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A lattice-dynamics study of the cubic Li3OCl anti-perovskite, a candidate solid electrolyte in
lithium-ion batteries, reveals the presence of dynamical instabilities with respect to rotations of the
Li6O octahedra. Calculated energy landscapes in the subspace of unstable octahedral rotational
modes are very shallow with at most a 1 meV per formula unit reduction in energy upon breaking
the cubic symmetry. While Li3OCl is not stable relative to decomposition into Li2O and LiCl at zero
Kelvin, estimates of the vibrational free energy suggest that Li3OCl anti-perovskite should become
entropically stabilized above approximately 480 K.

I. INTRODUCTION

The recently discovered anti-perovskite Li3OCl com-
pound is a promising solid electrolyte for Li-ion batteries,
with ionic conductivities reported1 to be almost as high
as 2 mS cm−1. Li3OCl has a perovskite crystal structure,
but with the role of anions and cations reversed (Figure
1a): The positively charged Li ions form the corner shar-
ing octahedra while the negatively charged O ions occupy
the center of the Li-octahedra; the negatively charged Cl
occupy the large cages at the center of the unit cell co-
ordinated by 12 Li ions. Several first-principles studies
of Li transport in the anti-perovskite crystal structure
have predicted low migration barriers for Li-vacancy ex-
changes, with values on the order of 350 meV2,3. An even
lower migration barrier of approximately 160 meV was
predicted for an interstitial dumbbell mechanism3. The
effect of alloying in Li3OCl1−xBrx on the migration barri-
ers of vacancy mediated Li diffusion was also recently in-
vestigated from first-principles4. While Li vacancies and
Li interstitials can appear at stoichiometric compositions
through the creation of Frenkel defect pairs, the forma-
tion energy of such pairs is predicted to be too large3

to achieve an appreciable concentration of diffusion me-
diating defects at room temperature. Off-stoichiometric
compositions that are Li rich are likely more desirable to
ensure an excess of Li ions that can migrate by means of
the interstitial dumbell mechanism.

Devising strategies to synthesize off-stoichiometric
compositions of Li3OCl by doping or alloying requires an
understanding of the factors stabilizing Li3OCl. First-
principles studies predict that Li3OCl is metastable at
zero Kelvin relative to decomposition into LiCl and
Li2O2,3 (Figures 1b and 1c). The ability to synthesize
Li3OCl experimentally1, however, suggests that this com-
pound is likely entropically stabilized at elevated tem-
peratures, if not at room temperature, then at least
at the higher synthesis temperatures of approximately
330 − 360◦C1. As Li3OCl does not exhibit significant
configurational disorder and is an insulator, the most im-
portant degrees of freedom are vibrational excitations.

Perovskite structures have been widely studied. A per-
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FIG. 1: (Color online) Crystal structures of (a) Li3OCl,
(b) LiCl, and (c) Li2O. Lithium, oxygen, and chlorine
atoms are represented by green, red, and blue circles,

respectively.

fectly cubic perovskite is rarely observed and most per-
ovskites that exhibit cubic symmetry at high tempera-
ture undergo symmetry breaking transitions at low tem-
perature. Symmetry breaking distortions can arise either
as a result of distortions of the octahedra, or due to ro-
tations of the octahedra5. The Glazer notation has been
established to classify structures that can be derived from
cubic perovskite through octahedral rotations6. Octahe-
dral rotations around the three cubic axes are denoted
with the notation a∗b∗c∗ where the letters a, b and c rep-
resent relative tilt angles around the cubic axes of the
octahedra, and the ∗ can be +, −, or 0, depending on
whether an in-phase, out-of-phase, or no tilt of neighbor-
ing octahedra has occurred6. In the case of the cubic
Pm3̄m Li3OCl structure, which has no tilts, the tilt sys-
tem is represented as a0a0a0. Howard and Stokes have
taken the 23 tilt systems proposed by Glazer6 and us-
ing group-theory, simplified the list to 15 distinct tilt
systems7. These group theoretic tools have proven in-
valuable in analyzing rotational instabilities in a wide
range of perovskites8–11.

