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We study nonequilibrium dynamics of an electronic model with competing spin density wave and
unconventional superconductivity in the context of iron pnictides. Focusing on the collisionless
regime we find that magnetic and superconducting order parameters may coexist dynamically af-
ter the sudden quench even though the equilibrium thermodynamic state supports only one order
parameter. We consider different initial conditions concomitant with the phase diagram and in a cer-
tain regime identify new oscillatory amplitude modes with incommensurate frequencies for magnetic
and superconducting responses. At the technical level we solve equations of motion for the elec-
tronic Green’s functions and self-consistency conditions by reducing the problem to a closed set of
Bloch equations in the pseudospin representation. For the certain quench scenarios the nonadiabatic
dynamics of pairing amplitude is completely integrable and in principle can be found exactly.

PACS numbers: 71.45.-d, 74.40.Gh, 74.70.Xa

I. INTRODUCTION

Conventional superfluids and superconductors host
various collective oscillations. The best studied exam-
ples include phase-mode of the order parameter (OP),
so-called Anderson-Bogolubov mode,2,65 and amplitude
oscillations in the magnitude of the superconducting gap,
so-called longitudinal Schmid mode.3,4 In the charged su-
perfluids the coupled oscillations in the phase of the order
parameter and the electric field appear because of gauge
invariance. Physically, this mode corresponds to the bal-
anced oscillations between normal current and supercur-
rent, and is called in the literature the transverse Carlson-
Goldman mode.5,6 The early works on superconducting
modes were comprehensively summarized by Artemenko
and Volkov,7 and Kulik, Entin-Wohlmant and Orbach,8

including studies of disorder scattering effects and charge
imbalance on the dispersion and attenuation of collective
oscillations.

In multicomponent systems or superconductors with
unconventional symmetry of the OP the plethora of col-
lective effects is even richer.9–14 In multiband supercon-
ductors such as MgB2 the oscillations of the phase dif-
ference of OPs between the two bands is charge neutral
in contrast to the phase average plasma oscillations. A
phase difference low frequency Leggett mode15 is an in-
gap weakly damped excitation observed in Raman re-
sponse of MgB2.16 It is natural to look for Leggett-
like and Carlson-Goldman modes in multiband and iron-
pnictide superconductors (FeSCs).17,18 Normally, these
modes are overdamped with frequencies well within the
quasiparticle continuum. There are however important
exceptions to this rule. A typical setting for this scenario
is the change of the OP symmetry controlled by exter-
nal parameters. In many cases such transformation pro-
ceeds via an intermediate phase with broken time reversal

symmetry (TRS).19–27 Soft Leggett-like modes are found
at the boundaries of the intermediate lower symmetry
phase. The transformation of this kind was very recently
induced by pressure in KFe2As2,28 and TRS breaking
along with Leggett-like modes await experimental detec-
tion.

A different kind of collective excitations are the
Bardasis-Schrieffer modes.29,30 These modes are carried
by Cooper pairs accelerated to a higher angular momen-
tum states and manifest as in-gap excitons. Since all but
s-wave channels are charge neutral Bardasis-Schrieffer
modes remain low energy in-gap excitations even in the
presence of Coulomb repulsion. As photons transfer the
angular momentum to Cooper pairs, the Raman spec-
troscopy31,32 is ideally suited to probe Bardasis-Schrieffer
modes.33–37

Interestingly, Raman spectroscopy was originally sug-
gested as a tool to detect amplitude Higgs-modes,
whereas they were indirectly observed thanks to coupling
to the intermediary collective excitations.38–40 More re-
cent Raman,41 terahertz pump-probe spectroscopy,42

combined tunneling and optical conductivity measure-
ments43 provide unambiguous direct tests of massive
Higgs modes in superconductors. In a parallel vein, co-
herent amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy and
lattice modulation.44,45 All these findings stimulate a lot
of theoretical efforts, see recent review article Ref. [46]
and references therein.

