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We study the entanglement spectrum of a translationally-invariant lattice system under a random
partition, implemented by choosing each site to be in one subsystem with probability p ∈ [0, 1]. We
apply this random partitioning to a translationally-invariant (i.e., clean) topological state, and
argue on general grounds that the corresponding entanglement spectrum captures the universal
behavior about its disorder-driven transition to a trivial localized phase. Specifically, as a function
of the partitioning probability p, the entanglement Hamiltonian HA must go through a topological
phase transition driven by the percolation of a random network of edge-states. As an example, we
analytically derive the entanglement Hamiltonian for a one-dimensional topological superconductor
under a random partition, and demonstrate that its phase diagram includes transitions between
Griffiths phases. We discuss potential advantages of studying disorder-driven topological phase
transitions via the entanglement spectra of random partitions.
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In recent years, systematic studies of quantum en-
tanglement have greatly advanced our understanding of
topological states of matter that cannot be adiabati-
cally connected to a trivial product state. For example,
topological entanglement entropy is directly related to
the total quantum dimension of fractional quasi-particles
[1, 2]. More recently, there has been a growing inter-
est in utilizing the full entanglement spectrum to ex-
tract other universal properties [3], especially in chi-
ral topological phases (e.g., quantum Hall states) or
symmetry-protected topological phases (e.g., topological
insulators). As a common feature, these phases have
topologically-protected gapless excitations on a physical
boundary. When the ground state is spatially cut into left
and right halves, the low-lying part of the entanglement
spectrum shares the same universal characteristics as the
energy spectrum of these boundary excitations [3–9].

A recent work studied the entanglement spectrum ob-
tained from an extensive partition that divides a system
into two extensive subsystems [10]. For topological states
that support gapless edge states, the corresponding en-
tanglement spectrum was found to encode a wealth of
information about the universal quantum critical behav-
ior that would arise at its phase transition to a trivial
direct-product state, despite the fact that the system un-
der study itself is non-critical. It has been further shown
that the entanglement spectra of extensive partitions can
be directly computed from the matrix product state or
tensor network representation of ground-state wavefunc-
tions [11], which may offer insights into topological phase
transitions [12–15].

In this Letter, we study the entanglement spectum
generated from a random partition that spatially bipar-
titions a system in a probabilistic manner: each physi-
cal site is chosen to be in subsystem B (or A) with a
probability p ∈ [0, 1] (or 1 − p). We apply this random
partition to a translationally-invariant (i.e., clean) topo-

logical state, and argue on general grounds that the cor-
responding entanglement spectrum reproduces the uni-
versal behavior about its disorder-driven transition to a
trivial localized phase. As an example, we analytically
derive the form of the entanglement Hamiltonian for a
clean one-dimensional topological superconductor under
random partition, and establish the entanglement phase
diagram as a function of probability p, finding agreement
with the physical phase diagram of a disordered super-
conductor [16].

We begin by considering a translationally-invariant
topological state, which can be either a topological in-
sulator/superconductor or a bosonic symmetry-protected
topological phase. It has been shown [10] that upon vary-
ing the geometry of A and B subsystems in an exten-
sive partition, the corresponding entanglement Hamilto-
nian undergoes a gap-closing transition that lies in the
same universality class as the transition to a topologically
trivial state realized by tuning the physical Hamiltonian.
This intriguing connection is absent when applying the
extensive partitioning to a topologically trivial wavefunc-
tion, and follows from the nature of topological phase
transitions, which are driven by the percolation of gapless
edge-states. For example, the transition from a quantum
Hall insulator to a trivial insulator is described by the
quantum percolation of chiral edge-states in a Chalker-
Coddington network model [17]. Extensive partitioning
of a quantum Hall insulator precisely creates, in the low-
lying part of the entanglement spectrum, a network of
chiral edge states moving along the percolating borders
between A and B. This mapping explains why topolog-
ical phase transitions and entanglement spectra of ex-
tensive partitions are intimately related. It further moti-
vates us to study the random partitioning of a topological
ground-state, for which the entanglement spectrum is ex-
pected to mimic the network model with randomness and
thus connect with the localization transition.
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We define the probabilistic partitioning of a clean,
topological state |Ψ〉 as follows. We independently choose
each physical site in the full system to be in the B subsys-
tem with probability p; the remaining sites are defined to
be in subsystem A. A partial trace of the density matrix
over sites in subsystem B yields a reduced density matrix
for the A subsystem ρA ≡ TrB |Ψ〉〈Ψ|, which can be in-
terpreted as the thermal density matrix at temperature
T = 1 for an entanglement Hamiltonian HA: ρA ≡ e−HA .

