

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Comparison of spin-orbit torques and spin pumping across NiFe/Pt and NiFe/Cu/Pt interfaces

Tianxiang Nan, Satoru Emori, Carl T. Boone, Xinjun Wang, Trevor M. Oxholm, John G. Jones, Brandon M. Howe, Gail J. Brown, and Nian X. Sun Phys. Rev. B **91**, 214416 — Published 11 June 2015 DOI: [10.1103/PhysRevB.91.214416](http://dx.doi.org/10.1103/PhysRevB.91.214416)

¹ Comparison of spin-orbit torques and spin pumping across ² NiFe/Pt and NiFe/Cu/Pt interfaces ³ Tianxiang Nan,¹ Satoru Emori,^{1,*} Carl T. Boone,² Xinjun Wang,¹ Trevor M. Oxholm,¹ John G. Jones,³ Brandon M. Howe,³ Gail J. Brown,³ and Nian X. Sun^{1,[†](#page-14-1)} Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 2 Physics Department, Boston University, Boston, MA 02215 Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 10 (Dated: May 26, 2015) ¹¹ Abstract

 We experimentally investigate spin-orbit torques and spin pumping in NiFe/Pt bilayers with direct and dusted interfaces. The damping-like and field-like torques are simultaneously measured with spin-torque ferromagnetic resonance tuned by dc bias current, whereas spin pumping is mea- sured electrically through the inverse spin Hall effect using a microwave cavity. Insertion of an atomically thin Cu dusting layer at the interface reduces the damping-like torque, field-like torque, 17 and spin pumping by nearly the same factor of ≈ 1.4 . This finding confirms that the observed spin-orbit torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We also find that spin-current scattering at the NiFe/Pt interface contributes to additional enhancement in magnetization damping that is distinct from spin pumping.

²¹ I. INTRODUCTION

 $_{22}$ Current-induced torque[s](#page-14-2) due to spin-orbit effects¹⁻³ potentially allow for more efficient control of magnetization than the conventional spin-transfer torques^{$4,5$ $4,5$}. The spin Hall ef-²⁴ fect^{[6](#page-14-6)} is reported to be the dominant source of spin-orbit torques in thin-film bilayers con-²⁵ sisting of a ferromagnet (FM) interfaced with a normal metal (NM) with strong spin-orbit ²⁶ coupling. Of particular technological interest is the spin-Hall "damping-like" torque that ^{2[7](#page-14-7)} induces magnetization switching⁷⁻¹⁰, domain-wall motion^{[11](#page-14-9)-14}, and high-frequency magne- $_{28}$ tization dynamics^{[15](#page-14-11)[–20](#page-15-0)}. While this spin-Hall torque originates from spin-current generation ²⁹ within the bulk of the NM layer, the magnitude of the torque depends on the transmission ^{[3](#page-14-3)0} of spin current across the FM/NM interface³. Some FM/NM bilayers with ∼1-nm thick FM ³¹ exhibit another spin-orbit torque that is phenomenologically identical to a torque from an ³² external magnetic field^{[21](#page-15-1)-28}. This "field-like" torque is also interface-dependent, because it 33 may emerge from the Rashba effect at the FM/NM interface^{[2](#page-14-12)}, or the nonadiabaticity^{[4](#page-14-4)} of $_{34}$ $_{34}$ $_{34}$ spin-Hall-generated spin current transmitted across the interface^{3[,23](#page-15-3)[–25](#page-15-4)}.

³⁵ To understand the influence of the FM/NM interface on magnetization dynamics, ³⁶ many studies have experimentally investigated resonance-driven spin pumping from FM ³⁷ to $NM^{29,30}$ $NM^{29,30}$ $NM^{29,30}$ $NM^{29,30}$, detected with enhanced damping^{[31](#page-15-7)-35} or dc voltage due to the inverse spin Hall ³⁸ effect^{[36](#page-16-0)[–45](#page-16-1)}. The parameter governing spin-current transmission across the FM/NM interface 39 is the spin-mixing conductance $G_{\uparrow\downarrow}$ (Ref. [46](#page-16-2)). Simultaneously investigating spin pumping ⁴⁰ and spin-orbit torques, which are theoretically reciprocal effects^{[5](#page-14-5)}, should reveal the interface ⁴¹ dependence of the observed torques in FM/NM.

 Here we investigate spin-orbit torques and magnetic resonance in in-plane magnetized NiFe/Pt bilayers with direct and interrupted interfaces. To modify the NiFe/Pt interface, we insert an atomically thin dusting layer of Cu that does not exhibit strong spin-orbit ef-⁴⁵ fects by itself. We use spin-torque ferromagnetic resonance $(ST\text{-FMR})^{47,48}$ $(ST\text{-FMR})^{47,48}$ $(ST\text{-FMR})^{47,48}$ $(ST\text{-FMR})^{47,48}$ combined with dc bias current to extract the damping-like and field-like torques simultaneously. We also inde-⁴⁷ pendently measure the dc voltage generated by spin pumping across the FM/NM interface. The interfacial dusting reduces the damping-like torque, field-like torque, and spin pumping by the same factor. This finding is consistent with the diffusive spin-Hall mechanism^{[3](#page-14-3)[,32](#page-15-9)} 49 of spin-orbit torques, where spin transfer between NM and FM depends on the interfacial spin-mixing conductance.

52 II. EXPERIMENTAL DETAILS

⁵³ A. Samples

⁵⁴ The two film stacks compared in this study are $sub/Ta(3)/Ni_{80}Fe_{20}(2.5)/Pt(4)$ ("NiFe/Pt") 55 and $sub/Ta(3)/Ni₈₀Fe₂₀(2.5)/Cu(0.5)/Pt(4)$ ("NiFe/Cu/Pt"), where the numbers in paren- 56 theses are nominal layer thicknesses in nm and sub is a $Si(001)$ substrate with a 50-nm thick \rm{SiO}_2 overlayer. All layers were sputter-deposited at an Ar pressure of 3×10^{-3} Torr with a background pressure of \lesssim 1×10⁻⁷ Torr. The atomically thin dusting layer of Cu modifies the ⁵⁹ NiFe/Pt interface with minimal current shunting. The Ta seed layer facilitates the growth ω of thin NiFe with narrow resonance linewidth and near-bulk saturation magnetization^{[31](#page-15-7)[,33](#page-15-10)}.

⁶¹ We measured the saturation magnetization $M_s = (5.8 \pm 0.4) \times 10^5$ A/m for both NiFe/Pt 62 and NiFe/Cu/Pt with vibrating sample magnetometry. From four-point measurements on ⁶³ various film stacks and assuming that individual constituent layers are parallel resistors, we 64 estimate the resistivities of Ta(3), NiFe(2.5), Cu(0.5), and Pt(4) to be 240 $\mu\Omega$ cm, 90 $\mu\Omega$ cm, 65 60 $\mu\Omega$ cm, and 40 $\mu\Omega$ cm, respectively. Approximately 70% of the charge current thus flows ⁶⁶ in the Pt layer. In the subsequent analysis, we also include the small damping-like torque σ and the Oersted field from the highly resistive Ta layer (see Appendix A).