Since the pioneering work by Volkov and Kogan4 per-
sistent oscillations of the superconducting OP has been
predicted to appear in a response to a fast nonadiabatic
perturbation (quench) in the collisionless regime.47–52

The mode frequency is determined by the supercon-
ducting gap whereas oscillations are superimposed with
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slow power-law decay. In contrast, theoretical studies
of nonequilibrium dynamics after ultrafast excitation in
complex superconducting systems hosting coexisting OPs
are at their early stages with only few recent results.53–55

The main thrust of this paper is to provide detailed de-
scription of coupled dynamics of amplitudes modes in the
context of FeSC systems. Broadly formulated our theory
may shed new light on hotly debated issue of the struc-
ture of OP and closely related question of competition
between magnetism and superconductivity in FeSCs as
seen out of equilibrium. Our motivation comes from the
recent ultrafast measurements that reveal dynamic co-
existence and interplay of multiple order parameters in
various strongly correlated materials.56–60

This paper is organized as follows. In Sec. II we
adopt simplest model of iron-pnictides where dynamics
of competing orders is already found to display nontriv-
ial character. We briefly discuss ground state proper-
ties of this model and derive equations of motion for
the Green’s functions in the pseudospin representation.
In Sec. III we numerically integrate these coupled equa-
tions together with self-consistency constraints, and dis-
cuss emergent dynamic coexistence of superconductivity
and magnetism. Sec. IV is devoted to the analysis of a
special case when dynamics of the order parameters is in-
tegrable. We summarize our results in Sec. V and place
our work into the perspective of future studies.

II. MODEL

To study a dynamical interplay between superconduc-
tivity and spin-density wave order, we use the minimal
two-band model previously introduced in the context of
iron pnictide superconductors. Following Refs. [61,62] we
consider the Hamiltonian

Ĥ = Ĥ0 + Ĥ∆ + Ĥm. (1)

The first term accounts for the electron- and hole-like
two-dimensional (2D) fermionic bands:

Ĥ0 =
∑
k

{
ξkcc

†
kαckα + ξk′ff

†
k′αfk′α

}
, (2)

where f†k′α, fk′α (k′ = k −Q) are creation and annihi-
lation operators for the fermions with spin-projection α
near an electron pocket Q = (0, π) of the two-dimensional
Brillouin zone with dispersion

ξkf =
k2

2
− µf , (3)

the chemical potential µf and we set electron’s mass to

one. Similarly, c†kα, ckα describe the fermions near the
Γ = (0, 0) point with the hole band with chemical poten-
tial µc and dispersion

ξkc = µc −
k2

2
. (4)

The second term in Eq. (1) accounts for the supercon-
ducting pairing. Within the mean-field approximation
we have

Ĥ∆ =
1

2

∑
k

{
∆c
αβc
†
kαc
†
−kβ + ∆f

αβf
†
kαf

†
−kβ + h.c.

}
, (5)

where ∆c,f
αβ are the superconducting order parameters de-

fined for each band:

∆c
αβ = gsc

∑
k

(iσy)αβ(iσy)†γδ〈f−kγfkδ〉,

∆f
αβ = gsc

∑
k

(iσy)αβ(iσy)†γδ〈c−kγckδ〉,
(6)

and gsc > 0 is the superconducting coupling. Finally, the
last term in Eq. (1) describes an onset of the commen-
surate spin-density wave (SDW) order, which within the
mean-field approximation is described by

Ĥm =
1

2

∑
k

mαβ

{
f†kαckβ + c†kαfkβ

}
+ h.c. (7)

where the SDW order parameter is determined self-
consistently via

mαβ = −gm
2

∑
p

~σαβ · ~σ†γδ〈c
†
pγfpδ〉, (8)

and gm > 0 is the corresponding coupling constant. In
what follows, without loss of generality, we assume that
(i) there is no mismatch between the hole and electron
Fermi surface, µc = µf ; (ii) mαβ = mzσ

z
αβ and (iii)

the superconductivity is of the s± type, so that ∆c,f
αβ =

∆c,f (iσy)αβ and

∆c = −∆f = ∆. (9)

Below we briefly review the ground state properties of the
mean-field model (1) for the s± superconducting pairing.

