap contains the sum of
condensed (sc) and non-condensed (pg) contributions:
∆2 = ∆2

sc + ∆2
pg, where we have proved that below Tc

∆2
pg = −

∑
Q 6=0 tpg(Q). Importantly we can interpret

this last equation as suggesting that tpg is a propagator
for a thermal gas of composite (non-condensed) bosons.
Above Tc we take ∆2

pg to be the mean field value, al-
though this assumption is not necessary [28]. In the in-
set of Fig. 1(a), we plot the temperature dependence for
both ∆sc and ∆pg, as well as the total excitation gap ∆.

We emphasize that a central distinguishing feature of
the present approach is that Tc is determined in the pres-
ence of a well developed gap at Tc. This contrasts with
the scheme of Nozieres and Schmitt-Rink [29]. In this
scheme the pair susceptibility χ(Q) is given by two bare
Green’s functions which do not connect to the mean field
gap equation, Eq. (2). This approach is similarly differ-
ent from path integral-collective mode schemes [30]. The
latter introduce Goldstone bosons, but importantly these
do not renormalize the mean field transition temperature
which remains at T ∗.

Figure 1 shows the calculated phase diagram, plotting
Tc and T ∗, in the absence (a) and presence (b) of Rashba
SOC. The latter is in reasonable agreement with the re-
sults of Ref. [26]. We restrict these plots to the weak
pairing side of resonance. Here we observe a greatly en-
hanced pseudogap regime denoted by an enhancement of
T ∗ without significant enhancement of Tc. The behav-
ior of T ∗ has been attributed to the enhancement of the
pairing attraction [8–13], due to an increased density of
states near the minimum of the Rashba ring. Since Tc is
obtained in the presence of a gap at Tc, stronger pairing
(reflected in T ∗) is offset by an increasingly gapped den-
sity of states. This leads to a relatively constant Tc as a
function of interaction strength.
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FIG. 2. The spin-spin response function as a function of frequency. Figure 2(a) corresponds to a pseudogap phase without
SOC. The peak at lower ω reflects thermally excited fermions while the second peak is at ω comparable to the pseudogap
energy scale, where pairs are now broken. Since λ = 0, the spin-spin and density-density correlation functions are the same.
In Fig. 2(b) the pseudogap is set to zero with fixed λ = 1.2kF . The lower energy intra-helicity band peak is enhanced and one
sees an SOC-related peak. As shown in the inset, the low-energy threshold reflects the onset of inter-helicity band transitions,
while the high-energy endpoint occurs when these transitions are no longer possible. In Fig. 2(c), in the presence of both a
pseudogap and SOC, one sees a combination of the effects in the previous two panels. Spectral weight is transferred to yield
a larger SOC peak, reflecting the gapping of the low energy contributions. All quantities are measured relative to the Fermi
energy, EF , or Fermi momentum kF .

Density/current response and f -sum rules.− To char-
acterize the anomalous normal, and superfluid phases
in more detail, we investigate both the density/current-
density/current and spin-spin correlation functions, con-
sidering the former first. For systems with a U(1) sym-
metry, the Ward-Takahashi identity (WTI) provides an

important constraint on the full vertex Γµ(K̃,K) which
enters into the correlation functions. Given a mean field
self energy, it is possible to analytically solve the WTI,
and obtain the full vertex function along with the full
correlation function [20, 31].

We define the generalized correlation function

Pµν(Q) =
∑
K

Tr
[
G(K̃)Γµ(K̃,K)G(K)γν(K, K̃)

]
, (5)

where K̃ ≡ K + Q and γµ(K̃,K) is a bare vertex.
From this we have the density-density χρρ(Q) ≡ P 00(Q)

and current-current correlation functions χ
↔
JJ(Q) ≡

P ij(Q), i, j ∈ {1, 2, 3}. The bare and full vertices sat-
isfy respectively

qµγ
µ(K̃,K) = G−10 (K̃)−G−10 (K), (6)

qµΓµ(K̃,K) = G−1(K̃)−G−1(K), (7)

with the latter a consequence of the WTI. We now spe-
cialize to systems with the self energy as in Eq. (3). Using
the WTI above Tc we have

Γµ(K̃,K) = γµ(K̃,K)+∆2G̃0(K̃)γ̃µ(K̃,K)G̃0(K), (8)

where γ̃µ(K̃,K) = σyγ
µ(−K̃,−K)Tσy is a time-reversed

vertex. Inserting the full vertex into Eq. (5) then gives
the correlation functions above Tc.