⁶⁸ B. Spin-torque ferromagnetic resonance

69 We fabricated 5- μ m wide, 25- μ m long microstrips of NiFe/Pt and NiFe/Cu/Pt with ⁷⁰ Cr/Au ground-signal-ground electrodes using photolithography and liftoff. We probed ⁷¹ magnetization dynamics in the microstrips using ST-FMR (Refs. [47](#page-16-3), [48](#page-16-4)) as illustrated in τ_2 Fig. [1\(](#page-18-0)a): an rf current drives resonant precession of magnetization in the bilayer, and the ⁷³ rectified anisotropic magnetoresistance voltage generates an FMR spectrum. The rf current ⁷⁴ power output was +8 dBm and modulated with a frequency of 437 Hz to detect the rectified ⁷⁵ voltage using a lock-in amplifier. The ST-FMR spectrum (e.g., Fig. [1\(](#page-18-0)b)) was acquired at ⁷⁶ a fixed rf driving frequency by sweeping an in-plane magnetic field $|\mu_0 H| < 80$ mT applied ⁷⁷ at an angle $|\phi| = 45^{\circ}$ from the current axis. The rectified voltage V_{mix} constituting the ⁷⁸ ST-FMR spectrum is fit to a Lorentzian curve of the form

$$
V_{mix} = S \frac{W}{(\mu_0 H - \mu_0 H_{FMR})^2 + W^2} + A \frac{W(\mu_0 H - \mu_0 H_{FMR})}{(\mu_0 H - \mu_0 H_{FMR})^2 + W^2},
$$
(1)

80 where W is the half-width-at-half-maximum resonance linewidth, H_{FMR} is the resonance \mathfrak{sl}_1 field, S is the symmetric Lorentzian coefficient, and A is the antisymmetric Lorentzian α coefficient. Representative fits are shown in Fig. [1\(](#page-18-0)c).

 M^2

83 The lineshape of the ST-FMR spectrum, parameterized by the ratio of S to A in Eq. [1,](#page-4-0) ⁸⁴ has been used to evaluate the ratio of the damping-like torque to the net effective field from ⁸⁵ the Oersted field and field-like torque^{[26](#page-15-11)[,48](#page-16-4)[–52](#page-16-5)}. To decouple the damping-like torque from the ⁸⁶ field-like torque, the magnitude of the rf current in the bilayer would need to be known^{[48](#page-16-4)[,51](#page-16-6)}. 87 Other contributions to V_{mix} (Refs. [53](#page-16-7)[–55](#page-17-0)) may also affect the analysis based on the ST-FMR ⁸⁸ lineshape.

⁸⁹ We use a modified approach where an additional dc bias current I_{dc} in the bilayer, il-⁹⁰ lustrated in Fig. $1(a)$ $1(a)$, transforms the ST-FMR spectrum as shown in Fig. $1(c)$. A high-91 impedance current source outputs I_{dc} , and we restrict $|I_{dc}| \leq 2 \text{ mA}$ (equivalent to the ⁹² current density in Pt $|J_{c,Pt}| < 10^{11}$ A/m²) to minimize Joule heating and nonlinear dy-93 namics. The dependence of the resonance linewidth W on I_{dc} allows for quantification of ⁹⁴ the damping-like torque^{[48](#page-16-4)[,54](#page-17-1)[–60](#page-17-2)}, while the change in the resonance field H_{FMR} yields a direct ⁹⁵ measure of the field-like torque^{[52](#page-16-5)}. Thus, dc-tuned ST-FMR quantifies both spin-orbit torque ⁹⁶ contributions.

97 C. Electrical detection of spin pumping

⁹⁸ The inverse spin Hall voltage V_{ISH} due to spin pumping was measured in 100- μ m wide, 99 1500- μ m long strips of NiFe/Pt and NiFe/Cu/Pt with Cr/Au electrodes attached on both 100 ends, similar to the sub-mm wide strips used in Ref. 60 . These NiFe/(Cu/)Pt strips were ¹⁰¹ fabricated on the same substrate as the ST-FMR device sets described in Sec. [II B.](#page-3-0) The 102 sample was placed in the center of a rectangular TE_{102} microwave cavity operated at a fixed 103 rf excitation frequency of 9.55 GHz and rf power of 100 mW. A bias field H was applied 104 within the film plane and transverse to the long axis of the strip. The dc voltage V_{dc} across ¹⁰⁵ the sample was measured using a nanovoltmeter while sweeping the field, as illustrated in 106 Fig. [2\(](#page-18-1)a). The acquired V_{dc} spectrum is fit to Eq. [1](#page-4-0) as shown by a representative result in Fig. [2\(](#page-18-1)b). The inverse spin Hall voltage is defined as the amplitude of the symmet-08 ric Lorentzian coefficient S in Eq. 1 (Refs. $38-41$ $38-41$, 44). We note that the antisymmetric Lorentzian coefficient is substantially smaller, indicating that the voltage signal from the inverse spin Hall effect dominates over that from the anomalous Hall effect.

111 III. RESULTS AND ANALYSIS

¹¹² A. Magnetic resonance properties

 F_{113} Fig. [3\(](#page-19-0)a) shows the plot of the ST-FMR linewidth W as a function of frequency f for 114 NiFe/Pt and NiFe/Cu/Pt at $I_{dc} = 0$ and ± 2 mA. The Gilbert damping parameter α is 115 calculated for each sample in Fig. $3(a)$ $3(a)$ from

$$
W = W_0 + \frac{2\pi\alpha}{|\gamma|}f,\tag{2}
$$

117 where W_0 is the inhomogeneous linewidth broadening, f is the frequency, and γ is the 118 gyromagnetic ratio. With the Landé g-factor $g_L = 2.10$ for NiFe (Refs. [31,](#page-15-7) [33](#page-15-10), [42](#page-16-11), [61\)](#page-17-3), 119 $|\gamma|/2\pi = (28.0 \text{ GHz/T}) \cdot (g_L/2) = 29.4 \text{ GHz/T}$. From the slope in Fig. [3\(](#page-19-0)a) at $I_{dc} = 0$, $\alpha = 0.043 \pm 0.001$ for NiFe/Pt and $\alpha = 0.027 \pm 0.001$ for NiFe/Cu/Pt. The reduction in 121 damping with interfacial Cu-dusting is consistent with prior studies on FM/Pt with nm-thick $_{122}$ Cu insertion layers^{[31](#page-15-7)[,33](#page-15-10)[,35](#page-15-8)[,42](#page-16-11)[,44](#page-16-10)}.