A. Correlation functions and pseudospins

In order to obtain the equations of motion, which de-
termine the nonadiabatic dynamics for superconducting
and magnetic order parameters, we introduce the four-
component spinor

Ψ†kα =
(
c†kα, c−kα, f

†
kα, f−kα

)
. (10)

The corresponding real-time correlation functions are

Ĝαβ(k; t1, t2) = −i
〈
T̂
{

Ψkα(t1)Ψ†kβ(t2)
}〉

. (11)

We further consider normal-G and anomalous-F propa-
gators for c-fermions:

Gcαβ(k; t1, t2) = −i〈T̂{ckα(t1)c†kβ(t2)}〉,

F cαβ(k; t1, t2) = −i〈T̂{ckα(t1)c−kβ(t2)}〉,

F
c

αβ(k; t1, t2) = −i〈T̂{c†−kα(t1)c†kβ(t2)}〉,

G̃cαβ(k; t1, t2) = −i〈T̂{c†−kα(t1)c−kβ(t2)}〉,

(12)
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and analogously for f -fermions. In addition, we also con-
sider the mixed correlators

Gmαβ(k,q; t1, t2) = −i〈T̂{ckα(t1)f†kβ(t2)}〉,

G̃mαβ(k; t1, t2) = −i〈T̂{fkα(t1)c†kβ(t2)}〉.
(13)

The correlation functions above depend on t1 and t2.
However, the magnetic and superconducting order pa-
rameters are determined at t1 = t2 and therefore will
depend on t = (t1 + t2)/2 only. Accordingly, we intro-
duce the following pseudospin variables:65

K−c (k, t) = Kx
c (k, t)− iKy

c (k, t) = iF c↓↑(k, t),

K−f (k, t) = Kx
f (k, t)− iKy

f (k, t) = iF f↓↑(k, t),

K+
f (k, t) = iF

f

↑↓(k, t), K+
c (k, t) = iF

c

↑↓(k, t),

Kz
c,f (k, t) = − i

2

∑
α=↑,↓

Gc,fαα(k, t).

(14)

Similarly, we introduce the additional pseudospins ~S(k, t)

and ~N(k, t), which are defined by the mixed averages
from Eq. (13):

Sx(k, t) =
i

2

∑
α=↑,↓

{
Gmαα(k; t) + G̃mαα(k; t)

}
,

Sy(k, t) = −1

2

∑
α=↑,↓

sign(α)
{
Gmαα(k; t) + G̃mαα(k; t)

}
,

Sz(k, t) =
i

2

∑
α=↑,↓

sign(α)
{
Gmαα(k; t) + G̃mαα(k; t)

}
,

Nx(k, t) =
1

2

∑
α=↑,↓

{
Gmαα(k; t)− G̃mαα(k; t)

}
,

Ny(k, t) =
i

2

∑
α=↑,↓

sign(α)
{
Gmαα(k; t)− G̃mαα(k; t)

}
,

Nz(k, t) =
1

2

∑
α=↑,↓

sign(α)
{
Gmαα(k; t)− G̃mαα(k; t)

}
.

(15)

Finally, we will also need pseudospins ~L(k, t) which are
defined according to

Lx(k, t) = − i
2

∑
α=↑,↓

{
Gcαα(k; t) +Gfαα(k; t)

}
,

Ly(k, t) =
1

2

∑
α=↑,↓

sign(α)
{
Gcαα(k; t) + G̃fαα(k; t)

}
,

Lz(k, t) = − i
2

∑
α=↑,↓

sign(α)
{
Gcαα(k; t) +Gfαα(k; t)

}
.

