
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Short-time universal scaling in an isolated quantum system
after a quench

Alessio Chiocchetta, Marco Tavora, Andrea Gambassi, and Aditi Mitra
Phys. Rev. B 91, 220302 — Published 22 June 2015

DOI: 10.1103/PhysRevB.91.220302

http://dx.doi.org/10.1103/PhysRevB.91.220302


Short-time universal scaling in an isolated quantum system after a quench

Alessio Chiocchettaa, Marco Tavorab, Andrea Gambassia and Aditi Mitrab
aSISSA — International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy and

bDepartment of Physics, New York University, 4 Washington Place, New York, NY 10003, USA
(Dated: May 28, 2015)

Renormalization-group methods provide a viable approach for investigating the emergent collec-
tive behavior of classical and quantum statistical systems in both equilibrium and nonequilibrium
conditions. Within this approach we investigate here the dynamics of an isolated quantum system
represented by a scalar φ4 theory after a global quench of the potential close to a dynamical critical
point. We demonstrate that, within a pre-thermal regime, the time dependence of the relevant
correlations is characterized by a short-time universal exponent, which we calculate at the lowest
order in a dimensional expansion.
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The nonequilibrium dynamics of isolated, strongly in-
teracting quantum many-body systems is currently un-
der intensive experimental and theoretical investigation
(see, e.g., Refs. [1–3]), primarily motivated by recent ad-
vances in the physics of cold atomic gases [4]. A nat-
ural question which arises in this context concerns the
eventual thermalization of these systems after a sud-
den change (quench) of a control parameter. In fact,
although isolated systems evolve with unitary dynam-
ics [5, 6], their local properties can be described, af-
ter some time, by suitable statistical ensembles [7–9].
Interestingly enough, the eventual approach to a ther-
mal state might involve intermediate pre-thermal quasi-
stationary states, proposed theoretically [10] and exper-
imentally observed [11–13]. These states appear to be
related to the integrable part of the post-quench Hamil-
tonian [14–21], which alone [22] would drive the system
towards a state, sometimes well described by the so-called
generalized Gibbs ensemble (GGE) [23–31]. Inspired by
the analogy with renormalization-group (RG) flows, pre-
thermalization has been ascribed to a non-thermal unsta-
ble fixed point [32–34] towards which the evolution of the
system is attracted before crossing over to the eventual,
stable, thermal fixed point.

While most of the properties of an isolated many-body
system after a quench depend on its microscopic features,
some acquire a certain degree of universality if the post-
quench Hamiltonian is close to a critical point. Examples
include the density of defects [1], dynamics of correlation
functions [19, 35], statistics of the work [36–38], rephas-
ing dynamics [39], dynamical phase transitions [40–47],
or the dynamics of solitons [48]. Despite this progress,
an important open issue is the possible emergence of a
universal collective behavior at macroscopic short-times
controlled by the memory of the initial state, i.e., a kind
of quantum aging. This is known to occur for quenches in
classical systems in the presence of a thermal bath [49–
52] and, more recently, for quantum impurities [53, 54] or
open quantum systems [55, 56]. A quench introduces a
“temporal boundary” by breaking the time-translational

invariance (TTI) that characterizes equilibrium dynam-
ics, causing the emergence of short-time universal scaling,
analogous to universal short-distance scaling in the pres-
ence of spatial boundaries in equilibrium [57–59]. To our
knowledge, non-equilibrium dynamical scaling and aging
have never been investigated in the absence of a ther-
mal bath. In this work, we fill this gap by showing the
emergence of these features after a quench of an isolated
quantum many-body system.

At the lowest order in a dimensional expansion, we
construct the RG equations for a wide class of isolated
quantum systems after a quench, discussing the result-
ing flow and comparing it with the equilibrium one at
a certain effective temperature Teff . Remarkably, these
RG equations are characterised by a stable non-Gaussian
fixed point which is associated with the occurrence of a
dynamical phase transition (DPT). Similarly to the case
of classical and quantum systems in contact with thermal
baths mentioned above, we show the appearance of uni-
versal algebraic laws associated with such non-thermal
fixed point, which determines the temporal scaling of the
relevant quantities, and which is later on destabilized by
the thermalizing dynamics.

