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Abstract

Machine learning methods are being increasingly used in condensed matter physics and materials

science to classify crystals structures and predict material properties. However, the reliability

of these methods for a given problem, especially when large data sets are unavailable, has not

been well studied. By addressing the tasks of classifying crystal structure and predicting melting

temperatures of the octet subset of AB solids, we performed such a study and found potential

problems with using machine learning methods on relatively small data sets. At the same time,

however, we can reaffirm the potential power of such methods for these tasks. In particular, we

uncovered an important new material feature, the excess Born effective charge, that significantly

increased the accuracy of the predictions for the classification problem we defined. This discovery

leads us to propose a new scale for the degree of ionicity and covalency in these solids. More

specifically, we partitioned the crystal structures of a set of 75 octet solids into those that are

ionic and covalent bonded and thus performed a binary classification task. We found that using

the standard indices (rσ, rπ), suggested by St. John and Bloch several decades ago, enabled an

average success in classification of 92%. We found that using just rσ and the excess Born effective

charge ∆ZA of the A atom enabled an average success of 97%, but we also found relatively large

variations about these averages that were dependent on how certain machine learning methods

were used and for which a standard deviation was not a proper measure of the degree of confidence

we can place in either average. Instead, we calculated and report with 95% confidence that the

traditional classification pair predicts an accuracy in the interval [89%, 95%] and the accuracy of

the new pair lies in the interval [96%, 99%]. For melting temperature predictions, the size of our

data set was 46. We estimate the root-mean-squared error of our resulting model to be 11% of the

mean melting temperature of the data, but we note that if the accuracy of this predicted error is

itself measured, our estimated fitting error itself has root-mean-square error of 50%. In short, what

we illustrate is that classification and regression predictions can vary significantly, depending on

the details of how machine learning methods are applied to small data sets. This variation makes

it important, if not essential, to average the predications and compute confidence intervals about

these averages to report results properly. However, when properly used, these advanced statistical

methods can advance our understanding and improve our predictions of material properties even

for small data sets.
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I. INTRODUCTION

In this paper, we apply several specific machine learning algorithms to study the crystal

structure classification and melting temperature prediction of the octet subset of AB solids.

Octet AB compounds are defined by ANB8−N where N refers to the number of valence

electrons. For the octets these classification and prediction tasks are ones visited by theo-

rists and experimentalists off and on for over 50 years. Initially, the tasks were aimed at

understanding the nature of chemical bonding in solids and the identification of new semi-

conductors. Today, these materials represent a well studied group on which to test methods

for similar classification and prediction tasks to be applied to other classes of materials.

These types of analyses provide models from which we can predict the expected properties

of a proposed new material.

Historically, for the classification task for the octets and other materials, the analysis has

been very simple, the construction of a structure plot which is just an xy-plot with the values

of select physical features of the materials placed along the x and y axes. The challenge has

been identifying two features amongst atomic radii, electronegativity, ionization potentials,

etc. which enable the drawing of lines with a pencil and ruler that cluster materials with the

same crystal structure. For the melting temperature prediction task, the search has been for

more than two features amongst such quantities as the above, plus the bulk modulus, atomic

number, nearest neighbor distance, etc., for use in a simple least-squares fit to known values

of the melting temperature. For the classification task machine learning allows us to seek

a hyper-dimensional classification model by using more than two features. Our principal

objective is seeing whether doing so improves the classification and if so, identifying the

features we need to include. With machine learning we can also provide more conveniently

a measure of the accuracy of both our classification and melting temperature predictions.

The octet solids exhibit five crystal structures (rocksalt, zincblende, wurtzite, cesium

chloride, and diamond), with rocksalt being the most common. What is difficult about

the classification of these solids is drawing the boundary between a small set of rocksalts,

zincblendes, and wurtzites (particularly between some zincblendes and wurtzites) whose

ground state energy differences are small and positions in a structure plot are close. Past

work by a number of authors1–5 identified a very powerful pair of material features that

classify the octet solids very well. These features are the rσ and rπ pair first used in a
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structural plot analysis by St. John and Bloch several decades ago.2

Saad et al.6 and Ghiringhelli et al.7 recently revisited the octet AB solids and used

machine learning methods and more than two features as the basis for crystal structure

classification. The work of these groups nicely illustrates the challenge in the classification

problem: The differences in the ground state energies of a number of octet solids are small;

further, the differences in the ground state energies of the same AB chemistry in different

crystal structures is often smaller. Each group mitigated the challenge by redefining the clas-

sification problem. Saad et al. started by grouping 67 materials into four crystal structures