In this work, we investigate the stability of Li3OCl
using lattice dynamics. We find that Li3OCl is mechan-
ically unstable with respect to octahedral rotations. We
map out the energy landscape as a function of unstable
modes and find that the minima correspond to several
of the 14 rotational tilt systems7. The energy gained by
octahedral rotations relative to the cubic crystal, how-



2

ever, is predicted to be very small, suggesting that the
high-symmetry cubic form of Li3OCl should emerge even
at low temperatures due to anharmonic vibrational ex-
citations. Additionally, we find that vibrational entropy
will likely stabilize the cubic Pm3̄m form of Li3OCl rel-
ative to decomposition into LiCl and Li2O above room
temperature.

II. METHODOLOGY

First-principles density functional calculations were
performed using the Vienna Ab Initio Simulation Pack-
age (VASP)12,13 within the generalized gradient approx-
imation (GGA) as implemented by Perdew, Burke, and
Ernzerhof14. Projector augmented wave13,15 pseudopo-
tentials with valence-electron configurations of 1s12s12p1

for Li, 2s22p4 for O, and 3s23p5 for Cl and an energy
cutoff of 600 eV were used.

Force constants for Li3OCl were calculated using the
frozen phonon approach. Isolated atomic displacements
relative to their high symmetry positions in cubic anti-
perovskite were sampled in large supercells. The result-
ing forces on all the atoms in the supercell were then cal-
culated with VASP. Force constants were determined us-
ing a least-squares fit between atomic perturbations and
the calculated forces. The force constants were then used
to construct the dynamical matrix16–20. Since Li3OCl is
an ionic crystal, the effect of dipole-dipole interactions
must also be accounted for in the dynamical matrix21–23.
Born effective charges and dielectric tensors were calcu-
lated with density functional perturbation theory as im-
plemented in VASP24,25. These were then used to cal-
culate the non-analytic contribution to the dynamical
matrix, which was evaluated within the same supercell
as that for the atomic perturbations using the envelope
function introduced by Wang et al26. A 6× 6× 6 (1080
atoms) cubic supercell of the primitive cubic structures
(a = 3.907Å) was fully relaxed before applying various
displacements of length 0.015Å to each of the three asym-
metric unit cell sites in the Li3OCl structure. A 3×3×3
Gamma-centered k-point mesh was used in the VASP
calculations performed on these supercells.

We also calculated vibrational free energies within
the quasi-harmonic approximation for Li3OCl, LiCl and
Li2O. Phonon dispersion curves and their corresponding
densities of states were calculated as described above for
a range of volumes. Smaller supercells were used for the
quasi-harmonic calculations. For Li3OCl, a 3× 3× 3 su-
percell of the primitive cubic unit cell was used (contain-
ing 27 primitive cells and 135 atoms). For LiCl and Li2O,
supercells containing 32 unit cells (64 atoms) and 27 unit
cells (81 atoms) were used. Atomic perturbations hav-
ing lengths of 0.015, 0.15, and 0.03 Å for Li3OCl, LiCl,
and Li2O, respectively were sampled to extract force con-
stants. A second order polynomial fit of the free energy
dependence on volume was used to obtain the Gibbs free
energy as a function of temperature.

Irreducible representations of the Pm3̄m phase were
obtained via the SMODES module of ISOTROPY
(ISOTROPY Software Suite, iso.byu.edu). Accompany-
ing each irreducible representation is one or more sym-
metrized collective displacement mode, each of which
transforms the dynamical matrix into block diagonal
form. The energy of the crystal was then calculated with
VASP as a function of the amplitudes of the displace-
ment modes. Energy calculations of collective displace-
ments having M+

3 and R+
4 symmetries were performed in

a supercell containing two primitive unit cells of Li3OCl.
The FINDSYM module27 of ISOTROPY was used to

verify the space groups of the 15 structures resulting from
octahedral tilts of the Pm3̄m structure. Structures were
calculated using the same 2×2×2 supercell of the 5 atom
cubic primitive with a 9×9×9 Γ-centered k-point mesh,
thus ensuring that an identical k-point mesh was used
for each structure. After a full relaxation of each struc-
ture, final energies were calculated using the tetrahedron
method with Blöchl corrections28.