(16)

Equations of motion for the pseudospins can be ob-
tained from the equations of motion for the fermionic
operators. Using the Heisenberg representation

ckα(t) = eiĤtckαe
−iĤt (17)

we have

i
∂

∂t
ckα = ξc(k)ckα + ∆c

ααc
†
−kα +

∑
β

mαβfkβ ,

i
∂

∂t
c†kβ = −ξc(k)c†kβ − c−kβ∆

c

ββ −
∑
α

f†kαmαβ ,

(18)

where we used ξc(k) = ξc(−k). Similarly, the equations
for the f -operators are

i
∂

∂t
fkα = ξf (k)fkα + ∆f

ααf
†
−kα +

∑
β

mαβckβ ,

i
∂

∂t
f†kβ = −ξf (k)f†kβ −∆

f

ββf−kβ −
∑
α

c†kαmαβ .

(19)

Here ∆ denotes the complex conjugate of ∆ and α = −α.
From these equations we derive the equations of motion
for the correlators above.

B. Ground state

In this subsection we discuss the ground state prop-
erties of the mean-field Hamiltonian (1). Generally, the
ground state properties can be derived by analyzing the
free energy within the Luttinger-Ward’s generating func-
tional method.63 For convenience we adopt the pseu-
dospin variables. The distribution of the pseudospins

variables ~Kkc,f with respect to momentum follows from
the mean-field theory. For example, for the Kz

kf,c we find

Kz
kf,c =

ξkc,fm
2
z − ξkf,c

(
ξ2
kc,f + ∆2 + |Ek+Ek−|

)
2
(
E2

k+|Ek−|+ E2
k−|Ek+|

) .

(20)

Here we have introduced the renormalized quasiparticle
spectrum

Ek± =

√
ξ2
k + δ2

k +m2
z + ∆2 ± 2|δk|

√
m2
z + ξ2

k (21)

with ξk = (ξkf − ξkc)/2 and function δk = (ξkf + ξkc)/2
which accounts for the Fermi surface mismatch. The
anomalous x-components of the ~K are given by

Kx
kf,c =

∆
(
|Ek+Ek−|+ ∆2 + ξ2

kc,f −m2
z

)
2
(
E2

k+|Ek−|+ E2
k−|Ek+|

) , (22)

and the remaining components are zero. Setting in the
equations above δk = 0, the pairing amplitude is deter-
mined by the corresponding self-consistency condition

∆ = −gsc
∑
p

K−pc = gsc
∑
p

K−pf , (23)

where K−pa = Kx
pa − iKy

pa.
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Similarly, pseudospin variables ~Sk are determined by
the mixed correlators. In the ground state Sx,yk = 0 and

Szk =
mz

(
|Ek+Ek−|+m2

z − ξkfξkc + ∆2
)

E2
k+|Ek−|+ E2

k−|Ek+|
. (24)

The SDW order parameter is determined by

mz = gm
∑
k

Szk. (25)

Numerical analysis of the self-consistency equations
above shows that for the zero Fermi surface mismatch
the ground state is determined by the ratio of the cor-
responding coupling constants for the magnetic and su-
perconducting orders. When the critical temperature of
the SDW transition is higher than the superconducting
critical temperature, Tm > Tc, the system orders mag-
netically, mz 6= 0, ∆ = 0. If one allows for the finite
Fermi surface mismatch than there is a critical value
for δk when superconducting order becomes energetically
favorable. Furthermore, thermodynamic phase diagram
contains an intermediate region where two order param-
eters coexist.61,62

C. Equations of motion

Pseudospin variables happen to be very convenient to
describe the nonequilibrium dynamics of the magnetic
and superconducting order parameters. The same tech-
nique has been recently employed to describe Higgs mode
in the conventional superconductors.64 We find that the
dynamics can be fully accounted for by the five pseu-
dospins, which have three components each. Pseudospins
~Kc,f (k, t) describe the dynamics of the electronic degrees
of freedom of hole and electron bands respectively. The
corresponding equations of motion are:

∂t ~Kpc = ~Bpc(t)× ~Kpc(t) + ~ez

(
~m(t) · ~Np(t)