The model.— In d spatial dimensions consider a system
belonging to the equilibrium universality class described
by the effective O(N)-symmetric Hamiltonian

H(r, u) =

∫
ddx

[
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φ4

]
,

(1)
where φ = (φ1, . . . , φN ) is a bosonic field with N com-
ponents, Π its conjugate momentum, u > 0, and r the
parameter which controls the distance from the critical
point. The system is prepared at t < 0 in the ground
state of the non-interacting Hamiltonian H0 ≡ H(Ω2

0, 0),
in a highly disordered phase (Ω2

0 > 0), and at time t = 0
the parameters are suddenly changed, resulting in the
post-quench Hamiltonian H ≡ H(r, u). The quench is
performed towards a disordered or critical phase such
that, in the absence of symmetry-breaking fields, the or-
der parameter φ̄(t) ≡ 〈φ〉 vanishes during the dynamics.
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H for u = 0 as well as H0 can be diagonalized in momen-
tum space in terms of two sets of creation/annihilation
operators with dispersion relation ωk(r) =

√
k2 + r ≡ ωk

and ωk(Ω2
0) ≡ ω0

k, respectively, where k is the modulus
of the momentum. By requiring the continuity of φ and
Π during the quench Ω2

0 → r, these two sets of operators
are related by a Bogoliubov transformation [60]. The rel-
evant two-time correlation functions which characterize
the ensuing dynamics are the retarded and the Keldysh
nonequilibrium Green’s functions [61], defined respec-
tively as iGαβ,R(1, 2) = ϑ(t1 − t2)〈[φα(1), φβ(2)]〉 [where
ϑ(t > 0) = 1 and ϑ(t < 0) = 0] and iGαβ,K(1, 2) =
〈{φα(1), φβ(2)}〉, with n ≡ (xn, tn) and α, β specifying
the components of the field. These functions are non-zero
only for α = β and they do not depend on α in the sym-
metric phase, i.e., Gαβ,K/R = δαβGK/R. Their Fourier
transforms read:

GR(k, t1, t2) = −ϑ(t−)
sin(ωkt−)

ωk
, (2)

iGK(k, t1, t2) =
K+ cos(ωkt−) +K− cos(ωkt+)

ωk
, (3)

for u = 0, where t± = t1 ± t2 and K±(k) = (ωk/ω
0
k ±

ω0
k/ωk)/2. Note that GK (but not GR) depends on the

pre-quench state and is not TTI. Hereafter we primarily
focus on the case Ω0 � Λ, where Λ is the momentum
cutoff introduced further below; on a lattice, this implies
that the spatial correlation length in the initial state is
smaller than the lattice spacing. As the RG fixed-point
value of r turns out to be of order Λ2 (see further below),
this case actually corresponds to Ω2

0 � r and therefore
to a deep quench of the coefficient of φ2 in Eq. (1). The
stationary part Ω0 cos(ωkt−)/(2ω2

k) of iGK turns out to
have the same form as in equilibrium [60] at a high tem-
perature T = Ω0/4 � Λ (see also Refs. [62, 63]). A
similar conclusion holds for the (non-thermal) occupa-
tion number nk of the post-quench momenta, which is
approximately thermal for k � Ω0. Accordingly, the
behavior of the system after the quench is expected to
bear some similarities to the equilibrium one at temper-
ature T . Depending on d and N , the latter encompasses
an order-disorder transition at r = r∗eq(T ) [64–66] which
displays the critical properties of a classical system in
d+ 1 spatial dimensions for T = 0, while those of a clas-
sical system in d dimensions for T > 0 because, in this
case, the additional dimension has a finite extent T−1.
On this basis, after the quench, one heuristically expects
a collective behavior to emerge at some value r∗(Ω0) of r,
as in a d+ 1-dimensional film of thickness ∼ Ω−1

0 . In ad-
dition, the non-stationary part −Ω0 cos(ωkt+)/(2ω2

k) of
iGK (absent in equilibrium) turns out to be responsible
for the short-time universal scaling behavior discussed
below.

The case of a quench which does not affect u, i.e., which
occurs from the ground state of H(r0, u) to H(r, u), was
studied within the mean-field approximation in Ref. [41]

and in the exactly solvable limit N →∞ in Refs. [43–45].
Quite generically it was shown that, upon crossing a line
in the (r0, r)-plane (at fixed u), the system undergoes a
dynamical transition signaled by a qualitative change in
the time evolution of the mean order parameter φ̄. In
particular, starting from a disordered initial state with
φ̄ = 0 (i.e., r0 > 0), this transition occurs at a certain r =
r∗ < 0, below which the system undergoes coarsening.
Although the quench protocol considered here involves a
vanishing pre-quench u, a non-vanishing u solely affects
the effective value of r0 = Ω2

0. Accordingly, we expect
that the DPT associated with the RG fixed point Qdy

discussed further below and emerging after the quench
is closely related to the DPT discussed in Refs. [41, 43–
45]. Indeed, the critical exponent ν which describes the
RG flow around Qdy agrees, up to the first order in the
dimensional expansion and for N → ∞, with the exact
result found in Ref. [45] at the dynamical transition.