Our goal is to determine the phase diagram of HA as
a function of the partitioning probability p. First, when
p→ 0, the probabilistic partitioning yields a vanishingly
small B subsystem, with most sites belonging to the A
subsystem. In this limit, the ground-state of the entan-
glement Hamiltonian, denoted by |ψA〉, must share the
same topological index as the original ground state |Ψ〉.
As p → 1, however, most sites become part of the B
subsystem, so that |ψA〉 becomes a trivial product state
over the disjoint regions of the A subsystem, and hence
must be topologically trivial. Since the topological char-
acter of |ψA〉 changes as we tune the partitioning proba-
bility p, we conclude that the entanglement Hamiltonian
HA must go through a phase transition at some critical
partitioning probability p = pc. Physically, the transi-
tion is driven by the percolation of a random network
of gapless edge-states propagating around traced-out re-
gions of the B subsystem, as in the case of the afore-
mentioned checkerboard-type extensive partition. Even
though the original state |Ψ〉 is translationally-invariant,
the probabilistic partitioning procedure introduces ran-
domness into the entanglement Hamiltonian HA, with
the probability p effectively tuning disorder strength.

The phase diagram of the entanglement Hamiltonian
as a function of p satisfies additional constraints. For a
given bipartition, the eigenvalue spectra of the reduced
density matrices ρA and ρB are identical, though their
Hilbert spaces are distinct. By definition, for a fixed par-
titioning probability p, the B subsystem is, on average,
equivalent to the A subsystem obtained with a partition-
ing probability 1 − p. Therefore, the ensemble-averaged
spectra of the entanglement Hamiltonians HA(p) and
HA(1 − p) must be identical. As a result, the presence
of a phase transition in the entanglement Hamiltonian
with partition probability p implies another transition at
probability 1−p. In the case where the topological index
of |Ψ〉 cannot be evenly divided between two subsystems,
as is the case for topological insulators with a Z2 index
or quantum Hall insulators with an odd Chern number,
we further expect that HA exhibits at least a topologi-
cal phase transition at partitioning probability p = 1/2,
when the two subsystems are equivalent on average.

For the remainder of the paper, we apply our ran-
dom partitioning procedure to Kitaev’s model [18] for
a clean one-dimensional p-wave superconductor, extract
the phase diagram of the entanglement Hamiltonian as a
function of partitioning probability, and demonstrate its

FIG. 1: The two ground-states of the Kitaev p-wave supercon-
ductor with dimerization of Majorana fermions across (top)
and within (bottom) lattice sites, corresponding to a TSC and
a trivial p-wave superconductor, respectively.

correspondence with a disordered superconductor. The
Kitaev model is described by the Hamiltonian

H =− w
∑
n

(
c†n+1cn + h.c.

)
+
∑
n

(
∆c†n+1c

†
n + h.c.

)
− µ

∑
n

(
c†ncn −

1

2

)
(1)

with fermion operators cn, c†n satisfying canonical anti-
commutation relations. To simplify the calculation be-
low, we restrict ourselves to the case where w = ∆ ∈ R.
Introducing two species of Majorana fermions at each lat-
tice site γn ≡ cn+c†n and χn ≡ (c†n−cn)/i, we may write
the Hamiltonian as

H =
iw

2

∑
n

[ηγnχn + χnγn+1] (2)

where the dimensionless parameter η ≡ µ/2w distin-
guishes the topologically trivial strong pairing phase
(|η| > 1) and topologically non-trivial weak pairing phase
(|η| < 1). As shown in Figure 1, in the topological super-
conductor (TSC) phase, Majorana fermions couple more
strongly across two adjacent lattice sites than within a
lattice site, leading to two unpaired Majorana fermions at
the ends of the chain. In the extreme limit when η = 0 in
the topological phase, pairs of Majorana fermions within
lattice sites completely decouple. We will refer to this
special point η = 0 as the Kitaev limit of the Hamilto-
nian (2), which proves to be a useful starting point for
our analysis below.