123 A fit of H_{FMR} versus frequency at $I_{dc} = 0$ to the Kittel equation

$$
\mu_0 H_{FMR} = \frac{1}{2} \left(-\mu_0 M_{eff} + \sqrt{(\mu_0 M_{eff})^2 + 4(f/\gamma)^2} \right) - \mu_0 H_k + \mu_0 \Delta H_{FMR}(I_{dc}), \tag{3}
$$

¹²⁵ shown in Figs. [3\(](#page-19-0)b),(c), gives the effective magnetization $M_{eff} = 5.6 \times 10^5$ A/m for NiFe/Pt ¹²⁶ and 5.9×10^5 A/m for NiFe/Cu/Pt, with the in-plane anisotropy field $|\mu_0 H_k|$ < 1 mT. 127 M_{eff} and M_s are indistinguishable within experimental uncertainty, implying negligible 128 perpendicular magnetic anisotropy in $NiFe/(Cu)/Pt$.

129 When $I_{dc} \neq 0$, the linewidth W is reduced for one current polarity and enhanced for 130 the opposite polarity, as shown in Fig. $3(a)$ $3(a)$. The empirical damping parameter defined by $_{131}$ Eq. [2](#page-5-0) changes with I_{dc} (see Appendix B), which indicates the presence of a current-induced 132 damping-like torque. Similarly, $I_{dc} \neq 0$ generates an Oersted field and a spin-orbit field-133 like torque that together shift the resonance field H_{FMR} as shown in Figs. [3\(](#page-19-0)b),(c). We ¹³⁴ discuss the quantification of the damping-like torque in Sec. [III B](#page-6-0) and the field-like torque ¹³⁵ in Sec. [III E.](#page-8-0)

¹³⁶ B. Damping-like torque

137 Fig. [4\(](#page-19-1)a) shows the linear change in W as a function of I_{dc} at a fixed rf frequency of 5 138 GHz. Reversing the external field (from $\phi = 45^{\circ}$ to -135[°]) magnetizes the sample in the ¹³⁹ opposite direction and reverses the polarity of the damping-like torque.

¹⁴⁰ W is related to the current-dependent effective damping parameter α_{eff} at fixed f , α_{eff} 141 $|\gamma|/(2\pi f)(W - W_0)$. The magnitude of the damping-like torque is parameterized by the 142 effective spin Hall angle θ_{DL} , proportional to the ratio of the spin current density J_s crossing 143 the FM/NM interface to the charge current density J_c in Pt. θ_{DL} at each frequency, plotted ¹⁴⁴ in Fig. [4\(](#page-19-1)b), is calculated from the I_{dc} dependence of α_{eff} (Refs. [48,](#page-16-4) [62\)](#page-17-4):

$$
|\theta_{DL}| = \frac{2|e|}{\hbar} \frac{\left(H_{FMR} + \frac{M_{eff}}{2}\right) \mu_0 M_s t_F}{|\sin \phi|} \left|\frac{\Delta \alpha_{eff}}{\Delta J_c}\right|,\tag{4}
$$

¹⁴⁶ where t_F is the FM thickness. Assuming that the effective spin Hall angle is independent of 147 frequency, we find $\theta_{DL} = 0.087 \pm 0.007$ for NiFe/Pt and $\theta_{DL} = 0.062 \pm 0.005$ for NiFe/Cu/Pt. These values are similar to recently reported θ_{DL} in NiFe/Pt bilayers^{[39](#page-16-12)[,42](#page-16-11)[,48](#page-16-4)[,51](#page-16-6)[,54](#page-17-1)[–56](#page-17-5)[,59](#page-17-6)}.

¹⁴⁹ θ_{DL} of NiFe/(Cu/)Pt is related to the intrinsic spin Hall angle θ_{SH} of Pt through the spin ¹⁵⁰ diffusion theory used in Refs. [3](#page-14-3), [32](#page-15-9). For a Pt layer much thicker than its spin diffusion length ¹⁵¹ λ_{Pt} , θ_{DL} is proportional to the real part of the effective spin-mixing conductance $G_{\uparrow\downarrow}^{eff}$,

$$
\theta_{DL} = \frac{2\text{Re}[G_{\uparrow\downarrow}^{eff}]}{\sigma_{Pt}/\lambda_{Pt}} \theta_{SH},\tag{5}
$$

¹⁵³ where σ_{Pt} is the conductivity of the Pt layer and $G_{\uparrow\downarrow}^{eff} = G_{\uparrow\downarrow}(\sigma_{Pt}/\lambda_{Pt})/(2G_{\uparrow\downarrow} + \sigma_{Pt}/\lambda_{Pt})$ is includes the spin-current backflow factor^{[30](#page-15-6)[,32](#page-15-9)}. Assuming that λ_{Pt} , σ_{Pt} , and θ_{SH} in Eq. [5](#page-6-1) are independent of the interfacial Cu dusting layer, $G_{\uparrow\downarrow}^{eff}$ is a factor of 1.4 ± 0.2 greater for ¹⁵⁶ NiFe/Pt than NiFe/Cu/Pt based on the values of θ_{DL} found above.

¹⁵⁷ C. Reciprocity of damping-like torque and spin pumping

¹⁵⁸ Fig. [5](#page-19-2) shows representative results of the dc inverse spin Hall voltage induced by spin ¹⁵⁹ pumping, each fitted to the Loretzian curve defined by Eq. [1.](#page-4-0) Reversing the bias field reverses $_{160}$ the moment orientation of the pumped spin current and thus inverts the polarity of V_{ISH} , ¹⁶¹ consistent with the mechanism of the inverse spin Hall effect. By averaging measurements at 162 opposite bias field polarities for different samples, we find $|V_{ISH}| = 1.5 \pm 0.2 \,\mu\text{V}$ for NiFe/Pt 163 and $|V_{ISH}| = 2.6 \pm 0.2 \,\mu\text{V}$ for NiFe/Cu/Pt.

The inverse spin Hall voltage V_{ISH} is given by^{[38](#page-16-8)} 164

$$
|V_{ISH}| = \frac{h}{|e|} G_{\uparrow\downarrow}^{eff} |\theta_{SH}| \lambda_{Pt} \tanh\left(\frac{t_{Pt}}{2\lambda_{Pt}}\right) f R_s L P \left(\frac{\gamma h_{rf}}{2\alpha\omega}\right)^2,\tag{6}
$$

 166 where R_s is the sheet resistance of the sample, L is the length of the sample, P is the 167 ellipticity parameter of magnetization precession, and h_{rf} is the amplitude of the microwave 168 excitation field. The factor $\gamma h_{rf}/2\alpha\omega$ is equal to the precession cone angle at resonance in ¹⁶⁹ the linear (small angle) regime. By collecting all the factors in Eq. [6](#page-7-0) that are identical for 170 NiFe/Pt and NiFe/Cu/Pt into a single coefficient C_{ISH} , Eq. [6](#page-7-0) is rewritten as

$$
|V_{ISH}| = C_{ISH} \frac{R_s G_{\uparrow \downarrow}^{eff}}{\alpha^2}.
$$
\n
$$
(7)
$$

¹⁷² We note that the small difference in M_{eff} for NiFe/Pt and NiFe/Cu/Pt yields a difference 173 in P (Eq. [6\)](#page-7-0) of ∼1%, which we neglect here.