(rocksalt, zincblende, wurtzite, diamond) plus two “dual structures” (zincblende-wurtzite,

wurtzite-rocksalt) where the latter acknowledge the closeness in ground states of some ma-

terials in these crystal structures. Ghiringhelli et al.7 also addressed the closeness of ground

state energies of many octet AB solids and the closeness of these energies for the same AB

chemistry in three different crystal structures (rocksalt, zincblende, and wurtzite). They

chose not to distinguish between zincblende and wurtzite. With material features similar

to that of Saad et al., they preformed a regression analysis that used a large number of

functional combinations of a modest-sized set of features that included the energy difference

between rocksalt and zincblende structure for 82 AB chemistries to refine the predictions

of the energy difference between rocksalt and zincblende/wurtzite structures. From these

results they inferred the expected crystal class, rocksalt or zincblende/wurtzite.

As Saad et al. and Ghiringhelli et al., we redefine the classification problem but do so in a

quite different manner. As Ghiringhelli et al., we created a binary classification problem. In

structure plots of the octets, the few cesium chloride solids sit near the rocksalts but apart

from the rest, and the diamond structured materials sit near the zincblendes and wurtzites

but apart from the rest. Accordingly, we designated the rocksalt and cesium chlorides as

“rocksalt” and the remaining three structures as “non-rocksalts.” This grouping separates

the solids into two classes: those whose bonding is strongly ionic and those whose bonding

ranges from predominantly covalent to very strongly covalent. From a machine learning

perspective, we transformed the problem from a multi-class classification one (predicting all

five crystal structures) into a binary classification one (rocksalt or not) as opposed to trans-

forming a classification problem into a regression problem. The computational advantage

of generating a binary classification task is the number of well developed machine learning

methods designed for this task that are now available for our use. With the modified crystal
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classification task, we can also more readily study issues associated with the proper use of

machine learning methods on material science problems. With the St. John-Bloch pair as our

baseline classifying pair and support vector machines9,10 as our machine learning classifier,

our average classification success rate is 92% with a 95% confidence interval of [89%, 95%].

We found the novel result that adding the excess Born effective charge11 to the pair increases

the average rate to 96% with a 95% confidence interval of [93%, 99%]. However, using just

rσ and the Born charge, we found an average accuracy of 97% and a confidence interval

of [95%, 99%]. When used alone, the excess Born effective charge classifies the solids as

rocksalt or non-rocksalt (that is, ionic or covalent) with a remarkable accuracy of 88%. The

outstanding success accompanying the use of this novel feature made it difficult to move the

success rate higher by using additional or other features. In general, using other features,

unless one includes the excess Born effective charge, degrades the accuracy.

While machine learning methods have been used to predict the melting temperatures for

classes of AB solids other than the octets, most recently, for example, by Saad et al.6 for

the suboctet AB solids, apparently little work has focused on predicting these temperatures

for this special class of materials. What is also remarkable about the octets is the melting

temperature data shows a 50% root-mean-square variation about its mean value. This

variation is a challenge to any statistical inference method. What we found was that the

small number of octets made the challenge even greater.

The challenge appears as we compare and contrast our melting temperature analysis with

the very recent work of Seko et al.8 These investigators made melting temperature predictions

for a set of 248 binary compounds that included 46 octets we used. For each method of the

four methods they used, their accuracy estimates for their training and testing sets were

very consistent, and the accuracy predictions among three of their four methods were also

very consistent. The fourth method, ε-support vector machines, produced a distinctively

better fit to the data. As we report, for ε-support vector machines, the features, and data

we used, we found consistency between the training and testing sets predictions hard to

achieve. When combined with the standard machine learning method of cross-validation,

the small number of octets with known melting temperatures makes the error estimate of

the fit to the data itself subject to large errors. The average root-mean-square error of our

fit is 11% (225◦K), but that the standard deviation of this estimate was 67% (150◦)K.