III. RESULTS

A. Phonons

Figure 2 shows the calculated phonon dispersion curves
for Pm3̄m Li3OCl as calculated using force constants fit
to force-displacement relationships obtained from DFT-
PBE calculations on a 6 × 6 × 6 supercell of the cu-
bic unit cell. We also show the dispersion curves us-
ing force constants extracted from a 3× 3× 3 supercell.
Because Li3OCl is an ionic crystal, contributions from
Born effective charges were included in the calculation of
the dispersion curves to account for macroscopic electric
fields induced by long-range Coulombic interactions due
to dipole moments that emerge from longitudinal opti-
cal phonons16. This leads to the LO-TO (longitudinal
optical - transverse optical) splitting at the Γ point22,26.
Oxygen and chlorine occupy sites having cubic symme-
try and therefore have isotropic Born effective charges
with values of −1.98|e| and −1.30|e|, respectively. The
Li ions occupy sites with lower symmetry and have an
anisotropic, diagonal Born effective charge tensor with a
value of 0.99|e| in the direction of the O-Li-O bond and
a value of 1.14|e| in the plane perpendicular to the O-Li-
O bond. The dielectric tensor has diagonal elements of
15.13. The Born effective charges, particularly those of
Li and O, are remarkably close to their formal charges,
indicating the highly ionic nature of the material.

Figure 2 shows that the the cubic form of Li3OCl is dy-
namically unstable with respect to phonon modes at R
and M . The unstable modes, corresponding to imaginary
eigenvalues of the dynamical matrix, are represented as
negative frequencies in Figure 2. The instability at R
is three-fold degenerate, indicating that there are three
symmetrically equivalent phonon modes that contribute
to the decomposition of the cubic phase into a more ener-
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getically favorable structure. Figure 2 also shows that a
phonon mode at M is slightly dynamically unstable when
using force constants extracted from a 6 × 6 × 6 super-
cell, and the same mode is predicted to be even more so
when using force constants determined with a 3 × 3 × 3
supercell.

The phonon density of states in Figure 2b show that
the unstable modes account for a small fraction of the
total phonon modes. The partial densities of states in
Figure 2b indicate that the unstable modes involve only
Li ions. The high frequency modes above approximately
5 THz are dominated by oxygen and Li. The Cl anions
are about 5 times heavier than Li and reside in the large
dodecahedrally coordinated cages characterized by long
Cl-Li bonds. As a result, Cl accounts for most of the
lower frequency stable modes.

The unstable modes at R indicate that the energy of
the crystal can be lowered through octahedral tilts that
generate the other 14 tilt systems. A systematic analysis
can be accomplished by examining the irreducible repre-
sentations of the point groups of the first Brillouin zone
high-symmetry points5 of cubic Pm3̄m Li3OCl. In the
anti-perovskite structure, the octahedral rotations result
from positional displacements of the Li cations, while the
O and Cl anions stay fixed. These rotations can be at-
tributed to a six-dimensional reducible representation of
Pm3̄m, M+

3 ⊕ R
+
4 , with M+

3 and R+
4 themselves being

irreducible representations belonging to high-symmetry
points M and R in the first Brillouin zone7.

Distortions having M+
3 symmetry can be characterized

as rotations of all layers of octahedra around a single axis
in a cooperative in-phase motion (Figure 3a), resulting
in an a0a0c+ tilt system and a P4/mbm space group7.
This tilt periodicity can be realized in a tetragonal su-
percell made up of two cubic primitive cells. Figure 3b
shows the dependence of the energy of the crystal as the
angle of rotation is incrementally increased. The energy
well is highly anharmonic for small rotation angles vary-
ing by less than 0.2 meV over a two degree interval and
exhibiting three local minima. The two minimia at non-
zero rotation angle correspond to structures possessing
P4/mbm symmetry.