From Eq. [7,](#page-7-1) we estimate that $G_{\uparrow\downarrow}^{eff}$ of the NiFe/Pt interface is greater than that of the NiFe/Cu/Pt interface by a factor of 1.4 ± 0.2 . The dc-tuned ST-FMR and dc spin- pumping voltage measurements therefore yield quantitatively consistent results, confirming the reciprocity between the damping-like torque (driven by the direct spin Hall effect) and spin pumping (detected with the inverse spin Hall effect). The fact that the diffusive model captures the observations supports the spin-Hall mechanism leading to the damping-like ¹⁸⁰ torque.

¹⁸¹ D. Interfacial damping and spin-current transmission

182 Provided that the enhanced damping α in NiFe/(Cu/)Pt (Fig. [3\(](#page-19-0)a)) is entirely due to ¹⁸³ spin pumping into the Pt layer, the real part of the interfacial spin-mixing conductance can ¹⁸⁴ be calculated by

$$
\operatorname{Re}[G_{\uparrow\downarrow}^{eff}] = \frac{2e^2 M_s t_F}{\hbar^2 |\gamma|} (\alpha - \alpha_0). \tag{8}
$$

186 Using $\alpha_0 = 0.011$ measured for a reference film stack $sub/Ta(3)/NiFe(2.5)/Cu(2.5)/TaOx(1.5)$ ¹⁸⁷ with negligible spin pumping into the top NM layer of Cu, we obtain $\text{Re}[G_{\uparrow\downarrow}^{eff}] = (11.6 \pm$

 $(0.9) \times 10^{14} \Omega^{-1}$ m⁻² for NiFe/Pt and $(5.8 \pm 0.5) \times 10^{14} \Omega^{-1}$ m⁻² for NiFe/Cu/Pt. This factor of 189 2 difference for the two interfaces is significantly greater than the factor of \approx 1.4 determined ¹⁹⁰ from dc-tuned ST-FMR (Sec. [III B\)](#page-6-0) and electrically detected spin pumping (Sec. [III C\)](#page-6-2). This ¹⁹¹ discrepancy implies that the magnitude of $\text{Re}[G_{\uparrow\downarrow}^{eff}]$ of NiFe/Pt calculated from enhanced ¹⁹² damping is higher than that calculated for spin injection.

 $\text{In addition to spin pumping, interfacial scattering effects}^{44,63-65}, \text{e.g., due to proximity-}$ $\text{In addition to spin pumping, interfacial scattering effects}^{44,63-65}, \text{e.g., due to proximity-}$ $\text{In addition to spin pumping, interfacial scattering effects}^{44,63-65}, \text{e.g., due to proximity-}$ $\text{In addition to spin pumping, interfacial scattering effects}^{44,63-65}, \text{e.g., due to proximity-}$ ¹⁹⁴ induced magnetization in $Pt^{13,35,66}$ $Pt^{13,35,66}$ $Pt^{13,35,66}$ $Pt^{13,35,66}$ $Pt^{13,35,66}$ or spin-orbit phenomena at the NiFe/Pt interface^{[67](#page-17-10)}, may ¹⁹⁵ contribute to both stronger damping and lower spin injection in NiFe/Pt. Assuming that 196 this interfacial scattering is suppressed by the Cu dusting layer, ≈ 0.010 of α in NiFe/Pt is 197 not accounted for by spin pumping. The corrected $\text{Re}[G_{\uparrow\downarrow}^{eff}]$ for NiFe/Pt is $(8.1 \pm 1.2) \times$ ¹⁹⁸ $10^{14} \Omega^{-1}$ m⁻², which is in excellent agreement with $\text{Re}[G_{\uparrow\downarrow}^{eff}]$ calculated from first principles^{[65](#page-17-8)}. Using $G_{\uparrow\downarrow}^{eff}$ quantified above and assuming $\lambda_{Pt}\approx 1\text{ nm}^{26,32,33,43,49-51,54,55}$ $\lambda_{Pt}\approx 1\text{ nm}^{26,32,33,43,49-51,54,55}$, the intrinsic spin 200 Hall angle θ_{SH} of Pt and the spin-current transmissivity $T = \theta_{DL}/\theta_{SH}$ across the FM/NM 201 interface can be estimated. We obtain $\theta_{SH} \approx 0.15$, and $T \approx 0.6$ for NiFe/Pt and $T \approx 0.4$ for 202 NiFe/Cu/Pt. These results, in line with a recent report^{[26](#page-15-11)}, indicate that the damping-like ²⁰³ torque (proportional to θ_{DL}) may be increased by engineering the FM/NM interface, i.e., by increasing $G_{\uparrow\downarrow}^{eff}$. For practical applications, the threshold charge current density required 205 for switching or self-oscillation of the magnetization is proportional to the ratio α/θ_{DL} . 206 Because of the reciprocity of the damping-like torque and spin pumping, increasing $G_{\uparrow\downarrow}^{eff}$ 207 would also increase α such that it would cancel the benefit of enhancing θ_{DL} . Nevertheless, ²⁰⁸ although spin pumping inevitably increases damping, optimal interfacial engineering might ²⁰⁹ minimize damping from interfacial spin-current scattering while maintaining efficient spin-²¹⁰ current transmission across the FM/NM interface.

²¹¹ E. Field-like torque

²¹² We now quantify the field-like torque from the dc-induced shift in the resonance field ²¹³ H_{FMR}, derived from the fit to Eq. [3,](#page-5-1) as shown in Figs. [3\(](#page-19-0)b),(c). M_{eff} is fixed at its zero-²¹⁴ current value so that ΔH_{FMR} is the only free parameter^{[68](#page-17-11)}. Fig. [6](#page-20-0) shows the net current-²¹⁵ induced effective field, which is equivalent to $\sqrt{2}\Delta H_{FMR}$ in our experimental geometry with the external field applied 45◦ ²¹⁶ from the current axis. The solid lines show the expected 217 Oersted field $\mu_0 H_{Oe} \approx 0.08$ mT per mA for both NiFe/Pt and NiFe/Cu/Pt based on the

estimated charge current densities in the NM layers, $H_{Oe} = \frac{1}{2}$ 218 estimated charge current densities in the NM layers, $H_{Oe} = \frac{1}{2}(J_{c,Pt}t_{Pt} + J_{c,Cu}t_{Cu} - J_{c,Ta}t_{Ta})$, ²¹⁹ where the contribution from the Pt layer dominates by a factor of >6 .