Renormalization-group flow.— In order to highlight
the dynamical scaling after the quench and to account
for the effects of non-Gaussian fluctuations, we study per-
turbatively the RG flow of the relevant couplings [61]. In
particular, from the Schwinger-Keldysh action associated
with H in Eq. (1) we determine the effective action for
the “slow” modes by integrating those with a wavevector
k within a shell of infinitesimal thickness just below the
cutoff Λ. Subsequently, spatial coordinates, time, and
fields are rescaled in order to restore the initial cutoff Λ:
from the resulting coupling constant one infers the RG
equations [67, 68]. An analogous procedure was recently
carried out for a quench in d = 1 [19, 69], for driven quan-
tum systems in d > 1 (see, e.g., Refs. [70, 71]), and for
quantum impurities (see, e.g., Refs. [53, 54]). At one loop
and for times larger than the microscopic time ' Λ−1

(before which the dynamics is non-universal), the result-
ing RG equations read [72]

dr

d`
= 2r + ad

N + 2

24N
uΛd

2Λ2 + r + Ω2
0

(Λ2 + r)
√

Λ2 + Ω2
0

+O(u2),

(4a)

du

d`
= (dc − d)u− ad

N + 8

24N
u2Λd−4

√
Λ2 + Ω2

0 +O(u3),

(4b)

where ad = 2/[(4π)d/2Γ(d/2)], dc is the upper critical
dimensionality discussed below, and ` > 0 is the flow pa-
rameter which rescales coordinates and times as (x, t) 7→
(e−`x, e−`t). According to this scaling, the RG flow can
be parameterized in terms of the time t elapsed from the
quench by setting ` = `t ≡ ln(Λt). Equations (4) are
actually valid up to a typical time t∗ discussed later, af-
ter which thermalization may take place, according to
the dynamical scenario sketched in Fig. 1. For Ω0 � Λ,
inspection of Eq. (4b) shows that the effective coupling
constant is uΛd−3 and therefore the upper critical di-
mensionality is dc = 3, i.e., the same as in equilibrium at
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FIG. 1. (Color online) A schematic picture of the various tem-
poral regimes which characterize the evolution of the system
after the quench.

T = 0. In the opposite case of a deep quench Ω0 � Λ,
the effective coupling is Ω0uΛd−4 and, correspondingly,
dc = 4 [72]. This kind of dimensional crossover is simi-
lar to the one occurring in equilibrium quantum systems
upon varying T [64–66] (or in classical statistical systems
in spatial confinement, see, e.g., Ref. [73]). Equations (4)
with constant Ω0, dc = 4 (i.e., for a deep quench), and
d < dc admit a non-trivial, stable fixed point Qdy(Ω0) ≡
(r∗dy(Ω0), u∗dy(Ω0)) in the (r, u)-plane, which describes
a dynamical phase transition. In particular, depending
on the initial values (r, u) of the parameters, after the
non-universal transient of duration t ' Λ−1 depicted
in Fig. 1, their post-quench effective values (r(`t), u(`t))
determined by solving Eqs. (4) may approach the fixed
point Qdy characterized by scaling behavior and aging.
When t exceeds t∗, Qdy is generically destabilized as dis-
cussed further below. The RG Eqs. (4) are also very
similar to those of this same quantum system in equi-
librium at temperature T (see, e.g., Ref. [64]) — with
Ω0 playing the role of T — characterized by an equilib-
rium fixed point Qeq(T ) ≡ (r∗eq(T ), u∗eq(T )). Remark-
ably, up to this order in perturbation theory, the critical
exponents ν derived by linearizing these two sets of RG
equations around Qdy and Qeq are the same and equal
νeq = 1/2+ε(N+2)/[4(N+8)]+O(ε2), where ε ≡ dc−d
indicates the deviation from the upper critical dimension-
ality of the model. One can actually define an effective
temperature T = Teff(Ω0) such that the systems which
are critical under equilibrium conditions are also critical
after the quench. This implies that the (linearized) criti-
cal lines of Qdy and Qeq in the (r, u)-plane are the same,
though Qdy(Ω0) 6= Qeq(Teff(Ω0)). Only for Ω0 � Λ,
these two fixed points coincide, with Teff = Ω0/4 and
r∗dy(Ω0) = r∗eq(Teff) = −εΛ2(N + 2)/[2(N + 8)] + O(ε2).
In passing, we mention that the same happens also for
Ω0 � Λ. In this respect and up to this order in per-
turbation theory, the dynamical transition (in the notion
of Refs. [40–42]) has some of the features of the equi-
librium transition occurring at Teff , though differences
could emerge at higher orders in perturbation theory or
in quantities which depend on Qdy or on the post-quench