By doubling theM+
3 unit cell in the c-axis direction, we

effectively create two layers of octahedra that can be ro-
tated in opposing directions, simulating an out-of-phase
rotation between the two layers (Figure 3c). This distor-
tion leads to the formation of a a0a0c− tilt system with
a space group of I4/mcm. While the energy wells are
slightly deeper than those of the M+

3 rotation, the depth
of the energy wells remain well above −1 meV per f.u.
As is clear in Figures 3b and 3d, M+

3 is indeed a stable
mode, but both Figures 2c and 2a exhibit a relatively soft
branch at M . This correlates with the ease at which the
structure falls into the 2 energy minima when the M+

3

distortion is applied.

At the R point, the R+
4 representation is 3-fold de-

generate, and each mode results in a rotation along a
different pseudo-cubic axis (Figure 4). Defining the am-

plitudes of each of these rotational variants as order pa-
rameters ξ1, ξ2, ξ3, we sampled distortions over a uniform
grid in this three-dimensional space and calculated the
energy landscape. A ξ1 = 0 slice in the ξ1− ξ2− ξ3 space
is shown in Figure 5a. Similar to the M+

3 rotations, the
energy scales in the ξ2 − ξ3 space are extremely small,
and the depth of the wells occur within 1 meV. Global
energy minima are found along the [111] direction of the
ξ1 − ξ2 − ξ3 space. Taking two-dimensional slices along
the [111], [110], and [100] directions in the ξ1 − ξ2 − ξ3
space, we see in Figure 5b that while the lowest energy
well occurs along [111], corresponding to an equal angle
of rotation along each axis, it is less than half an meV
lower than the energy wells along the [110] and [100] di-
rections. We note that the minimum energy structures
along the [111], [110], and [100] directions have space
groups of R3̄c, Imma, and I4/mcm, respectively. These
space groups in turn correspond to the a−a−a−, a0b−b−,
and a0a0c− tilt systems, which is consistent with conclu-
sions drawn from previous group-theoretical analysis5,29.

B. Stability of Pm3̄m Li3OCl Relative to 14
Rotational Tilt Systems

Figure 6 shows the calculated energies of all 14 tilt
systems relative to Pm3̄m Li3OCl. The energies were
calculated using the same 2× 2× 2 supercell of the cubic
primitive cell using an identical k-point mesh for each
structure. All structures were allowed to relax fully. The
space groups before and after relaxation were unchanged
for each structure as verified using FINDSYM27.

Of the 14 tilted structures, 10 have lower energy than
the cubic Pm3̄m. While Figure 6 shows that the intro-
duction of octahedral tilts can lower the energy of the
cubic anti-perovskite, it is important to note, however,
that the energy differences between all 15 structures are
within 1 meV per f.u. of each other. Despite minimizing
k-point errors by using the same supercell for all calcula-
tions, the energy differences are small and still well within
the numerical error range of first-principle calculations.
The 15 different tilt systems in Li3OCl are therefore en-
ergetically indistinguishable, and it is impossible to un-
ambiguously identify the most stable tilt system. It is
also unlikely that the system will remain trapped in one
of these lower symmetry distortions at all but the lowest
temperatures.

C. Stability of Li3OCl Relative to LiCl and Li2O

Li3OCl at zero Kelvin is predicted to have a posi-
tive formation energy relative to a two phase mixture
of Li2O and LiCl3. It is therefore not stable at zero
Kelvin. It may, however, become entropically stabilized
at elevated temperatures as a result of vibrational ex-
citations. The unstable modes of cubic Li3OCl corre-
sponding to the imaginary (negative) frequencies in Fig-
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FIG. 2: (Color online) (a) Phonon dispersion curve and (b) density of states of Pm3̄m Li3OCl calculated using the
finite displacement method with a lattice parameter of 3.907Å and Born effective charge corrections in a 6× 6× 6
supercell. (c) and (d) are the dispersion curve and density of states resulting from a 3× 3× 3 supercell. There is a
3-fold degenerate instability at the Brillouin zone boundary R point in both supercells, but the smaller supercell

results in an instability at the M point as well.

ures 2a and 2c pose challenges to calculating free en-
ergies at finite temperature using either the harmonic
or quasi-harmonic approximation. The energy land-
scapes as a function of the amplitudes of the unstable
phonon modes in Figures 3 and 5 reveal a substantial
degree of anharmonicity with respect to Li6O octahe-
dral rotational degrees of freedom. While instabilities
and anharmonicity in materials have been extensively
studied30,31 and can be treated using first-principles pa-
rameterized anharmonic lattice-dynamical Hamiltonians
together with Monte Carlo simulations32–35, these ap-
proaches are highly involved. Here we estimate the free
energy of Li3OCl within the quasi-harmonic approxima-
tion by integrating over only the stable phonon modes
of cubic Li3OCl and argue that the neglect of unstable
(anharmonic) modes should lead to an upper bound of
the Li2O + LiCl to Li3OCl transition temperature.