220 While the polarity of the shift in H_{FMR} is consistent with the direction of H_{Oe} , the ₂₂₁ magnitude of $\sqrt{2}\Delta H_{FMR}$ exceeds H_{Oe} for both samples as shown in Fig. [6.](#page-20-0) This indicates the 222 presence of an additional current-induced effective field due to a field-like torque, $\mu_0H_{FL} =$ 223 0.20 \pm 0.02 mT per mA for NiFe/Pt and $\mu_0 H_{FL} = 0.10 \pm 0.02$ mT per mA for NiFe/Cu/Pt. 224 Analogous to θ_{DL} for the damping-like torque, the field-like torque can also be parameterized $_{225}$ by an effective spin Hall angle^{[26](#page-15-11)}:

$$
|\theta_{FL}| = \frac{2|e|\mu_0 M_s t_F}{\hbar} \left| \frac{H_{FL}}{J_{c,Pt}} \right|.
$$
 (9)

²²⁷ Eq. [9](#page-9-0) yields $\theta_{FL} = 0.024 \pm 0.003$ for NiFe/Pt and 0.013 ± 0.003 for NiFe/Cu/Pt, comparable ²²⁸ to recently reported results in Ref. [23.](#page-15-3)

²²⁹ The ultrathin Cu layer at the NiFe/Pt interface reduces the field-like torque by a factor 230 of 1.8 ± 0.5 , which is in agreement within experimental uncertainty to the reduction of the ²³¹ damping-like torque (Sec. [III B\)](#page-6-0). This suggests that both torques predominantly originate ²³² from the spin Hall effect in Pt. Recent studies on FM/NM bilayers using low-frequency $_{233}$ $_{233}$ $_{233}$ measurement techniques^{23[–25](#page-15-4)} also suggest that the spin Hall effect is the dominant source ²³⁴ of the field-like torque. Since the field-like torque scales as the imaginary component of ^{2[3](#page-14-3)5} $G_{\uparrow\downarrow}^{eff}$ (Refs. 3[–5](#page-14-5)), the Cu dusting layer must modify $\text{Re}[G_{\uparrow\downarrow}^{eff}]$ and $\text{Im}[G_{\uparrow\downarrow}^{eff}]$ identically. We ²³⁶ estimate $\text{Im}[G_{\uparrow\downarrow}^{eff}] = (\theta_{FL}/\theta_{DL})\text{Re}[G_{\uparrow\downarrow}^{eff}]$ to be $(2.2 \pm 0.5) \times 10^{14} \Omega^{-1} \text{m}^{-2}$ for NiFe/Pt and 237 $(1.2 \pm 0.3) \times 10^{14} \Omega^{-1} \text{m}^{-2}$ for NiFe/Cu/Pt.

 Because of the relatively large error bar for the ratio of the field-like torque in NiFe/Pt and NiFe/Cu/Pt, our experimental results do not rule out the existence of another mechanism at the FM/NM interface, distinct from the spin Hall effect. For example, the Cu dusting layer may modify the interfacial Rashba effect that can be an additional contribution to _{[2](#page-14-12)42} the field-like torque^{2[,3](#page-14-3)[,24](#page-15-12)}. Also, the upper bound of the field-like torque ratio is close to ²⁴³ the factor of \approx 2 reduction in damping with Cu insertion, possibly suggesting a correlation between the spin-orbit field-like torque and the enhancement in damping at the FM-NM interface. Elucidating the exact roles of interfacial spin-orbit effects in FM/HM requires further theoretical and experimental studies.

$_{247}$ F. Comparison of the dc-tuned and lineshape methods of ST-FMR

Accounting for the field-like torque, we determine the effective spin Hall angle θ_{DL}^{rf} in 249 NiFe/Pt and NiFe/Cu/Pt from the lineshape (Eq. [1\)](#page-4-0) of the ST-FMR spectra at I_{dc} = 250 0 (Refs. [26](#page-15-11), [48](#page-16-4)[–52\)](#page-16-5). The coefficients in Eq. [1](#page-4-0) are $S = V_0 \hbar J_{s, rf}/2|e|\mu_0 M_s t_F$ and $A =$ ²⁵¹ $V_o H_{rf} \sqrt{1 + M_{eff}/H_{FMR}}$, where V_o is the ST-FMR voltage prefactor^{[48](#page-16-4)} and $H_{rf} \approx \beta J_{c,rf}$ 252 is the net effective rf magnetic field generated by the rf driving current density $J_{c,rf}$ in the ²⁵³ Pt layer. $\theta_{DL}^{rf} = J_{s,rf}/J_{c,rf}$ is calculated from the lineshape coefficients S and A:

$$
|\theta_{DL}^{rf}| = \left| \frac{S}{A} \right| \frac{2|e|\mu_0 M_s t_F}{\hbar} \beta \sqrt{1 + \frac{M_{eff}}{H_{FMR}}}.
$$
 (10)

²⁵⁵ Fig. [7\(](#page-20-1)a) shows $|\theta_{DL}^{rf}|$ obtained by ignoring the field-like torque contribution, i.e., β ²⁵⁶ $t_{Pt}/2$. This underestimates $|\theta_{DL}^{rf}|$, implying identical damping-like torques in NiFe/Pt and 257 NiFe/Cu/Pt. Using $\beta = t_{Pt}/2 + H_{FL}/J_{c,Pt}$ extracted from Fig. [6,](#page-20-0) $\theta_{DL}^{rf} = 0.091 \pm 0.007$ ²⁵⁸ for NiFe/Pt and 0.069 ± 0.005 for NiFe/Cu/Pt plotted in Fig. [7\(](#page-20-1)b) are in agreement with θ_{DL} determined from the dc-tuned ST-FMR method. The presence of a nonnegligible field-²⁶⁰ like torque in thin FM may account for the underestimation of θ_{DL}^{rf} based on the lineshape $_{261}$ analysis compared to θ_{DL} from dc-tuned ST-FMR as reported in Refs. [54,](#page-17-1) [55.](#page-17-0)

²⁶² IV. CONCLUSIONS

 We have experimentally demonstrated that the spin-orbit damping-like and field-like torques scale with interfacial spin-current transmission. Insertion of an ultrathin Cu layer at the NiFe/Pt interface equally reduces the spin-Hall-mediated spin-orbit torques and spin pumping, consistent with diffusive transport of spin current across the FM/NM interface. 267 Parameters relevant to spin-orbit torques in NiFe/Pt and NiFe/Cu/Pt quantified in this work are summarized in Table [I.](#page-11-0) We have also found an additional contribution to damping at the NiFe/Pt interface distinct from spin pumping. The dc-tuned ST-FMR technique used here permits precise quantification of spin-orbit torques directly applicable to engineering efficient spin-current-driven devices.