distribution at short length scales, which is definitely not
thermal [45] (see further below). It also remains to be
seen whether the Teff defined above has any thermody-
namic or dynamic role in the system, e.g., entering into
fluctuation-dissipation relations [74, 75].

The RG Eqs. (4) have been derived under the assump-
tion that inelastic scattering does not occur, at least in
the early stages of the evolution, and that the dynam-
ical exponent keeps its initial value z = 1. In fact, up
to this order in perturbation theory, the tadpole is the
only relevant diagram which is responsible for the oc-
currence of elastic dephasing during the time evolution
and, for a deep quench, it results in the fixed point Qdy

discussed above. However, the RG transformations also
generate relevant dissipative terms which are expected
to drive the system to thermal equilibrium [76, 77]. In
the present case, they appear as secular terms growing
in time [72], eventually spoiling the perturbative expan-
sion (unless they are properly resummed [32, 78, 79]),
and changing the dynamical exponent z towards the dif-
fusive value z ' 2. Nonetheless, these terms, which are
absent immediately after the quench and are therefore
generated perturbatively, turn out to be small at short
times Λt . Λt∗ = 1/(Ω0u

∗
dy) ' ε−1, which include the

range of times within which the short-time scaling behav-
ior associated with Qdy sets in [72]. Note that no dissi-
pative terms are actually generated in the cases studied
in Refs. [43–45], namely in the N → ∞ limit, because
the relevant fluctuations are Gaussian. Accordingly, the
prethermal state is stable at all times and no thermaliza-
tion occurs.

Short-time scaling of various quantities.— The emer-
gence of a short-time scaling after a deep quench is clearly
revealed by a perturbative calculation of iGK and GR
for k = 0, at the critical point Qdy. In fact, it turns
out that for t2 � t1 and up to O(u∗dy

2), GR(0, t1 �
t2) = −t1[1−θ ln(t1/t2)] ' −t1(t2/t1)θ and, analogously,
iGK(0, t1, t2) ' (Ω0/Λ

2)(Λt2)2−2θ(t2/t1)θ−1, where

θ =
N + 2

(N + 8)

ε

4
+O(ε2). (5)

These algebraic dependences on time are similar but not
identical to the ones observed in classical [50] and quan-
tum [55] systems undergoing aging in contact with a ther-
mal bath, with an initial-slip exponent θ. As in classi-
cal dissipative systems, θ emerges because the fields at
t = 0 acquire a different scaling dimension compared
to those at t > 0, due to the breaking of TTI caused
by the quench [80]. In the limit N → ∞, Eq. (5) pre-
dicts the value θ∞ = ε/4 + O(ε2) for the exponent θ of
the very same model studied in Refs. [43–45], although
this universal short-time regime was overlooked by past
studies, and constitutes a central result of our paper.
The algebraic behavior of GR,K discussed above also ap-
pears in the response function −GR as a function of
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FIG. 2. (Color online) Momentum distribution nk after the
quench, as a function of k/Λ � 1 for Λt = 2, 8, 32, 128,
512 (solid lines, from top to bottom). The algebraic short-
and long-time behaviors of nk are highlighted by the upper
∼ k−1 and lower ∼ k−1+2θ dashed lines, respectively. The
inset shows a log-log plot of the scaling function f(x), which
approaches ∼ x−2θ for x . 1 (dashed line). With the purpose
of highlighting the crossover, we set ε = 2 in the perturbative
expressions of these curves.

the spatial distance x = |x1 − x2|. For u = 0, its ex-

pression G
(0)
R (x, t1 − t2) is TTI and shows typical light-

cone dynamics by being enhanced at x = t1 − t2 where

G
(0)
R ∝ −Λ3 [Λ(t1 − t2)]

−3/2
in d = 4, while decaying

rapidly inside the light-cone for x � t1 − t2, and being
vanishingly small outside it for x� t1− t2. At one loop,
GR is found to acquire an algebraic behavior for t2 � t1,

i.e., GR(x = t1 − t2, t2 � t1) ' (t2/t1)θt
−3/2
1 [80]. Anal-

ogously, the dynamics of the order parameter φ̄(t) can
be studied by adding a small symmetry-breaking field
in the pre-quench Hamiltonian H(Ω2

0, 0) → H(Ω2
0, 0) −∫

ddxh1φ1(x), which gives φ̄1(0−) ≡ φ0 = h1/Ω
2
0 � 1.