To estimate the error incurred when calculating the
free energy of a dynamically unstable high symmetry
phase by integrating only over stable phonon modes, it
is convenient to formally express the Born-Oppenheimer
potential energy surface in terms of the amplitudes of
phonon normal coordinates, ξk,b, where as usual, k refers

to a wave vector and b to a phonon branch. The potential
energy surface can then be expressed as a polynomial ex-
pansion of the phonon normal coordinate amplitudes as,
for example, described by Monserrat et al36. We can dis-
tinguish between two categories of phonon modes in such
an expansion. For stable and stiff modes, the harmonic
approximation should be suitable, and only terms up to
second order need to be kept in the expansion. We will
denote the amplitudes of these normal coordinates with
ξHk,b. For unstable or soft phonon modes, anharmonicity

is important and polynomials of their amplitudes beyond
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FIG. 3: (Color online) Energy variation with Li6O
octahedral rotations. (a) In-phase octahedral rotations
due to distortions with M+

3 symmetry and (b) resulting
energy variation. (c) Out-of-phase octahedral rotations
and (d) resulting energy variation. Green, red, and blue
circles represent Li, O, and Cl atoms, respectively. The
zero reference energy is that of the undistorted Pm3̄m

structure.
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FIG. 4: (Color online) Octahedral tilts due to atomic
displacements with the irreducible representation

symmetry R+
4 . The three-fold degeneracy of R+

4 leads
to three variants of this distortion, where each variation

is an octahedral rotation about a different axes.

the second order are needed to reproduce the full poten-
tial energy surface. We denote the amplitudes of these
phonon modes with ξA

k′
,b′

. The potential energy surface

can then formally be written as

V
(
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FIG. 5: (Color online) Energy variations due to
distortions with R+

4 symmetry with Pm3̄m as the
energy reference. (a) The energy landscape of an ξ1 = 0

slice of the 3-D ξx space. The landscape is very flat,
with the energy scale around the wells being on the

order of 1 meV/f.u. (b) Amplitude dependent energies
in the [111], [110], and [100] directions of the ξx space
leading to the formation of R3̄c, Imma, and I4/mcm

structures.

+ V A
(
{ξAk′

,b′
}
)
. (1)

where the ξA
k′
,b′

appearing in the anharmonic potential

V A(ξA
k′
,b′

) may even be coupled to each other. With this

partitioning, it is next convenient to split the full vibra-
tional Hamiltonian, including the kinetic energy, into a
sum of a harmonic part HH and an anharmonic part HA

where

HH =
∑
k,b

 (ξ̇Hk,b)
2

2
+

1

2
ω2
k(ξHk,b)

2

 (2)

HA =
∑
k′
,b′

(ξ̇A
k′
,b′

)2

2
+ V A

(
{ξAk′

,b′
}
)
. (3)

Since HH and HA are decoupled from each other, they



6

P
n
m
a

C
m
cm

P
4 2
/n
m
c

C
2/
m

Im
m
a

P
2 1
/m P

1̄
I4
/m
cm

C
2/
c

R
3̄c

I4
/m
m
m

Im
m
m

Im
3̄

P
4/
m
bm

P
m

3̄m

Space Group

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
∆

E
(m

eV
/f.

u.
)

FIG. 6: (Color online) Energies of Li3OCl in the 15 tilt
systems. The Pm3̄m structure was used as the

reference. All distortions were calculated in a 2× 2× 2
supercell of the primitive cell to minimize k-point

errors. The energies are within 0.8 meV of the perfect
cubic structure.