NiFe/Pt	NiFe/Cu/Pt
	0.087 ± 0.007 0.062 ± 0.005
	0.024 ± 0.003 0.013 ± 0.003
$\text{Re}[G_{\uparrow}^{eff}](10^{14} \Omega^{-1} \text{m}^{-2})$ 8.1 ± 1.2	5.8 ± 0.5
$\text{Im}[G_{\uparrow\,\vert}^{eff}](10^{14} \Omega^{-1} \text{m}^{-2})$ 2.2 ± 0.5	1.2 ± 0.3
1.4 ± 0.2	1
	0.032 ± 0.001 0.016 ± 0.001

Table I. Parameters related to spin-orbit torques

272 ACKNOWLEDGEMENTS

 T.N. and S.E. contributed equally to this work. This work was supported by the Air Force Research Laboratory through contract FA8650-14-C-5706 and in part by FA8650- 14-C-5705, the W.M. Keck Foundation, and the National Natural Science Foundation of China (NSFC) 51328203. Lithography was performed in the George J. Kostas Nanoscale Technology and Manufacturing Research Center. S.E. thanks Xin Fan and Chi-Feng Pai for helpful discussions. T.N. and S.E. thank James Zhou and Brian Chen for assistance in setting up the ST-FMR system, and Vivian Sun for assistance in graphic design.

280

281 APPENDIX A: DAMPING-LIKE TORQUE CONTRIBUTION FROM TANTA-²⁸² LUM

²⁸³ With the same dc-tuned ST-FMR technique described in Sec. [II B,](#page-3-0) we evaluate the ef-284 fective spin Hall angle θ_{DL} of Ta interfaced with NiFe. Because of the high resistivity of ²⁸⁵ Ta, the signal-to-noise ratio of the ST-FMR spectrum is significantly lower than in the case 286 of NiFe/Pt, thus making precise determination of θ_{DL} more challenging. Nevertheless, we 287 are able to obtain an estimate of θ_{DL} from a 2- μ m wide, 10- μ m long strip of subs/Ta(6 ²⁸⁸ nm)/Ni₈₀Fe₂₀(4 nm)/Al₂O₃(1.5 nm) ("Ta/NiFe"). The estimated resistivity of Ta(6 nm) is ²⁸⁹ 200 μΩcm and that of NiFe(4 nm) is 70 μΩcm.

²⁹⁰ Fig. [8\(](#page-20-2)a) shows the change in linewidth ΔW (or $\Delta \alpha_{eff}$) due to dc bias current I_{dc} . The

291 polarity of ΔW against I_{dc} is the same as in NiFe capped with Pt (Fig. [4\(](#page-19-1)a)). Because the ²⁹² Ta layer is beneath the NiFe layer, this observed polarity is consistent with the opposite 293 signs of the spin Hall angles for Pt and Ta. Here we define the sign of θ_{DL} for Ta/NiFe to be ^{29[4](#page-6-3)} negative. Using Eq. 4 with $M_s = M_{eff} = 7.0 \times 10^5$ A/m and averaging the values plotted ²⁹⁵ in Fig. [8\(](#page-20-2)b), we arrive at $\theta_{DL} = -0.034 \pm 0.008$. This magnitude of θ_{DL} is substantially smaller than $\theta_{DL} \approx -0.1$ in Ta/CoFe(B)^{[8](#page-14-14)[,12](#page-14-15)} and Ta/FeGaB^{[60](#page-17-2)}, but similar to reported values ²⁹⁷ of θ_{DL} in Ta/NiFe bilayers^{[41](#page-16-9)[,42](#page-16-11)}. For the analysis of the damping-like torque in Sec. [III B,](#page-6-0) we 298 take into account the θ_{DL} obtained above and the small charge current density in Ta. In ²⁹⁹ the Ta/NiFe/(Cu/)/Pt stacks, owing to the much higher conductivity of Pt, the spin-Hall $\frac{300}{200}$ damping-like torque from the top Pt(4) layer is an order of magnitude greater than the $_{301}$ torque from the bottom Ta(3) seed layer.

302 APPENDIX B: DC DEPENDENCE OF THE EMPIRICAL DAMPING PARAM-³⁰³ ETER

 $\text{Magnetization dynamics in the presence of an effective field } H_{eff} \text{ and a damping-like spin}$ ³⁰⁵ torque is given by the Landau-Lifshitz-Gilbert-Slonczewski equation:

$$
\frac{\partial \mathbf{m}}{\partial t} = -|\gamma| \mathbf{m} \times \mathbf{H}_{eff} + \alpha \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t} + \tau_{DL} \mathbf{m} \times (\boldsymbol{\sigma} \times \mathbf{m}), \tag{11}
$$

307 where τ_{DL} is a coefficient for the damping-like torque (proportional to θ_{DL}) and σ is the ³⁰⁸ orientation of the spin moment entering the FM. Within this theoretical framework, it is not ³⁰⁹ possible to come up with a single Gilbert damping parameter as a function of bias dc current 310 I_{dc} that holds at all frequencies. However, at $I_{dc} = 0$ we empirically extract the damping 311 parameter α from the linear relationship of linewidth W versus frequency f (Eq. [2\)](#page-5-0). We can 312 take the same approach and define an empirical damping parameter $\alpha_{W/f}$ as a function of $_{313}$ I_{dc} , i.e.

$$
W(I_{dc}) = W_0 + \frac{2\pi\alpha_{W/f}(I_{dc})}{|\gamma|}f,
$$
\n(12)

315 where we fix the inhomogeneous linewidth broadening W_0 at the value at $I_{dc} = 0$, which 316 does not change systematically as a function of small I_{dc} used here. This approach of setting $\alpha_{W/f}$ as the only fitting parameter in Eq. [12](#page-12-0) well describes our data (e.g., Fig. [3\(](#page-19-0)a)). We 318 show in Fig. [9](#page-21-0) the resulting $\alpha_{W/f}$ versus I_{dc} . The change in $\alpha_{W/f}$ normalized by the charge 319 current density in Pt is 0.0036 ± 0.0001 per 10^{11} A/m² for NiFe/Pt and 0.0025 ± 0.0001

320 per 10^{11} A/m² for NiFe/Cu/Pt. This empirical measure of the damping-like torque again 321 exhibits a factor of \approx 1.4 difference between NiFe/Pt and NiFe/Cu/Pt.