While our machine learning methods and feature sets have differences with those used by
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Saad et al., Ghiringhelli et al., and Seko et al., the key differences between our work and theirs

is our reporting the excess Born effective charge as a significant new feature for the boosting

accuracy in the classification problem and also our reporting the significant sensitivities of

the values predicted by our melting temperature models when cross-validation9,10 was used as

part of our machine learning. Finding the utility of the Born effective charge for classification

is a novel result. In fact, we propose the excess Born effective charge11 as a new scale for

ionicity for these materials to replace the one proposed by Van Vechten and Phillips12 several

decades ago: It is measurable, better defined, and more easily and accurately calculated than

an average ionic energy gap. While various materials machine learning applications have used

cross-validation, including the three relevant to the octet AB solids,6–8 we believe we are the

first to report that this convenient and useful statistical method can experience difficulties

with small data sets. Given the growing use of such methods in materials science, noting

this possibility is important. We note that in bioinformatics, it has been realized that cross-

validation can be unreliable when used on small datasets.13–17 There, the data and feature

sets tend to be at least an order of magnitude larger than those used in materials science.

In the next section, we discuss the AB solids we consider. We mainly review past classi-

fication and melting temperature efforts to underscore further differences between our and

past work, and then we discuss the classification, regression, and cross-validation methods

we used to model the data. In Section III, we first discuss the results for our classification

task. Here we demonstrate the utility of using the excess Born effective charge as a feature.

Next, we report results of melting temperature predictions. Stating a confidence interval for

these results was important and difficult to provide. The estimated error of the fitting error

had a one sigma variation about its mean of 67%. This makes knowing just the error of the

fit (11%) a less useful result. In Section IV, we conclude with an assessment of our results

and suggestions for future work, including its extension to formability and functionality

studies of other classes of AB solids and to ABO3 solids. In the Supplementary Material,

we give tables of our Born charges.
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II. BACKGROUND

A. Structure classification

Mooser and Pearson18 appear to be the first to use a two-dimensional structure plot to

classify AB solids. Their two features (that is, their x and y axes) were the average principal

quantum number n̄ of the two atoms and the difference ∆X in the Pauling electronegativity

between the two atoms. With these features they were 90-95% successful in separating

fourfold and sixfold co-ordinated octet AB compounds, which was a major breakthrough.

Ten years later, Phillips and Van Vechten12,19,20 introduced two new quantum-mechanical

coordinates, namely the average covalent energy gap Eh and the average ionic energy gap C,

both of which were based on a microscopic dielectric theory and newly available experimental

spectroscopic data.20 Phillips and Van Vechten showed that ionicity of the bond, more than

its electronegativity difference, is a critical factor in classifying the crystal structure. With

the two energy gaps as their features, they were able to separate exactly fourfold and sixfold

coordinated binary compounds.

Perhaps the simplest and yet most efficient feature pair is the one proposed by St. John

and Bloch2 based upon the linear combinations of s and p orbital dependent radii rs and rp of

the A and B atoms. In the notation of Chelikowsky and Phillips,3 these linear combinations

are

rσ = |(rAp + rAs )− (rBp + rBs )|

rπ = |rAp − rAs |+ |rBp − rBs | (1)

In the St. John-Bloch proposal, the rXl are the locations of the l-th orbital maxima of the

eigenfunctions of a Simons-Bloch pseudo-potential for atom X.1 With the rl radii, Simons

and Bloch argued that S = (rp − rs)/rp was a “structural” index for elemental solids with

sp-bonding. St. John and Bloch subsequently argued that Xl = 1/rl was a measure of

“orbital electronegativity” and defined the total atomic electronegativity to be2

X ≡ a

2∑
i=0

Xi + b (2)

With a particular set of a and b, they found this expression fitted well both Pauling’s21

and Phillips’s20 electronegativity scales. The St. John-Bloch radii (1) are an unnormalized
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extension of the above structural index and electronegativity difference to broader classes

of solids with rσ proposed as a measure of the electronegativity difference between atoms A

and B, and rπ, as a measure of the average sp-orbital hybridization.

As shown by St. John and Bloch,2 Chelikowsky and Phillips,3 and others, with demon-

strations perhaps pinnacling with the work of Zunger,4,5 these combinations of radii have

provided a solid foundation for an excellent structural classification of AB solids over a wide

range of chemistries, including many AB solids with prominent d-shells. Chelikowsky and

Phillips examined various correlations between this feature pair and the earlier pair pro-

posals. While they found loose correlations, their general conclusion was these correlations

were at best qualitative. In short, the St. John-Bloch pair is a distinctively different pair.