can be solved separately. The harmonic Hamiltonian will

have energy levels EHν =
∑

k,b h̄ωk,b

(
nk,b + 1/2

)
where

the nk,b are integer quantum numbers. Formal solutions

to the anharmonic Hamiltonian will generate a spectrum
of energy levels EA0 , E

A
1 , . . . , E

A
ν′ , . . . , where EA0 corre-

sponds to the ground state energy of the anharmonic
Hamiltonian. The energy of any particular vibrational
microstate η of the full crystal is then

Eη = Eocubic +
∑
k,b

h̄ωk,b

(
nk,b + 1/2

)
+ EA0 + ∆EAν′(4)

where Eocubic is the fully relaxed energy of cubic Li3OCl
and ∆EAν′ = EAν′ − EA0 (which is always ≥ 0).

Substitution of Eq. 4 into the partition function Z =∑
η exp(−βEη) and using F = −(1/β) lnZ yields a free

energy F that can be written as a sum of a harmonic
vibrational free energy FH and an anharmonic free en-
ergy contribution FA. An explicit expression for FH

can only be derived once a criterium is established to
distinguish between the phonon modes appearing in the
harmonic Hamiltonian and those appearing in the an-
harmonic Hamiltonian. Here we assume that all stable
phonon modes fall in the first category while all unsta-
ble phonon modes fall in the second category. The free
energies can then be written as

FH = E◦cubic + EHzp

+
1

β

∫ ∞
0

g(ω) ln (1− exp (−βh̄ω)) dω (5)

and

FA = EA0 −
1

β
ln

(∑
ν′

exp
(
−β∆EAν′

))
. (6)

EHzp appearing in Eq. 5 refers to the zero point energy of
the harmonic Hamiltonian and is given by

EHzp =

∫ ∞
0

1

2
g(ω)h̄ωdω (7)

where g(ω) is the density of states.
The harmonic free energy FH can be calculated nu-

merically given the vibrational density of states g(ω)
(Figure 2b and 2d) by integrating over solely the sta-
ble phonon frequencies in the Brillouin zone. The an-
harmonic contribution FA due to the presence of soft,
unstable modes, however, is not as accessible. It consists
of a temperature independent term EA0 which could be
positive or negative and a temperature dependent term,
−kBT ln

(∑
ν′ exp

(
−β∆EAν′

))
, which is always negative.

The second term of FA, therefore, lowers the total free
energy and gives it a more negative slope as a function
of temperature compared to that of FH . If EA0 is zero
or negative, then the true free energy F will be less than
FH at all temperatures. If EA0 is positive, however, its
inclusion in the estimate of F will result in a rigid upward
shift of the free energy curve as a function of temperature
relative to FH .

The order of magnitude of EA0 can be estimated by
comparing the zero Kelvin component of the free energy
of cubic Li3OCl, Eocubic + EHzp + EA0 , to the zero Kelvin
free energy of a dynamically stable tilted variant of cubic
Li3OCl. The lower symmetry I4/mcm form of Li3OCl,
for example, is dynamically stable. Within the harmonic
approximation, its free energy at zero Kelvin is equal
to the fully relaxed energy EI4/mcm plus its zero point
energy Ezp

I4/mcm. The two free energies at zero Kelvin

should be very similar, if not equal, i.e.

Eocubic + EHzp + EA0 = EI4/mcm + Ezp
I4/mcm (8)

provided that the harmonic approximation at zero Kelvin
is valid for the I4/mcm form of Li3OCl and that the de-
composition in harmonic and anharmonic free energies is
sufficiently accurate for the cubic form of Li3OCl. Based
on Eq. 8 and a calculation of the phonon density of states
for the I4/mcm form of Li3OCl, we estimate a value for
EA0 of approximately 5 meV per Li3OCl formula unit. Al-
though EA0 is positive, its magnitude still suggests that
EA0 has a negligible contribution to the total free energy
F of cubic Li3OCl and that FH can therefore serve as
an upper bound to the true free energy of Li3OCl. The
transition temperature for the LiCl plus Li2O reaction to
Li3OCl using FH instead of F should therefore serve as
an upper bound to the true transition temperature.