Let |Ψ(η)〉 be the ground-state of the Kitaev Hamilto-
nian with parameter |η| < 1 in the topological regime.
Applying the random partitioning procedure to this
ground-state, we trace over physical lattice sites (each
of which contains two Majorana fermions) with probabil-
ity p, and obtain an entanglement Hamiltonian HA(η; p).
Clearly, HA(η; p) contains random couplings between
sites in the A subsystem, and mimics the physical Hamil-
tonian of a disordered superconductor, with the parti-
tioning probability p playing the role of disorder strength.

To derive HA(η; p), we note that the entanglement
Hamiltonian of a free fermion system such as the Ki-
taev model can only contain fermion bilinear terms [19].
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The spectrum of the entanglement Hamiltonian over an
N -site subsystem A can be determined from the N ×N
correlation matrices in the original ground-state Cnm ≡
〈Ψ | c†ncm |Ψ〉 and Fnm ≡ 〈Ψ | c†nc†m |Ψ〉, by solving the
eigenvalue problem [19]:

(2Ĉ − 2F̂ − 1)(2Ĉ + 2F̂ − 1)φ` = tanh2
(ε`

2

)
φ` (3)

where ε` is an eigenvalue of the entanglement Hamil-
tonian, with eigenvector φ`. Rewriting the complex
fermions in terms of Majorana operators, we may define
the 2N×2N skew-symmetric correlation matrix Γ̂ for the
Majorana fermions which has eigenvalues ± tanh(ε`/2)
[20, 27]. Since we are interested in the low-lying part of
the entanglement spectrum ε` → 0, tanh(ε`/2) → ε`/2
and hence Γ̂ satisfies:

2Γ̂φ` ≈ ±ε`φ` (4)

Therefore, the correlation matrix for Majorana fermions
in the original ground-state is equivalent to the entangle-
ment Hamiltonian acting on low-lying states ε` → 0 in
the entanglement spectrum. By building the correlation
matrix for Majorana fermions in the ground-state |Ψ(η)〉,
we may now construct the entanglement Hamiltonian for
the Kitaev model after a random partition.

For arbitrary η, performing a random partition will
generally produce an entanglement Hamiltonian with
highly non-local couplings, due to the non-vanishing
correlations between distant Majorana fermions in the
ground state. However, for a sufficiently small |η|, i.e.,
when the system is close to the Kitaev limit, we may
derive the form of HA(η; p) analytically. Let us first con-
sider the case η = 0, when pairs of Majorana fermions
decouple. A single cut between two adjacent lattice sites
then produces, in the entanglement spectrum of the A
subsystem, an unpaired Majorana fermion at the end of
A. Aside from this, the entanglement spectrum at η = 0
is identical to the energy spectrum (properly normal-
ized) of decoupled Majorana pairs in the Kitaev Hamil-
tonian. Therefore, performing a random partition with
several cuts will yield an A subsystem that consists of dis-
joint segments, each of which hosts unpaired Majorana
fermions at the two ends.

We now explicitly construct the entanglement Hamil-
tonian HA(η; p) near the Kitaev limit by perturbing away
from η = 0. As one may expect, a small η induces a
small coupling between the unpaired Majorana fermions
at ends of disjoint segments with the rest of the A sub-
system. By an analytical calculation [27], we find that
couplings between two Majorana fermions inHA(η; p) de-
crease exponentially with their separation in the original
lattice. Therefore, it suffices to include nearest-neighbor
couplings within subsystem A only in HA(η; p).