The time evolution of φ̄1 due to the post-quench Hamil-
tonian H in Eq. (1) (with no symmetry-breaking field) is
determined by [∂2

t +M2(t)− uφ̄2
1/(3N)]φ̄1(t) = 0 where

M2(t) ' r+uφ̄2
1/(2N)+u(N+2)iGK(x = 0, t, t)/(12N).

At criticality r = r∗dy(Ω0) and for times such that Λ−1 �
t� ti where Λti ∼ O(|φ0|−1) one finds M2(t) ' θ/t2 and
therefore φ̄1 ' φ0t

θ [80], i.e., the short-time evolution of
φ̄1 is controlled by θ and corresponds to an initial increase
of the order with time. If the quench occurs slightly away
from criticality, with r = δr + r∗dy, the short-time alge-
braic laws discussed above turn out to be modulated by
oscillations of period ∝ |δr|−νz [80].

Remarkably, the momentum distribution nk of the
quasi-particles also shows signatures of the exponent θ
in the dependence on k at criticality. Immediately af-
ter the quench, nk takes the expected form of a GGE
with a momentum-dependent effective temperature T keff

[62, 81] which becomes independent of k and equal to
Teff(Ω0) for deep quenches. Interactions eventually mod-
ify this behavior. In particular, for a deep quench at
the critical point Qdy, a perturbative calculation yields
nk(t) + 1/2 = (Ω0/Λ)(Λ/k)1−2θf(kt), where the scaling

function f can be consistently estimated up to O(ε) as
the exponential of the one-loop correction and is such
that f(x� 1) ' x−2θ, with a finite value for x� 1. Ac-
cordingly, for fixed t, nk(t)+1/2 as a function of k crosses
over from an algebraic behavior ∼ k−1t−2θ for k . t−1 to
∼ k−1+2θ for k & t−1. This crossover is shown in Fig. 2
along with a plot of f(x). It is interesting to note that
the dynamics of nk(t) in Fig. 2 closely resemble the one
observed at non-thermal fixed points (see, e.g., Ref. [82]).

The scaling properties of GR,K discussed above bear
remarkable differences compared to those in the classical
case: for example, GR decreases ∝ tθ2 upon decreasing
the smaller time t2, whereas the opposite happens in the
corresponding classical response function [50]. Nonethe-
less, the algebraic time dependence of φ̄ is the same as
in the classical case and, in addition, the corresponding
exponent θ has the same value up to one-loop in spite
of the fact that the dynamics are significantly different.
Indeed here the dynamical exponent is z = 1 and energy
is conserved, whereas z > 1 in the classical case with a
thermal bath.

The universal short-time behavior described here could
be investigated, for the O(N = 2) universality class, in
experimental realizations of the Bose-Hubbard model via
ultra-cold atoms in optical lattices [5, 83, 84]. Alterna-
tively, the relative phase of tunnel-coupled condensates is
known to be effectively described by Eq. (1) with N = 1
and in d = 1 its dynamics has already been successfully
studied in experiments [85, 86]. Similar protocols can
also be adapted for fluids of light in non-linear optical
systems [87]. Finally, recent experimental realizations of
systems with SU(N) symmetry [88, 89] could be used in
order to investigate the emergence of a short-time univer-
sal collective behavior in systems governed by an effective
theory different from Eq. (1).

Conclusions.—The RG analysis presented here demon-
strates in a simple setting the emergence of a novel scaling
behavior after a deep quench of an isolated quantum sys-
tem. This phenomenon, due entirely to elastic dephasing,
is an example of a macroscopic short-time non-thermal
fixed point; the corresponding behavior of various phys-
ical observables is controlled by a universal exponent θ,
which we calculated at the first order in a dimensional
expansion [see Eq. (5)]. The non-thermal fixed point is
eventually destabilized towards a thermal regime, driven
by dissipative terms generated in the effective action.

As the scaling regime unveiled here occurs at macro-
scopic short times, its numerical investigation should not
be hampered by the computational limitations which typ-
ically prevent the investigation of the post-quench dy-
namics at long times.
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100601 (2008).
[27] G. Goldstein and N. Andrei, arXiv:1405.4224.
[28] B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos,
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