We estimate the temperature at which Li3OCl is sta-
bilized relative to LiCl and Li2O by first conducting
quasi-harmonic calculations for all three phases. The
quasi-harmonic approximation, unlike the purely har-
monic model, accounts for thermal expansion by con-
structing volume dependent free energies. These vol-
ume and temperature dependent free energy curves,
F (T, V ) = E(V ) + FH(T, V ), consist of the energy of a
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FIG. 7: (Color online) Quasi-harmonic curves for (a)
LiCl, (b) Li2O, and (c) Li3OCl and (d) free energy
curve for Li3OCl. Volume-free energy curves are at
increments of 50 K between 0 - 550 K. Li3OCl is

entropically stabilized at 480 K, which is an
upper-bound approximation.

static lattice at a particular volume, V , and the harmonic
vibrational free energy at the same volume. Minimizing
F (T, V ) with respect to V results in the Gibbs free en-
ergy at zero pressure. Harmonic phonons were calculated
at volumes both larger and smaller than the equilibrium
volume for LiCl, Li2O, and Li3OCl. Both LiCl and Li2O
were predicted to be dynamically stable, having only real
phonon frequencies. The phonon density of states corre-
sponding to the real vibrational frequencies were used to
obtain FH(T, V ) for each of the three phases, which are
shown in Figures 7a, 7b, and 7c.

In determining the force constants at different volumes
for the quasi-harmonic free energies of Li3OCl, we used
a 3× 3× 3 supercell (containing 135 atoms) as opposed
to the substantially larger 6× 6× 6 supercell (containing
1080 atoms) used to extract force constants for our initial
phonon analysis. The dispersion curves resulting from
the force constants extracted from the 3×3×3 supercell
exhibit softer modes both at R and M (Figure 2c) than
those based on a 6×6×6 supercell. This is likey due to the
sampling of anharmonic modes and the ease with which
a slight 1◦ rotation of the Li6O octahedra nudges the
system into a lower energy state. Note in Figure 2d that
the soft mode contribution to the total density of states

is very small. Using the Gibbs free energies for each of
the three compounds, we can calculate a formation free
energy for Li3OCl, ∆GLi3OCl = GLi3OCl−GLiCl−GLi2O.
Figure 7d, shows that an upper bound temperature at
which Li3OCl is stabilized is approximately 480 K. Errors
of +/ − 1 meV per formula unit of Li3OCl bring the
transition temperature within a range of 475 - 487 K,
while errors of +/ − 5 meV per formula unit of Li3OCl
result in bounds of 450 - 510 K.

IV. DISCUSSION

Li3OCl shows promise as a solid electrolyte for Li-ion
batteries1. It is, however, predicted to have a positive
formation energy relative to a two-phase mixture of LiCl
and Li2O2,3. Furthermore, to ensure a high concentration
of diffusion mediating defects, the compound must be
synthesized with a composition that deviates from per-
fect stoichiometry as the energy to form Frenkel pairs
in the stoichiometric compound is too high to generate a
sufficient number of Li interstitials and vacancies at room
temperature3. A deeper understanding of the factors re-
sponsible for the observed stability of Li3OCl is therefore
desirable.

Our analysis of the phonon modes of Li3OCl shows
that its cubic form is dynamically unstable with respect
to Li6O octahedral rotations. The instability occurs at
the R wave vector points and leads to the spontaneous
decomposition of Pm3̄m Li3OCl into lower energy tilt
systems, which has been observed in other perovskite
materials10,37. Li3OCl is highly anharmonic with respect
to rotational degrees of freedom of the Li6O octahedra.
The energy landscape as a function of unstable phonon
modes of cubic Li3OCl is very shallow (Figure 5a) with
the energy differences between cubic and lower symmetry
tilt systems being too small to establish which distortion
is more stable (Figure 6). It is therefore unlikely that
any of the lower symmetry tilt variants of Li3OCl will
be stable at any but the lowest temperatures, becoming
cubic when sufficient thermal energy is available to over-
come the smal energy barriers separating the various low
symmetry variants.