∗ [s.emori@neu.edu](mailto: s.emori@neu.edu)

† [n.sun@neu.edu](mailto: n.sun@neu.edu)

- ¹ A. Brataas and K. M. D. Hals, Nat. Nanotechnol. **9**, 86 (2014).
- P. Gambardella and I. M. Miron, Philos. Trans. A. Math. Phys. Eng. Sci. 369, 3175 (2011).
- 326 ³ P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, and M. D. Stiles, Phys. Rev. B 87, 174411 (2013) .
- ⁴ D. Ralph and M. Stiles, J. Magn. Magn. Mater. **320**, 1190 (2008).
- 5 A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and P. J. Kelly, Spin pumping and spin transfer,
- in Spin Current, chap. 8, pp. 87–135, 2012.
- ⁶ A. Hoffmann, IEEE Trans. Magn. 49, 5172 (2013).
- 7 I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011).
- ⁸ L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
- $\frac{9}{336}$ D. Bhowmik, L. You, and S. Salahuddin, Nat. Nanotechnol. 9, 59 (2014).
- ³³⁷ ¹⁰ G. Yu, P. Upadhyaya, Y. Fan, J. G. Alzate, W. Jiang, K. L. Wong, S. Takei, S. A. Bender, L.-T. Chang, Y. Jiang, M. Lang, J. Tang, Y. Wang, Y. Tserkovnyak, P. K. Amiri, and K. L. Wang, Nat. Nanotechnol. 9, 548 (2014).
- ¹¹ P. P. J. Haazen, E. Murè, J. H. Franken, R. Lavrijsen, H. J. M. Swagten, and B. Koopmans, 341 Nat. Mater. **12**, 299 (2013).
- ¹² S. Emori, E. Martinez, K.-J. Lee, H.-W. Lee, U. Bauer, S.-M. Ahn, P. Agrawal, D. C. Bono,
- and G. S. D. Beach, Phys. Rev. B 90, 184427 (2014).
- ¹³ K.-S. Ryu, S.-H. Yang, L. Thomas, and S. S. P. Parkin, Nat. Commun. **5**, 3910 (2014).
- ¹⁴ K. Ueda, K.-J. Kim, Y. Yoshimura, R. Hiramatsu, T. Moriyama, D. Chiba, H. Tanigawa, T. Suzuki, E. Kariyada, and T. Ono, Appl. Phys. Express 7, 053006 (2014).
- ³⁴⁷ ¹⁵ V. E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, and S. O. Demokritov, Nat. Mater. 11, 1028 (2012).
- ¹⁶ L. Liu, C.-F. Pai, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. **109**, 186602 (2012).
- ¹⁷ R.H. Liu, W.L. Lim, and S. Urazhdin, Phys. Rev. Lett. **110**, 147601 (2013).
- ¹⁸ Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner, V. E. Demidov, S. O. Demokritov, and I. N. Krivorotov, Nat. Commun. 5, 5616 (2014).
- ¹⁹ M. Ranjbar, P. Durrenfeld, M. Haidar, E. Iacocca, M. Balinskiy, T. Q. Le, M. Fazlali, A. Houshang, A. Awad, R. Dumas, and J. Akerman, IEEE Magn. Lett. 5, 1 (2014).
- ²⁰ A. Hamadeh, O. dAllivy Kelly, C. Hahn, H. Meley, R. Bernard, A. H. Molpeceres, V. V. Naletov,
- M. Viret, A. Anane, V. Cros, S. O. Demokritov, J. L. Prieto, M. Mu˜noz, G. de Loubens, and
- O. Klein, Phys. Rev. Lett. 113, 197203 (2014).
- ²¹ J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Nat. Mater. 12, 240 (2013).
- ²² K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Nat. Nanotechnol. 8, 587 (2013).
- ²³ X. Fan, J. Wu, Y. Chen, M. J. Jerry, H. Zhang, and J. Q. Xiao, Nat. Commun. 4, 1799 (2013).
- ²⁴ X. Fan, H. Celik, J. Wu, C. Ni, K.-J. Lee, V. O. Lorenz, and J. Q. Xiao, Nat. Commun. 5, 3042 (2014) .
- ²⁵ C.-F. Pai, M.-H. Nguyen, C. Belvin, L. H. Vilela-Leão, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 104, 082407 (2014).
- C.-F. Pai, Y. Ou, D. C. Ralph, and R. A. Buhrman, (2014) , arXiv:1411.3379.
- ²⁷ S. Emori, U. Bauer, S. Woo, and G. S. D. Beach, Appl. Phys. Lett. **105**, 222401 (2014).
- ²⁸ S. Woo, M. Mann, A. J. Tan, L. Caretta, and G. S. D. Beach, Appl. Phys. Lett. **105**, 212404 (2014).
- ²⁹ Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
- 30 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. B 66, 224403 (2002).
- ³¹ A. Ghosh, J. F. Sierra, S. Auffret, U. Ebels, and W. E. Bailey, Appl. Phys. Lett. **98**, 052508 (2011).
- ³⁷⁵ ³² C. T. Boone, H. T. Nembach, J. M. Shaw, and T. J. Silva, J. Appl. Phys. **113**, 153906 (2013).
- ³³ C. T. Boone, J. M. Shaw, H. T. Nembach, and T. J. Silva, (2014), arXiv:1408.5921.
- 34 B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.-Y. Song, Y. Sun, and M. Wu, 378 Phys. Rev. Lett. **107**, 066604 (2011).
- ³⁵ Y. Sun, H. Chang, M. Kabatek, Y.-Y. Song, Z. Wang, M. Jantz, W. Schneider, M. Wu, E. Mon-
- toya, B. Kardasz, B. Heinrich, S. G. E. te Velthuis, H. Schultheiss, and A. Hoffmann, Phys.
- Rev. Lett. 111, 106601 (2013).
- ³⁶ A. Azevedo, L. H. Vilela Leao, R. L. Rodriguez-Suarez, A. B. Oliveira, and S. M. Rezende, J. 383 Appl. Phys. **97**, 10C715 (2005).
- 384 37 E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
- 385 ³⁸ O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and 386 A. Hoffmann, Phys. Rev. B **82**, 214403 (2010).
- ³⁹ F. D. Czeschka, L. Dreher, M. S. Brandt, M. Weiler, M. Althammer, I.-M. Imort, G. Reiss,
- ³⁸⁸ A. Thomas, W. Schoch, W. Limmer, H. Huebl, R. Gross, and S. T. B. Goennenwein, Phys. 389 Rev. Lett. **107**, 046601 (2011).
- ³⁹⁰ ⁴⁰ K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, ³⁹¹ M. Matsuo, S. Maekawa, and E. Saitoh, J. Appl. Phys. 109, 103913 (2011).
- 41 P. Deorani and H. Yang, Appl. Phys. Lett. 103, 232408 (2013).
- 393 42 M. Weiler, J. M. Shaw, H. T. Nembach, and T. J. Silva, IEEE Magn. Lett. 5, 1 (2014).
- ⁴³ M. Obstbaum, M. Härtinger, H. G. Bauer, T. Meier, F. Swientek, C. H. Back, and G. Wolters-³⁹⁵ dorf, Phys. Rev. B 89, 060407 (2014).
- ⁴⁴ J.-C. Rojas-Sánchez, N. Reyren, P. Laczkowski, W. Savero, J.-P. Attané, C. Deranlot, M. Jamet, 397 J.-M. George, L. Vila, and H. Jaffrès, Phys. Rev. Lett. 112, 106602 (2014).
- 398 45 H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F. Y. Yang, Phys. Rev. Lett. 112, ³⁹⁹ 197201 (2014).
- $400⁴⁶$ A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, Phys. Rev. Lett. 84, 2481 (2000).
- ⁴⁷ J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nat. ⁴⁰² Phys. 4, 67 (2007).
- 403 48 L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. **106**, 036601 (2011).
- ⁴⁹ K. Kondou, H. Sukegawa, S. Mitani, K. Tsukagoshi, and S. Kasai, Appl. Phys. Express 5, ⁴⁰⁵ 073002 (2012).
- ⁵⁰ T. D. Skinner, M. Wang, A. T. Hindmarch, A. W. Rushforth, A. C. Irvine, D. Heiss, H. Kure-⁴⁰⁷ bayashi, and A. J. Ferguson, Appl. Phys. Lett. 104, 062401 (2014).
- $_{408}$ 51 Y. Wang, P. Deorani, X. Qiu, J. H. Kwon, and H. Yang, Appl. Phys. Lett. 105, 152412 (2014).
- ⁴⁰⁹ ⁵² A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi,
- ⁴¹⁰ A. Manchon, E.-A. Kim, N. Samarth, and D. C. Ralph, Nature 511, 449 (2014).
- ⁴¹¹ ⁵³ A. Yamaguchi, H. Miyajima, T. Ono, Y. Suzuki, S. Yuasa, A. Tulapurkar, and Y. Nakatani,
- ⁴¹² Appl. Phys. Lett. 90, 182507 (2007).
- ⁵⁴ A. Ganguly, K. Kondou, H. Sukegawa, S. Mitani, S. Kasai, Y. Niimi, Y. Otani, and A. Barman, Appl. Phys. Lett. 104, 072405 (2014).
- ⁵⁵ S. Kasai, K. Kondou, H. Sukegawa, S. Mitani, K. Tsukagoshi, and Y. Otani, Appl. Phys. Lett. 104, 092408 (2014).
- ^{417 56} K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, and E. Saitoh, Phys. Rev. Lett. 101, 036601 (2008).
- ^{419 57} V. E. Demidov, S. Urazhdin, E. R. J. Edwards, and S. O. Demokritov, Appl. Phys. Lett. 99, 172501 (2011).
- C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012).
- ⁵⁹ Z. Duan, C. T. Boone, X. Cheng, I. N. Krivorotov, N. Reckers, S. Stienen, M. Farle, and
- J. Lindner, Phys. Rev. B 90, 024427 (2014).
- S. Emori, T. Nan, T. M. Oxholm, C. T. Boone, J. G. Jones, B. M. Howe, G. J. Brown, D. E. 426 Budil, and N. X. Sun, Appl. Phys. Lett. **106**, 022406 (2015).
- S. Mizukami, Y. Ando, and T. Miyazaki, Phys. Rev. B 66, 104413 (2002).
- ⁶² S. Petit, C. Baraduc, C. Thirion, U. Ebels, Y. Liu, M. Li, P. Wang, and B. Dieny, Phys. Rev. Lett. 98, 077203 (2007).
- $_{430}$ ⁶³ H. Nguyen, W. P. Pratt, and J. Bass, J. Magn. Magn. Mater. **361**, 30 (2014).
- $_{431}$ $_{64}$ W. Park, D. V. Baxter, S. Steenwyk, I. Moraru, W. P. Pratt, and J. Bass, Phys. Rev. B 62, 1178 (2000).
- ⁶⁵ Y. Liu, Z. Yuan, R. J. H. Wesselink, A. A. Starikov, and P. J. Kelly, Phys. Rev. Lett. 113, 207202 (2014).
- ⁶⁶ W. L. Lim, N. Ebrahim-Zadeh, J. C. Owens, H. G. E. Hentschel, and S. Urazhdin, Appl. Phys. Lett. 102, 162404 (2013).
- $_{437}$ ⁶⁷ H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T. J. Silva, (2014) , arXiv:1410.6243.
- ⁴³⁸ When M_{eff} is adjustable M_{eff} changes only by $\ll 1\%$.