Two types of nearest-neighbor couplings appear in
HA(η; p). First, to leading order in η, couplings belong-
ing to a connected sequence of sites in the A subsystem

FIG. 2: The entanglement Hamiltonian HA(η; p), derived
in the Kitaev limit |η| << 1, consists of several couplings
between adjacent Majorana fermions in the subsystem A.
Blue and green hoppings between nearest-neighbor Majorana
fermions appear with dimensionless coupling 1 and η, respec-
tively. Tracing over N lattice sites induces a coupling O(ηN )
between the dangling Majorana modes on the adjacent chains
in the A subsystem.

are identical to those appearing in the original Kitaev
Hamiltonian, after a proper normalization. Second, cou-
plings between Majorana fermions belonging to different
segments in the A subsystem are computed from their
two-point correlation function. If a series of N consecu-
tive lattice sites − between sites m− 1 and m+N − are
determined to be within the B subsystem and traced over
in the random partition, a coupling will be induced be-
tween the Majorana fermions at the right and left edges
of the two lattice sites, which is found to be proportional
to C(N) ≡ 〈Ψ(η) | iχm−1γm+N |Ψ(η)〉. An explicit cal-
culation [27] yields the result that at long distances, i.e.
large N ,

C(N) ∼ ηN/
√
N +O(ηN+1) (5)

We then conclude that the entanglement Hamiltonian
takes the form:

HA(η; p) =
iw

2

∑
n∈A

ηγnχn +
iw

2

∑
m>n∈A

fnmχnγm (6)

where fnm has non-zero elements fn,n+1 = 1 and fnm =
C(m − n − 1) if n and m label lattice sites at the right
and left edges of two adjacent segments in the A subsys-
tem. The couplings in the entanglement Hamiltonian are
illustrated in Fig. 2.

We now demonstrate that the topological character of
the entanglement Hamiltonian (6) changes at a critical
partitioning probability p = 1/2. Specifically, we demon-
strate that when p < 1/2 the entanglement Hamiltonian
in the A subsystem supports an exponentially localized
edge-state |ψ〉 at zero energy and corresponds to a topo-
logical superconductor phase, but that such a state does
not exist for p > 1/2.

To see this, we first note that a random partitioning of
a chain with probability p will produce an A subsystem
that consists of clusters of lattice sites. Let us now intro-
duce a boundary in the A subsystem and explicitly con-
struct a zero-energy state of the entanglement spectrum
under a random partition. Recall that an exact zero-
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energy left-boundary eigenstate of the translationally-
invariant Kitaev Hamiltonian (2) takes the form |ψ〉 =
(1, 0, η, 0, η2, 0, . . .), with |η| < 1, in the basis of Majo-
rana sites on a semi-infinite chain [18]. We find a similar
zero-energy state can be obtained for the entanglement
Hamiltonian (6) of the A subsystem, which consists of
consecutive clusters of sites of lengths {`k}, each sepa-
rated by distance {dk}. An edge-state of the entangle-
ment Hamiltonian now takes the form:

|ψA〉 ∝

(
1, 0, η, 0, . . . , η`1 , 0,︸ ︷︷ ︸

1st cluster of sites

η`1

C(d1)
, 0, . . . ,

η`1+`2

C(d1)
, 0, . . .

N−1∏
k=1

η`k

C(dk)
, 0, . . . , η`N

N−1∏
k=1

η`k

C(dk)
, 0︸ ︷︷ ︸

Nth cluster of sites

, . . .

)
(7)

in a basis of Majorana sites in A. From the form of
the two-point function computed previously we see that
amplitude for the edge-state on the first Majorana site
in the Nth cluster of the A subsystem is given by:

ψN =

N−1∏
k=1

η`k

C(dk)
∼
N−1∏
k=1

η`k−dk = η
∑

k `k−
∑

k dk (8)

Now, if we consider the amplitude at the end of the chain,
we see that ψN → ηLA−LB where LA and LB are the sizes
of the A and B subsystems, respectively. For a system of
size L, regardless of the probability distributions for the
lengths {`k} and {dk}, the sizes of the two subsystems
are determined from the partitioning probability to be
LA = (1−p)L and LB = pL in the thermodynamic limit
L→ +∞ so that

ψN →
[
η1−2p

]L
(9)

When p < 1/2 we observe that the state (7) is an ex-
act zero-energy eigenstate of the entanglement Hamilto-
nian. When p > 1/2, however, the amplitude at the end
of the chain diverges and the above state becomes non-
normalizable for an infinite set of clusters.