One can incorporate superconducting (or equivalently
superfluid) terms within this formalism building on

Eq. (8) and, for example, address the superfluid den-
sity [25, 32, 33], as outlined in the supplement. One
considers the transverse response PµνT (Q) which contains
no collective modes:

PµνT (Q) =
∑
K

Tr

{[
G(K̃)γµ(K̃,K)G(K)

+ Fpg(K̃)γ̃µ(K̃,K)F̃pg(K)

− Fsc(K̃)γ̃µ(K̃,K)F̃sc(K)
]
γν(K, K̃)

}
, (9)

where Fκ(K) = ∆κG̃0(K)G(K) = F̃κ(K) for κ ∈
{sc,pg}. Note that Fpg does not represent an anomalous
Green’s function, but rather reflects a vertex correction
to the correlation functions [20].

As shown in the supplementary material, when one
integrates over the entire frequency range, a consequence
of the WTI is that the f -sum rule is satisfied:∫

dω

π

(
−ωχ′′ρρ(ω,q)

)
=
nq2

m
, (10)

where χ′′ρρ is the imaginary part of the density response
function. This f -sum rule depends on the total particle
number n and the bare mass m. Since λ does not enter,
the presence of spin-orbit coupling does not modify the
weight of the f -sum rule.
Spin response and f -sum rules.− In the spin chan-

nel, there is no U(1) symmetry to justify the use of the
WTI. Nevertheless, we are able to provide an a poste-
riori check on any proposed correlation function via a
sum rule which we now derive. We define χSiSj (iω,q) ≡∫
dτ eiωτ 〈TτSqi (τ)S−qj (0)〉 where Tτ is the time order-

ing operator and Sqi =
∑

kss′ c
†
ks (σi)ss′ ck+qs′ is the

many-body spin density operator. Using the Heisenberg
equations of motion and the properties of Fourier trans-
forms, the sum rule for the spin-spin correlation function
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χ′′
SiSj

can be shown [34] to be∫
dω

π

(
−ωχ′′SiSj

(ω,q)
)

= 〈[[H0, Sqi] , S−qj ]〉 , (11)

where H0 =
∑
ss′k c

†
ksH

0
ss′ (k) cks′ and χ′′

SiSj
is the sin-

gular part of χSiSj
[35], found by analytically continuing

iω → ω + iδ and then taking the δ → 0 limit. A similar
analysis relating sum rules to the equation of motion was
presented for Bose gases in Ref. [36].

Here we give the explicit result, for two example cases
of interest and present further details in the supplemen-
tary material:∫

dω

π

(
−ωχ′′SiSi

(ω,q)
)

=
nq2

m
− 4λ

m

∑
kα

αfiinkα. (12)

where i ∈ {x, z}, fzz = k⊥, fxx = k2x/k⊥ and nkα =
T
∑
iω G

α
H(K), with GαH(K) a helicity Green’s functions

to be defined in the next section.
Correlation functions in the helicity basis.− In the ab-

sence of a magnetic field, helicity is a good quantum
number, and the correlation functions are most easily
expressed in terms of the helicity Green’s functions [26]:

GαH(K) ≡ u2kα
iω − Ekα

+
v2kα

iω + Ekα
, (13)

FαH(K) ≡ ukαvkα
(

1

iω + Ekα
− 1

iω − Ekα

)
, (14)

where Ekα =
√
ξ2kα + ∆2, ξkα = k2/2m−µ+αλk⊥/m is

an eigenvalue of H0(k), and FαH(K) represents the pseu-
dogap, or equivalently vertex contribution. Here α = ±
denotes the helicity index and the coherence factors sat-
isfy u2kα = 1

2 (1 + ξkα/Ekα), u2kα + v2kα = 1.
It follows from the vertex function in Eq. (8) that the

explicit form for the f -sum rule [20] consistent density-
density correlation function is

χρρ(ω,q) =
1

2

∑
K,α,α′

(1 + αα′ cos (φk+q − φk))

×
[
GαH(K)Gα

′

H (K̃) + FαH(K)Fα
′

H (K̃)
]
. (15)

The angle exp(iφk) = (kx+iky)/k⊥, so that exp(iφ−k) =
− exp(iφk).