In addition to the above, we also note that Pettifor22 put forward another chemical scale

that evolved into M, the Mendeleev number. This number allows a single two-dimensional

structure plot for all AB solids. Each point in the plot is the pair (MA, MB). Although

empirical, Pettifor’s scale separates octet as well as non-octet AB solids structurally and

separates fourfold and sixfold coordinated octet sp-sp bonded solids almost perfectly.

Despite the success of the St. John-Bloch pair and the Mendeleev numbers for structure

classification, recent machine learning analyses have taken different paths to improve the

accuracy of this classification pair by using hyper-dimensional structure plots. Instead of

using the features in (1), Saad et al.6 used the individual rXi . For other features, they used

such quantities such as the valences and the ionization energies of the s and p orbitals of the

A and B atoms. Ghiringhelli et al.7 used machine learning methods to propose and assess

a set of about 4500 composite features that are various functions of 23 “primary” features,

including the St. John-Bloch pair, to find a pair, triplet, etc. that was the most effective for

performing the classification. They claimed to find a new feature pair that was as good as

the St. John-Bloch pair. They concluded however that in general more than two features

are necessary to fit well the energy differences between the computed ground state energies.

We choose to start with the St. John-Bloch pair and study what happens if we add

and subtract features from this pair. As we show in the Results section, we did not have

to expand much to boost the accuracy of our classification to close to 100%. We gained

accuracy because of the identification of a novel feature, the excess effective Born charge, as

opposed to finding a larger set of features generated from functions of standard ones. We

note that neither Saad et al. and Ghiringhelli et al. used the excess Born effective charge or
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the Mendeleev numbers as features.

Born effective charges, also called dynamical, anomalous, and transverse charges, are

measures of the local polarization density developed for one atom at the expense of the

other.11,33 The Born effective charge for a given atom is defined as the change in electric

polarization divided by the amount a periodic sublattice of equivalent atoms is displaced.

For sublattice k the effective Born charge is11

Zk
αβ = Ω0

∂Pβ
∂τkα

∣∣∣∣
E=0

(3)

where Pβ is the macroscopic polarization along the β direction, with collective nuclear dis-

placements τkα of sublattice k along the α direction. Ω0 is the unit cell volume. The

derivative is evaluated in zero electric field. The Born effective charge is a tensor object. In

our analysis, because of our specific choices of the crystal structures, this tensor was simply

a constant times the identity matrix. The value of the Born effective charge usually differs

from the nominal valency of the atom. The excess charge ∆ZA is simply the difference

between the computed effective charge for the A atom and its nominal valence charge. We

found that the excess Born effective charge is almost always positive for rocksalt solids and

negative for most non-rocksalt ones.23 When it misclassifies, its magnitude is small. The

sign of the excess is more effective in the classification than its magnitude.

Density functional perturbation theory24,25 combined with the modern theory of polarization,26–28

as implemented in Vienna ab initio simulation package (VASP)30 within the local density

approximation (LDA),29 was used to compute the Born effective charges. The electronic

wave functions are expanded in plane waves up to a cut-off energy of 500 eV. The pseudo-

potentials based on the projector augmented wave (PAW)31 method and Monkhorst-Pack

sampling32 of the Brillouin-zone integrations were used. To obtain a geometry-optimized

equilibrium structure, atomic positions and the lattice parameters were fully relaxed using

the conjugate gradient method until the stress components in all directions were less than

1.0×10−3 GPa. Our computed Born effective charges are found to be in good agreement

with the corresponding experimental values34–36 for a number of binary systems that exist

in RS and ZB crystal structures. Interestingly, we found that a functional form proposed

by Harrison33 correlates with the computed values. However, as a general and well known

trend, tight-binding tends to overestimate the effective charges.36 In particular, this under-

estimation was noted by Bennetto and Vanderbilt37 and subsequently mitigated by several
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other authors.38,39 Further details about the Born effective charges are discussed in the

Supplemental Material.23

B. Melting temperature prediction

It can be argued that Chelikowsky and Phillips3 were among the first to use machine

learning methods to predict melting temperatures. Performing least-squares fits of functions

to data is a simple form of machine learning. Viewing the melting temperature as being a

function of the St. John-Bloch and then the Mooser-Pearson feature pairs, they fitted the

data of 44 suboctet solids (ANBN−P , 3 ≤ P ≤ 6) to quadratic polynomials of these different

feature pairs. Recently, Chelikowsky and coworkers6 revisited this same set of AB solids

with more advanced machine learning methods, used a larger set of features in their fitting,

and sought to identify which features were the most relevant. About half of the features they

used for melting temperature predictions differed from those they used for classification.