)
,

∂t ~Kpf = ~Bpf (t)× ~Kpf (t)− ~ez
(
~m(t) · ~Np(t)

)
,

(26)

where we introduced the effective magnetic fields

~Bpa = 2(−∆x
a(t),−∆y

a(t), ξpa), (27)

and ~Nk(t) accounts for the influence of the magnetic or-
dering on the superconducting dynamics. The remaining
equations of motion are:

∂t~Sp + 2ξp ~Np(t) + 2~m(t)× ~Lp(t) = 0,

∂t~Lp + 2~m(t)× ~Sp(t) = 0,

∂t ~Np − 2ξp~Sp(t) + 2~m(t)
[
Kz

pc(t)−Kz
pf (t)

]
= 0.

(28)

Eqs. (26) - (28) represent the main result of this section.
We will analyze these equations numerically in the next
Section III. In the subsequent Section IV we consider the

0 0.2 0.4 0.6 0.8 1 1.2
t

0

0.01
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0.04

0.05

| (t)|/ F
m(t)/ F

FIG. 1: (color online) Superconducting and magnetic order
parameter dynamics for the metastable initial conditions for
the choice of coupling constants corresponding the ratio of
critical temperatures Tc = 1.75Tm. Both ∆(t) and m(t) are
given in the units of the Fermi energy εF . We consider N =
1004 pseudospins. The bandwidth εΛ = 10εF and the level
spacing is δ = εΛ/N .

special case when the first two equations (26) decouple
from the rest: this situation corresponds to quenches of
the magnetic coupling constant to zero. In this scenario,
the equations of motion can be integrated exactly and we
prove integrability of this particular case.

III. DYNAMICAL COEXISTENCE OF
SUPERCONDUCTIVITY AND SDW ORDER

In this Section we solve the equations of motion (26,28)
numerically. We consider the initial conditions corre-
sponding to the metastable state of coexisting magnetism
and superconductivity, mz 6= 0 and ∆ 6= 0. For the
~K and ~S we choose the initial configuration correspond-
ing to the metastable state where both mz and ∆ are
nonzero, Eqs. (20,22,24). In addition, for the initial con-

ditions ~m = mz~ez, we find ~Lk(t = 0) = ~Nk(t = 0) = 0.
We present the results of the numerical integration of

the equations of motion on Figs. (1)–(3). On Fig. (1)
we choose the parameters corresponding to the super-
conducting ground state, Tc = 1.75Tm. We see that in
this case magnetization vanishes dynamically, while the
pairing amplitude remains finite.

The results on Fig. (2) were obtained for Tc = 0.95Tm.
In this case we find that both magnetization and the pair-
ing amplitude dynamically coexist. We observe that this
nonequilibrium effect persists for the range of parameters
corresponding to Tc ' Tm.

Finally, on Fig. (3) we show time evolution of the pair-
ing amplitude and magnetization when initial values of
magnetization and superconducting energy gap are such
that Tc = 0.5Tm. In this case, we see that pairing ampli-
tude vanishes dynamically, while magnetization remains
finite.
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FIG. 2: (color online) Same as Fig. 1 for Tc = 0.95Tm

The first and third scenarios are similar to previ-
ously studied cases of the collisionless relaxation in a
single-component system. The surviving order parame-
ter, which corresponds to thermodynamically favorable
state, exhibit oscillatory behavior superimposed with
rather slow power-law decay at long times. The physical
mechanism of relaxation is analogous to collisionless Lan-
dau dumping in plasmas. The difference, however, is that
in a gapped system such relaxation is typically nonexpo-
nential because of the branching singularity in the density
of states. For example, the superconducting response was
shown to fall asymptotically as ∝ cos(2∆t)/

√
t.

The second scenario of Fig. (2) is special and repre-
sentative to the case when both order parameters are
of comparable strength. Then initial thermodynamically
metastable state survives out of equilibrium for an ex-
tended times until the system enters into the collision-
dominated regime of relaxation. Depending on the choice
of parameters in a model both order parameter may os-
cillate with incommensurate frequencies.