The ionic radius of Cl relative to Li and O is consistent
with the Goldschmidt rule38 for cubic perovskite stability
with respect to rotational instabilities of the Li6O octa-
hedra. General guidelines indicate that a cubic structure
is preferred for a tolerance factor, defined for an ABX3

perovskite as

t = (RA+RX)√
2(RB+RX)

, (9)

between 0.9− 1. The tolerance factor for Li3OCl is 0.84,
based on ionic radii tabulated by Shannon39. Substi-
tuting Cl with a larger anion should make the cubic
perovskite dynamically stable with respect to Li6O oc-
tahedral rotations. Br, for example, which has been
alloyed on the Cl sublattice of Li3OCl to optimize Li
conductivity1,3,4, results in a slightly higher tolerance
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factor of 0.89 for Li3OBr. This suggests that Li3OBr
is unlikely to exhibit rotational instabilities.

While our analysis of phase stability due to vibrational
excitations does not rigorously account for anharmonic-
ity, it does give a strong indication that Li3OCl should be
entropically stabilized at high temperature. Nevertheless
the precise temperature above which Li3OCl should be-
come thermodynamically stable relative to LiCl+Li2O is
uncertain as our quasi-harmonic model and subsequent
analysis only provide an upper bound estimate. Our re-
sults, however, indicate that Li3OCl is very likely sta-
ble at typical synthesis temperatures of 330-360◦C1. Be-
cause our free energy calculations relied on the density
of states corresponding to stable phonon modes, we were
unable to account for the anharmonic contributions to
the free energy. The contribution to the total density
of states by the imaginary frequencies, however, is rela-
tively small when extracting force constants from frozen
phonon calculations using the 1080 or 135 atom super-
cells of Li3OCl. This suggests that the inclusion of an-
harmonic excitations is unlikely to have a strong effect on
the predicted temperature above which Li3OCl becomes
stable relative to LiCl and Li2O.

The phonon analysis of Li3OCl provides insight about
the factors responsible for the high temperature stability
of Li3OCl. As shown in the partial densities of states
of Figures 2b and 2d, the majority of the low frequency
modes can be attributed to Cl anions and Li cations,
while the majority of high frequency modes involve both
Li and O. Cl in Li3OCl resides in a large cage and is 12
fold coordinated by Li, which is substantially higher than
its 6-fold coordination in LiCl. The Li-Cl bond lengths in
Li3OCl are 2.76Å, which are longer than the 2.58Å Li-Cl
bonds in LiCl. Longer bonds tend to be softer, resulting
in an increase in vibrational entropy20. Hence Cl will
gain in vibrational entropy when going from its octahe-
drally coordinated sites in LiCl to the more open 12-fold
coordinated sites in Li3OCl. Additional vibrational en-
tropy arises from the easy Li6O octahedral rotations, a
degree of freedom that is absent in the more compact
LiCl and Li2O phases.

At practical temperatures for Li-ion battery applica-
tions, the Li6O rotational tilts will be energetically ac-
cessible due to thermal excitations. While these tilts will

have consequences for ion transport, it is unclear whether
the rotational instabilities will facilitate or hinder Li dif-
fusion. Transition state theory assumes that the initial
and final states are dynamically stable, which is not the
case here for cubic Li3OCl. Understanding the role of oc-
tahedral rotations on Li diffusion in Li3OCl, either by a
vacancy or interstitial dumbbell mechanism, will require
analysis of molecular dynamics simulations at temper-
atures where the cubic form of Li3OCl is stabilized by
anharmonic vibrational excitations.

V. CONCLUSION

Through a harmonic phonon model we have shown
that the cubic Pm3̄m Li3OCl structure, which has been
known to be metastable2,3, is mechanically unstable.
Aided by group-theoretical analysis, we have identified
that a combination of the three degenerate unstable
modes with R+

4 symmetry can result in lower-energy tilt
systems. Furthermore, we have explored the energetics
of M+

3 , the other irreducible representation known for
inducing octahedral rotations. Calculations of the 15 tilt
systems showed that while structures involving octahe-
dral tilts have lower energy than cubic Pm3̄m, energy
differences are too small to identify a single system as
most stable. We have also found that Li3OCl is indeed
stabilized by vibrational entropy at temperatures lower
than 480 K.
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