As noted in the Introduction, Seko et al.8 even more recently used machine learning

to predict melting temperatures and studied the effectiveness of four regression methods

(ordinary least-squares, partial least-squares, support vector machine, and Gaussian process)

for a set of 248 single and binary compounds that included our 46 octets (and the 44

suboctets of Saad et al.). Their 23 features emphasized elemental features (atomic number

and mass, the group and period in the periodic table, van der Waals and covalent radii, etc.)

supplemented with either those computable with DFT or those available from other sources.

These quantities included cohesive energy, bulk modulus, volume, and nearest-neighbor

distance. They concluded that their regression was more accurate with an elemental and

DFT-computed combination than with an elemental and measured combination. As Saad

et al., they sought to find which of their features were the most relevant to the accuracy of

the fit.

Our methods of analysis are much more similar to those of Seko et al. than to those of

Saad et al.: We both use ε-support vector machines and similar cross-validation techniques.

They however used four different machine learning methods while we used several different

forms of one method. Although we used the same machine learning method, the ε-support

vector regressor, with which they clearly produced their smallest root-mean-square error,

we obtained our best results with a different kernel, a third-degree polynomial instead of a
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Gaussian. As also previously noted, unlike them we had more difficulty producing acceptable

results. We had to address more explicitly issues of underfitting versus overfitting of the

data. The 11% root-mean-square error of our fit corresponds to an error of 225◦K. Seko et

al. estimate their error to be approximately 265◦K. The melting temperatures in their larger

data set span a similar range of values as our much smaller data set. We used the same

features for melting temperature predictions that we used for classification. Seko et al. did

not attempt any structural classification.

C. Machine learning

Support vector machines are commonly used in binary classification problems.9,10 For

binary classification, each instance of our data is described by a vector of features ~x =

(f1, f2, . . . , fn)T and a label y. The label has a value of +1, say for rocksalt, and −1, for

non-rocksalt. A support vector machine finds a function that for any given ~x has a value of

±1.

Ideally a support vector machine generates a hypersurface (decision boundary) in the

space of features that maximizes the distance of the closest instance from either class from

it.9,10 This maximal distance is called the margin. Instances on the margin are called support

vectors. Instances are points in the hyperspace of features and lie on one side or the other

of this hypersurface. Depending on which side they lie they are classified as +1 or −1.

In general a clear separation of the data via a finite margin is not possible so a soft

margin support vector machine is constructed instead. This classifier allows misclassification

of instances; that is, it allows points in the margin. If we represent our input data by the

set of labeled instances {(~xi, yi)}, then a soft margin support vector classifier determines the

hypersurface in the space of features by solving

α∗1, . . . , α
∗
n = arg min

α1,...,αm

− 1

2

m∑
i=1

m∑
j=1

αiαjK(~xi, ~xj) +
m∑
i=1

αi (4)

subject to

0 ≤ αi ≤ C and
m∑
i=1

αiyi = 0. (5)

Adjusting C controls the number of misclassifications. In the minimization the competition

is between the size of the margin and the degree of misclassification acceptable. The support

vectors are now those ~xi for which 0 < αi < C.
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K(~xi, ~xj) is called the kernel. Three are three common choices: A linear kernel

K(~xi, ~xj) = ~xi · ~xj (6)

a polynomial kernel

K(~xi, ~xj) = (γ~xi · ~xj + r)d (7)

and a Gaussian kernel (radial basis function)

K(~xi, ~xj) = exp(−γ|~xi − ~xj|2) (8)

Unless otherwise stated, we used the software in scikit-learn40 for all the machine learning

procedures used in this paper.

If the kernel is linear, the decision boundary is always a hyperplane. If the number of

features is two, the linear kernel support vector machine draws a straight line through the

data and hence is analogous to the pencil-ruler method used on a structure map. Past

structure maps, however, were multi-class classifiers as they used several straight lines to

separate the materials into more than two crystal structures. While with several lines and

the eye, separating the data quite cleanly into multiple classes was possible, using one line

to separate the data into two classes is not possible. The principal reason we choose support

vector machine over other classification methods is a linear kernel and data with just two

features mimics what was done in the past.