Dynamical effect of coexistence has been recently
pointed out in the case of multiband superconductors,
which can be applicable to either MgB2 or iron-based
superconductors in the part of the phase diagram with-
out magnetism.53 In this case mutual dynamics is pri-
marily triggered by the Josephson coupling of pair am-
plitudes between the bands. This is quite different as
compared to the model which hosts order parameters
those physical nature is not the same. The only known
examples of the latter kind include dynamical coexis-
tence of bond-density-wave and d-wave superconductiv-
ity,54 and charge-density-wave and s-wave superconduc-
tivity.55 Our results expend these examples to case of
magnetically ordered systems.

IV. EXACTLY SOLVABLE LIMIT

In this Section we consider the quenches for which the
nonadiabatic dynamics of the s± pairing amplitude can

0 0.2 0.4 0.6 0.8 1 1.2
t

0

0.02

0.04

0.06

0.08

| (t)|/ F
m(t)/ F

FIG. 3: (color online) Same as Fig. 1 for Tc = 0.45Tm.

be found exactly. Specifically, we consider the quenches
into the state with zero SDW order parameter, mz = 0.
Formally, this limit can be realized for the quenches of
the SDW coupling constant gm → 0.

The equations of motion are governed by the following
Hamiltonian

H = 2
∑
pi

ξp,iK
z
pi −

∑
pi

(
∆iK

−
pi + ∆iK

+
pi

)
, (29)

which we write in terms of the Anderson spins, where
i = c, f .

A. Integrability criterion

In order to demonstrate the exact integrability of
the model (29) we adopt the method developed by
Yuzbashyan et al. [66,67]. The central role in finding
dynamics of the pairing amplitude is played by Lax vec-
tor. In order to identify the expression for the Lax vector
for our problem we first introduce

ai =

{
+1, i = c
−1, i = f

(30)

From Eq. (9) it follows ∆i = ai∆. Using (30) we rewrite
(23) as

2∆ = gsc
∑
pi

aiK
−
pi ≡ gsc

∑
pi

K−pi, (31)

where we used ai = −ai, and redefined the anomalous
components of the pseudospins according to aiK

x,y
pi →

Kx,y
pi . Clearly, this transformation leaves the Poisson

brackets invariant:

{Ka
pi,K

b
qj} = −δp,qδijεabcKc

pi. (32)

Thus, the Hamiltonian (29) can now be rewritten as fol-
lows

H = 2
∑
pi

ξpiK
z
pi −∆

∑
pi

K−pi −∆
∑
pi

K+
pi. (33)
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Consider the following Lax vector

~L(u) =
∑
pj

~Kpj

u− ξpj
− 2~ez
gsc

. (34)

The Poisson brackets for the components of ~L are ob-
tained using (32):

{La(u),Lb(v)} = εabc
Lc(u)− Lc(v)

u− v
. (35)

Due to the commutation relations (35) it follows that

{~L
2
(u), ~L

2
(v)} = 0. (36)

This property means that any model Hamiltonian which
Poisson commutes with L2 will define an exactly inte-
grable model.66,67 Indeed, for the square of the Lax vec-
tor we readily find:

~L
2
(u) =

∑
pi

∑
qj

~Kpi · ~Kqj

(u− ξpi)(u− ξqj)
+

4

g2
sc

− 4

gsc

∑
qi

Kz
pi

u− ξpi
.

(37)

The first term and the last terms should be rewritten as
follows

∑
pi

∑
qj

~Kpi · ~Kqj

(u− ξpi)(u− ξqj)
− 4

gsc

∑
qi

Kz
pi

u− ξpi

= 2
∑
pi

Hpi

u− ξpi
+
∑
pi

~K
2

pi

(u− ξpi)2
,

(38)

where

Hpi =
∑
q6=p

∑
j 6=i

~Kpi · ~Kqj

ξpi − ξqj
−

2Kz
pi

gsc
. (39)

One finds then

~L
2
(u) = 2

∑
pi

Hpi

u− ξpi
+
∑
pi

~K
2

pi

(u− ξpi)2
+

4

g2
sc

. (40)

From the definition of (39) we can write

H = −g̃sc
∑
pi

2ξpiHpi + const. (41)

Since L2(u) is conserved by evolution due to (35) and
all Hpi Poisson commute with L2(u) it implies that Hpi

are integrable. Furthermore, since Hmz=0 is given by a
linear combination of Hpi (41), it also commutes with
L2(u) and therefore is integrable.