The above calculation of an edge-state immediately
implies that the entanglement Hamiltonian HA changes
from being topologically non-trivial at partitioning prob-
ability p < 1/2 to trivial when p > 1/2, and hence
must be critical at the point p = 1/2. This transition
can also be understood by integrating out the Majorana
fermions in the interior of the clusters in the A subsys-
tem and constructing an effective entanglement Hamil-
tonian Heff

A acting exclusively on the dangling Majorana
modes at the ends of each cluster. In this case, Heff

A will
describe a dimerized Majorana fermion chain, in which
two adjacent Majorana fermions correspond to sites sep-
arated by lengths {...`k, dk, `k+1, dk+1...} in the origi-
nal lattice. The nearest-neighbor hopping in A, which
is proportional to the corresponding correlation func-
tion in the ground-state, is determined by the lengths

{dk} for intra-cluster hoppings or {`k+1} for inter-cluster
hoppings. At p = 1/2, the A and B subsystems are
equivalent on average, so that the length distributions
{`k} and {dk} are identical, and the ensemble of Heff

A is
translationally-invariant, instead of dimerized. The cor-
responding ground state of a one-dimensional Majorana
fermion chain is well-known to be critical [21].

We now demonstrate that in the vicinity of p = 1/2,
the entanglement Hamiltonian is in Griffiths phases,
characterized by a singularity in the density of states at
zero energy due to the proliferation of segments of the
topologically-ordered or trivial phase, respectively. Re-
call that when p < 1/2, near p = 1/2, the characteristic
size of clusters in the A subsystem is larger than that of
the B subsystem. Then, the dangling Majorana modes
on adjacent clusters in the A subsystem, separated by
distance x will mix to form localized bound-states with
finite energy ε ∼ exp[c x ln |η|], with c > 0 a constant.
Since the probability of such a configuration of sites in
the A subsystem is px(1− p)2, the contribution of these
low-energy modes to the density of states in the entan-
glement ground-state is [16]:

ρ(ε) =

∫ ∞
0

dx (1− p)2px δ(ε− ec x ln |η|) ∝ 1

ε1−β(p)
(10)

with the non-universal exponent β(p) ≡ ln(p)/c ln |η|.
The power-law singularity in the density of states sig-
nals the presence of a Griffiths region for an entangle-
ment ground-state with p near 1/2, due to the prolif-
eration of low-energy configurations of Majorana edge-
modes dimerizing across lattice sites. p > 1/2 also corre-
spond to a Griffiths phase, with exponent β(1 − p) due
to Majorana modes at the ends of the same chain form-
ing bound-states with exponentially small energy. The
two Griffiths phases at p < 1/2 and p > 1/2 are both
characterized by a power-law singularity in the density
of states at zero energy, but are topologically distinct, as
shown by the presence and absence of zero-energy Majo-
rana fermion at the boundary.

To summarize, we have introduced a random partition-
ing scheme to study the disorder-driven quantum critical
behavior of a topological phase; applying this procedure
to the one-dimensional p-wave superconductor yields an
interesting phase diagram, consisting of two topologically
distinct Griffiths phases separated by a critical point. In
addition to its theoretical novelty, studying a disorder-
driven topological phase transition via quantum entan-
glement poses distinct advantages over conventional nu-
merics, especially when dealing with interacting systems.
First, our approach only requires knowledge of a single
translationally invariant ground state in the absence of
disorder, while a numerical study of a disordered quan-
tum critical point requires knowledge of the full low-lying
spectrum, for every disorder realization. Second, the en-
tanglement spectrum obtained from a random partition
exhibits a duality between the partitioning probability p
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and 1−p. This guarantees a topological phase transition
takes place at p = 1/2 in topological states with an irre-
ducible topological index [10], as shown by the above ex-
ample. In contrast, identifying the location of the phase
transition point is highly non-trivial in direct numerical
studies of disordered Hamiltonians.

The random-partitioning scheme can be used straight-
forwardly to study spin-chains [22, 23], as well as higher-
dimensional systems to numerically extract critical ex-
ponents of disorder-driven phase transitions, such as lo-
calization transitions in all Altland-Zirnbauer symmetry
classes of non-interacting topological phases [24, 25]. It
will be interesting to see whether our method applies
to topological crystalline insulators, whose entanglement
spectra show nontrivial features [26]. It might also be
interesting to study the entanglement spectrum of frac-
tional topological phases under a random partition, al-
though the connection with topological phase transitions
appears to be less direct.
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