For predicting melting temperatures, we used the ε-soft-margin support vector machine

regressor, the same as used by Seko et al. but with different kernels. This method adds an

additional constraint, scaled by ε, to the minimization problem. The additional constraint

introduces a new parameter α′i for each instance and allows misclassified instances only if

they are within a distance ε of the decision boundary.

We used the machine-learning technique of cross-validation9,10 to assist in estimating the

level of confidence, that is, the errors, of our results. In cross-validation the model is not

fitted to the entire data set but rather the data is first spilt into training and testing sets.

The model is fitted to the training set and then is validated by using the test set. As

discussed below, often we nested cross-validations: In fitting the model to the training data,

we would use a k-fold cross validation. This procedure randomly divides the training data

into k subsets of roughly equal size. Of the k subsets, one is used as the test set with the

remaining k − 1 subsets used as the training set. Each subset is used once as the test set.
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The average of the k test-set scores produces estimates of the accuracy of the fit on the

training data and on the testing data.

Cross-validation produces a model fitted to the data that is more predictive of what to

expect if new data is added to the data set. This type of model is most germane to the

design and discovery of new materials.

III. RESULTS

Our dataset has 75 instances of octet AB solids, each described by the same 10 features.

Our core feature set is: (1) rσ, (2) rπ, (3) the valence of the A atom vA, (4) the excess

Born effective charge of the A atom ∆ZA, (5) MA, (6) MB, (7) the difference between the

Pauling electronegativities of A and B atoms ∆X, (8) the difference between the ionization

potentials of A and B atoms ∆χ, (9) the nearest-neighbor distance dDFT for the crystal

structure, and (10) a bond polarity measure αp.
33 For each instance, we also know its

rocksalt/non-rocksalt label. For the rXi , we used the values in Table I of Saad et al. to

compute rσ and rπ and used their Table IV for ionization potentials. We used Pauling’s

values for the electronegativity. Our Born effective charges and nearest neighbor distances

were computed with density functional theory (DFT), using a rocksalt structure for all the

solids we grouped into this class and with a zincblende structure for all the materials we

grouped as non-rocksalt. In the Supplemental Material,23 we note our computation of these

charges compares well both with measured values34 and with tight-binding predictions from

a formula due to Harrison.33 These agreements point to the possibility of using effective

Born charges obtained by means other than DFT calculations.

We used the Ghiringhelli et al. 82 octet AB solids but without CuF, which seems not

to exist,6 and without BSb, GeC, SnC, GeSi, SnSi, and SnGe whose crystals structures are

unlisted by both Zunger and Pettifor. We note Zunger classified 112 octets, including CuF,

into six crystal structures. CuF was one of his five misclassifications. The other four were:

BeO, MgS, MgTe, and MgSe. Of these 75 solids, the melting temperatures of 46 are known.

We used the melting temperatures from Table V of Seko et al.
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A. Binary classification

To use a support vector machine classifier, we have to select a kernel and set its parame-

ters. To aid in doing these, we used a grid-search cross-validation40 that generates for each

of four kernels we studied (linear, polynomial of degree 2, polynomial of degree 3, and the

radial basis function (RBF)), a one, two or four dimensional grid. These numbers are one

(for C) plus the number of parameters in the kernel. For each kernel at each grid point,

we used a 5-fold cross-validation on a 0.9/0.1 training/testing split of the dataset. We set

k = 5 and the initial 0.9/0.1 split after some experimentation. Our metric of success is

the accuracy, that is, the number of instances in the test set predicted correctly divided

by the number of instances in the test set. For this metric the grid often had a number of

points with nearly identical values. For each kernel, however, grid points with any of C, γ,

and r less than 1 performed noticeably poorer. Instead of choosing the parameters values

at the grid point with the best value of the metric for a given kernel, we simply choose

C = γ = r = 1 to define the models for whatever kernel we used. With it and the right

combination of features, we were able to achieve excellent classification for all four kernels.