0 0.5 1 1.5 2
mz / i

0

0.2

0.4

0.6

0.8

1

Im
[u

] /
 
i

FIG. 4: (color online) Imaginary part of the root of L2(u) = 0
as a function of spin-density wave magnetization mz. The
parameters are ∆i = 0.015εF and δk = 0 (no Fermi surface
mismatch).

B. Lax roots

To determine the value of the pairing amplitude at
long times, we need to compute the imaginary part of
the Lax-roots governed by equation

L2(u) = 0. (42)

Using (34) we rewrite (42) as follows

Lz(u) = ±iLx(u), (43)

where we took into account that initially all y compo-
nents of the pseudospins are zero, Ky

pi = 0. Furthermore,
since there is no mismatch between the Fermi surfaces
we have ξp,f = p2

2 − µ = −ξp,c = ξp. From Eq. (21) it

follows Ek =
√
ξ2
k +m2

z + ∆2
0, where ∆0 is a supercon-

ducting order parameter to be specified below. Keeping

in mind that the z-components of ~Kpλ have not been
rescaled, for (20) with ξf = −ξc = ξ we have

Kz
c (k, t = 0) =

ξk
2Ek

, Kz
f (k, t = 0) = − ξk

2Ek
, (44)

Similarly, for the anomalous components (22) we find

Kx
c (k, t = 0) = af

(
− ∆0

2Ek
+

∆0

2E3
k

m2
z

)
,

Kx
f (k, t = 0) = ac

(
+

∆0

2Ek
− ∆0

2E3
k

m2
z

)
.

(45)

Thus, we observe that

Kz
pi =

aiξp
2Ep

= − ξpi
2Ep

, Kx
pi =

∆0

2Ep

(
1− m2

z

E2
p

)
. (46)

a. Self-consistency conditions. For the quenches
into the purely superconducting state, mz = 0, new equi-
librium value of the pairing amplitude ∆0 is determined
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by the BCS self-consistency condition. For a given value
of the superconducting coupling gsc we have

2

gsc
=
∑
p

1√
ξ2
p + ∆2

0

. (47)

As a next step, we introduce function g′sc(mz) which for-
mally enters as a “new” coupling constant. The equations
which determines this function reads

2

g′sc(mz)
=
∑
p

1√
ξ2
p +m2

z + ∆2
0

. (48)

By comparing (47) with (48) we see that g′sc(0) = gsc, so
that the imaginary part of the Lax root Im[u] = ∆0, as
it should be for equilibrium.

b. Equation for the Lax roots. Using expressions
(46) we now rewrite (43) as follows. First, momentum
summations are replaced with integrals over ε = p2/2−µ
according to the formula:

∑
p

F (ξp) = νF

∞∫
−µ

F (ε)dε (49)

and νF is the density of states at the Fermi level. For the
z-component of the Lax vector (34) using (49) we have

Lz(u) = −νF

∞∫
−µ

∑
λ=±

λεdε

2(u− λε)E(ε)
− 2

gsc
=

= −νFβ − νFu
∞∫
−µ

∑
λ=±

dε

2(u− λε)E(ε)
,

(50)

where we employed Eq. (48) and introduced the param-
eter β, which describes for the magnitude of the quench:

β = 2ν−1
F

(
1

gsc
− 1

g′sc

)
. (51)

Note, since g′sc > gsc parameter β remains always posi-
tive, β > 0. We can now use expression (50) to rewrite
Eq. (43) as

−β
u± i∆0

=

(
1∓ i∆0m

2
z

u± i∆0

) ∞∫
−µ

∑
λ=±

dε

2(u− λε)E(ε)
. (52)

As we can see from analyzing this equation for mz = 0,
there will be only one complex root u = ±i∆0. For
nonzero mz we therefore need to find all complex roots
of this equation. The imaginary parts of these roots will
determine the value of the superfluid order parameter at
long times, see Fig. (5).