The spin-spin correlation functions are constructed us-
ing their form below Tc (deduced using the path inte-
gral [21]) appropriately modified in the pseudogap state
relative to the condensed phase. These modifications are
essential for satisfying sum rules.

As can be shown, in the normal phase the following
expression for the spin-spin correlation functions are fully
compatible with the spin f -sum rules given in Eq. (12):

χSiSi
(ω,q) =

1

2

∑
K,α,α′

(1± αα′ cos (φk+q ± φk))

×
[
GαH(K)Gα

′

H (K̃) + FαH(K)Fα
′

H (K̃)
]
, (16)

where the +,−signs are for χSxSx
, χSzSz

respectively.
Numerical Results.− We now look for qualitative new

physics in the spin-spin response functions. We numeri-
cally calculate the response function χ′′SxSx

(q, ω) at fixed
q = (0.5, 0, 0)kF as a function of ω [37], and for definite-
ness consider T = 0.28TF > Tc and unitary scattering,
1/kFa = 0. We plot the results in Fig. 2. In order to illus-
trate the physics, in Fig. 2(a) and Fig. 2(b), Rashba SOC
or pseudogap effects were set to zero respectively, while
Fig. 2(c) shows their combined effects. The f -sum rules
derived above are important for constraining numerical
results of the spin-spin and density-density correlation
functions. Comparison between our numerical calcula-
tions and the exact f -sum rules agreed to within a few
percent.

In Fig. 2(a) we set λ = 0. In this case, above Tc the spin
and density correlations are equal (χ′′SxSx

= χ′′
ρρ) and this

function is plotted in the figure. Two low energy peaks
are observable, as found in our earlier work [38]. The
lower frequency peak reflects contributions from ther-
mally excited fermions, while the higher frequency peak is
associated with the contribution from broken pairs which
appears at a threshold associated with the pseudogap.

In Fig. 2(b) we set ∆pg = 0 and plot χ′′SxSx
for a pure

SOC system with λ = 1.2kF . (We do not show χ′′
ρρ since

there is still no qualitative signature of λ 6= 0.) The
response χ′′SxSx

shows two peaks, but one is at a consid-
erably higher energy compared to Fig. 2(a). The lower
frequency peak reflects intra-helicity band contributions
while the larger frequency peak is due to inter-helicity
effects.

Importantly, this figure shows how the physics of the
Rashba ring band-structure can be directly probed by
the spin-spin response function. To illustrate this, in
the inset we plot the dispersion relation of two helicity
bands. The horizontal line denotes the self-consistently
determined chemical potential, chosen so that occupied
fermions mostly reside in the Rashba ring. The onset of
the inter-helicity band transition energy is given by the
energy difference between two bands positioned on the
inner circle of the ring, while the endpoint frequency for
this peak is determined by the outer circle. These energy
differences roughly match the width observed in the high
frequency peak in the main plot. (The smearing of the
width is because we have a non-zero momentum q and
T 6= 0.)

Finally, in Fig. 2(c) we plot χ′′SxSx
for the case where

both pseudogap and Rashba SOC are present. Here
we observe three distinct peaks. The first is associated
with thermally excited fermions within the lowest helicity
band, the second with the breaking of the preformed (pg)
pairs and the third mainly with the inter-helicity tran-
sitions discussed in the previous panel. We also observe
some inter-play between pairing and the high frequency
SOC peak, as this inter-helicity band peak is pushed to-
ward slightly higher energies.
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As far as experimental observability, we note the over-
all small size of the pg-labelled pseudogap peak in Fig.
2(c). What is most important is not the small size of
this specific feature but rather the reduction in the over-
all low frequency weight (for example, relative to Fig.
2(b)) associated with the presence of a pseudogap. Such
a reduction then shows up as an enhancement of the re-
sponse at higher frequencies.

Conclusion.− A major finding of this paper is that
spin-spin correlations provide a clear signature of the si-
multaneous presence of Rashba modified band-structure
and of a pairing gap. Signatures of both are a neces-
sary (but clearly not sufficient) condition for ultimately
obtaining a topological superfluid. This should comple-
ment observations which are based on the single particle
response functions in different experiments either in cold
gases [16–18] or in condensed matter. Our spin-spin cor-
relation functions are consistent with f -sum rules, which
we derive in this paper. These provide important con-
straints on the spin response, which is complicated by
the fact that spin conservation laws are absent in spin-
orbit coupled systems.
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