With the models set, we classified the data using four kernels and the (rσ, rπ) feature

pairs and no cross-validation. The predictions of the models applied to the entire dataset

are shown in Fig. 1. The linear and third degree polynomial kernels misclassify 4 instances;

the second degree polynomial and the radial basis function kernels, 3. The misclassifications

in Figs. 1 involve 3, 4, or 5 instances, with 3 consistently being MgS, MgTe, and MgSe and

the others depending on the subtle shifts in the decision boundaries. The three consistently

misclassified were 3 of the 4 misclassified by Zunger.5

Next we redid the classification using the same four kernels and nested 5-fold cross-

validation on a 0.9/0.1 training/testing split of the data. As the parameters of the kernel

are set, cross-validation here is being used to quantify the expected accuracy of the four

models. The resulting predictions for the entire dataset are in Fig. 2. The results look very

similar to the plot of the non-cross-validated case, but here the linear and the second and

third degree polynomial kernels misclassify 4 instances; the radial basis function kernel, 5.

The encircled points are the members of the test set. We note that in this analysis the

training set size is slightly smaller than the one in the previous figure.

The results in this figure and the previous one suggest relatively accurate classifications,
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but variations in the predictions from one analysis to another exist. In particular, we found

variations of 10 or more percentage points in the predictions of a 0.9/0.1 training/testing

split with 5-fold cross-validation compared to a 0.8/0.2 split with 5-fold cross-validation,

of a 0.9/0.1 split with 5-fold cross-validation compared to a 0.9/0.1 split with 10-fold cross

validation, a 0.9/0.1 split and 5-fold cross validation repeated with a different random num-

ber sequence, etc. While it is expected that the predictions would not be identical, this

large of a variation made it difficult to state the accuracy of the models fitted to the data.

Undoubtedly, because of the small size of the data set, the different random training/testing

and cross-validation splits generate data subsets that are not statistically equivalent.

To state the accuracy of the predictions with a level of confidence, we decided to use
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FIG. 1. Comparison of different optimizers for classification based on just the feature pair (rσ, rπ)

but using all the instances. The green region is rocksalt.
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FIG. 2. Comparison of different cross-validated optimizers for classification based on just the

feature pair (rσ, rπ). Instances double-circled are the test set. The green region is rocksalt.

just the linear classifier, a 0.9/01 split, and a 5-fold cross-validation. We then repeated

the analysis multiple times, collecting statistics of the predictions. For a modest number of

repetitions, say 30, we found the mean and median of the predictions were unequal. The

implied skewness of the predictions indicates that the computation of a standard deviation

would mislead as an indicator of the statistical error. We thus choose to repeat the analysis

for 10000 times and create empirically the probability distribution of the results. For this

large number of repetitions, the mean and median were approximately equal, but as can be

seen in Figs. 3 and 4, the histograms in general did not always approximate a Gaussian. One

issue is that for several of our feature subsets, the accuracy was so high that fluctuations

above the mean were bounded within a few percentage points by 100% while those below
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the mean could range more. This situation skewed the distributions.

To do this statistical analysis, we first switched our cross-validation to a 5-fold stratified

cross-validation.40 This differs from 5-fold cross-validation in that the relative proportions

of positive and negative labeled data in the training and test sets are roughly the same as

in the entire set. To reduce statistical correlations among the predictions, we shuffled the

data before doing any 5-fold stratified cross-validation. Although the accuracy metric lies

in [0, 1], we plotted it in the reduced interval [0.85, 1], divided this interval into 30 bins,

histogramed our 10000 samples, and normalized the area under this curve to be unity. In

Fig. 3, we show the results for the St. John-Bloch pair and that pair when the excess Born

effective charge is included. Besides the average, we also report the median. The averages

and medians are nearly the same. For reference, we also report the standard deviation, but

chose another way to assign a confidence interval for the above results: We chose to state

an interval [xmin, xmax] of minimum width, positioned so that it captures 95% of the area

under the generated distribution. The discreteness of the curves in Fig. 3 enables doing

this only with some subjectivity. On the basis of the results in these figures, we claim with

95% confidence that the accuracy of of the St. John-Bloch pair classification lies in the

range [0.89, 0.95] while that of the feature triplet lies in the range [0.93, 0.99]. We rank the
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FIG. 3. The normalized histogram of accuracy of the binary classification using a linear soft-margin

support vector machine. Left: (rσ, rπ). The average accuracy is 0.922; the median accuracy, 0.920;

and the root-mean-square error, 0.015. Right: (rσ, rπ,∆ZA). The average accuracy is 0.961; the

median accuracy, 0.960; and the root-mean-square error, 0.014.
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accuracy of feature tuples in Fig. 3 as (rσ, rπ) ≺ (rσ, rπ,∆ZA) and claim that adding the

specified feature increases the accuracy of the classification.