Figure 1. (a) Schematic of the dc-tuned spin-torque ferromagnetic resonance (ST-FMR) setup and the symmetry of torques acting on the magnetization m. Through spin-orbit effects, the charge current in the normal metal generates two torques: damping-like torque (DLT) and field-like torque (FLT). (b,c) ST-FMR spectra of NiFe/Pt at different frequencies (b) and dc bias currents (c).

Figure 2. (a) Schematic of the dc spin-pumping (inverse spin Hall effect) voltage measurement. (b) Representative dc voltage spectrum. The inverse spin Hall signal V_{ISH} dominates the anomalous Hall effect signal V_{AHE} .

Figure 3. (a) Resonance linewidth W versus frequency f at different dc bias currents. (b,c) Resonance field H_{FMR} versus frequency f at different dc-bias currents for NiFe/Pt (b) and NiFe/Cu/Pt (c).

Figure 4. (a) Resonance linewidth W versus dc bias current I_{dc} at $f = 5$ GHz. (b) Effective spin Hall angle θ_{DL} calculated at several frequencies.

Figure 5. (a,b) dc voltage V_{dc} spectra, dominated by the inverse spin Hall voltage V_{SH} , measured around resonance in NiFe/Pt (a) and NiFe/Cu/Pt (b).

Figure 6. Net current-induced effective field, derived from resonance field shift ΔH_{FMR} normalized by the field direction angle $|\sin \phi| = 1/\sqrt{2}$. The solid lines denote the estimated Oersted field.

Figure 7. (a,b) Effective spin Hall angle $\theta_{SH,rf}^{eff}$ extracted from ST-FMR lineshape analysis, disregarding the field-like torque (a) and taking into account the field-like torque (b).

Figure 8. (a) Change in resonance linewidth W versus dc bias current I_{dc} in Ta/NiFe at $f = 6.5$ GHz. (b) Effective spin Hall angle θ_{DL} calculated at several frequencies.

Figure 9. Empirical damping parameter $\alpha_{W/f}$ as a function of dc bias current I_{dc} .