0 0.3 0.6 0.9 1.2
t

0

0.2

0.4

0.6

0.8

|
(t)

|/
i

mz= 3 i

0 0.3 0.6 0.9 1.2 1.5
t

0.6

0.7

0.8

0.9

|
(t)

|/
i

mz = 0.5 i

(a)

(b)

FIG. 5: (color online) Quenched dynamics of the s± pairing
amplitude as a function of time (δ is a level spacing) for the
initial conditions with nonzero spin-density wave magnetiza-
tion mz = 3∆i (top panel) and mz = 0.5∆i (bottom panel).

V. DISCUSSION AND PERSPECTIVES

In this work we have described nonequilibrium kinet-
ics of order parameters in the context of multicomponent
superconductors with the emphasis on the iron-pnicite
systems. We have found that out of equilibrium the cou-
pling between competing superconducting and magnetic
orders occurs not only by virtue of self-consistency con-
ditions but also dynamically. This becomes essentially
transparent in the pseudospin representation of equations
of motion for the Green’s function. In particular, as can
be seen directly from Eq. (26) precession of the super-
conducting pairing amplitude is strongly affected by the
dynamics of magnetic order, which then itself back acts
on the m(t).

Insofar our analysis is limited to the collisionless regime
at time scales satisfying

τ∆ � t� τin (53)

where τ∆ = 1/∆, whereas τin is the time scale of inelas-
tic scattering processes in the collision-dominated regime.
The latter can be found from the Golden rule by pass-
ing to the Bogolubov quasiparticle representation where
matrix elements of transition probabilities in scattering



8

are dressed by the coherence factors. Following the early
works of Eliashberg69 and Galaiko68 one estimates

τ−1
in ∼ (gscνF )2T 2

c /εF , (54)

which is essentially a Fermi liquid expression for the time
scale of electron-electron collisions. It is expected that
the power-law decay of the order parameter crosses over
to exponential behavior ∝ exp(−t/τin) once the system
enters into the collision dominate regime of relaxation.

In the modeling we have adopted the band-model
of FeSC, which is certainly suitable for the clean 122-
systems such as isovalently P-doped BaFe2(As1−xPx)2.
It is worth pointing out that in the more general for-
mulation (for example within three-band model) addi-
tional novel feature may appear, in particular possible
new branches of collective excitations. It is of clear
experimental relevance to revisit the same problem for
the disorder model of FeSC,70,71 which is more appro-
priate for Co-doped case Ba(Fe1−xCox)2As2. However,
physically perhaps the most interesting question is to
study nonequilibrium dynamics near the quantum criti-
cal point, namely near the end-point of SDW order under
superconducting dome. Such quantum criticality was re-
vealed from the measurements of the London penetration
depth72,73 and attributed to the fluctuations of SDW or-
der at the onset of the transition into the coexistence

phase.74 Dynamics of magnetization near such quantum
critical point has been recently addressed in the frame-
work of time-dependent Ginzbrug-Landau theory,75 how-
ever nonadiabatic regime has not been systematically in-
vestigated. In general, post-quench prethermalization at
a quantum critical point may exhibit nontrivial dynam-
ical scaling.76 The case of iron pnictides is very specific
since magnetic quantum critical point is surrounded by
superconducting state with thus gapped quasi-particles,
and consequently scaling of the response functions may
be governed by entirely different dynamical exponents.
Finally, one should seriously look at the role of degrees
of freedom associated with the Ising nematic order pa-
rameter77 that was left behind of our picture. All these
questions will pave the way for future research in this
field.
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