While we did not explore all possibilities, it does seem that adding single or double

features to the St. John-Bloch pair generally degrades performance relative to just using

the St. John-Bloch pair. Exceptions mostly appear if the excess Born effective charge is

present. We propose the following rankings: (rσ, rπ, vA) 4 (rσ, rπ) ≺ (rπ, rσ, vA,∆ZA) 4

(rσ, rπ,∆ZA). We also claim that (MA,MB) ≺ (rσ, rπ,MA,MB) 4 (rσ, rπ) and that

(rπ,∆ZA) ≺ (rσ, rπ) 4 (rσ, rπ,∆ZA) ≺ (rσ,∆ZA). For the purposes of comparison, we give

in Fig. 4 the accuracy histogram for the Mendeleev pair and for the Mendeleev pair when

the excess Born effective charge is added. These results individually and collectively identify

∆ZA as an important new feature for crystal classification.
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FIG. 4. The normalized histogram of the accuracy of the binary classification using a linear soft-

margin support vector machine. Left: (MA,MB). The average accuracy is 0.902; the median

accuracy, 0.907; and the root-mean-square error, 0.010. Right: (MA,MB,∆ZA). The average

accuracy is 0.952; the median accuracy, 0.960; and the root-mean-square error, 0.013.

B. Melting temperature predictions

For melting temperature predictions, our task shifts from classification to regression. For

regression we want to learn a model f̂(~x) that is as successful as possible in predicting a

real number ŷ associated with our data. We use the same training/testing split of the data
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with k-fold cross-validation applied to the training data to help set our regression models,

but use the root mean-squared metric to quantify fit quality.

The most important change in moving from classification to regression is the data set size

being reduced from 75 to 46, as the melting temperatures are known for just this number.

This smaller size made assigning confidence intervals for the predictions difficult and ne-

cessitated the adoption of additional cross-validation procedures. The challenge is properly

balancing bias and variance in the predictions:9,10 Bias makes the predictions inaccurate;

variance makes them uncertain. Bias can occur when the data is underfit; variance, when

it is overfit. Overfitting is typically caused by using too many parameters; underfitting, by

using too few. Besides the parameters needed to specify the kernel in the support vector

machine, as can be seen from (4), each instance adds a potential parameter. Which instance

participates and the number of participants depends on the number of αi and α′i that satisfy

0 < αi, α
′
i < C. This number can vary as the training data and kernel parameters change. It

is unclear whether a higher degree polynomial kernel necessarily means there are more pa-

rameters to fit. In the constrained optimization problem represented by the support vector

machine regressor, values of C and ε too small or too large by themselves can cause under

and overfitting, likely by increasing and decreasing the number of support vectors.

Using our core feature set, we started setting the model in the same way we did for

classification by using a grid search cross validation nested with 5-fold cross-validation on a

0.90/0.10 training/testing split. Besides a linear and a RBF kernel, we considered polynomial

kernels of degree 2 through 7. A coarse grid lead us to focus on only polynomial kernels of

degree 2 through 5.

The grid search results for the reduced data and core feature sets showed sensitivity to the

random number sequences used in the training/testing split, the percentage of the split, and

the choice of k in the k-fold cross-validations. Our metric was the root-mean-square error

of the predicted melting temperatures of the test set. Normally we would want to adjust

the model so this score is as small as possible. While the grid search generates a number of

parameters giving seemingly good or bad scores, it provides little information about whether

these scores are consequences of under or overfitting. To assess whether these issues were

present, we experimented with various split ratios of the data and number of cross-validation

folds. In many respects, the size of the training set became another parameter specifying

the model.
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FIG. 5. Validation curves for the ε-soft-margin support vector machine regressor. On the left,

C = 1 and the parameter being varied is the degree d of the polynomial kernel from 2 to 5. On

the right, d = 3 and the parameter being varied is C

To reduce the importance of the training set size, we proceeded in the following manner:

We set some of our parameters from the grid search, finding γ, ε, and r to have relatively

large ranges of variation with nominal effect on results. We choose γ = 1, ε = 0.01, and

r = 0. More variation was shown in the choice of the d for the polynomial kernel and the

value of C.

To set d and C, we used a validation curve which is simply a plot of the cross-validation

and test scores (the values of the metric) as one of these parameters is varied. Here we used

various N/M training/testing splits. They were created by randomly selecting M instances

to be in the test set. For cross-validation on the training data, we used the Leave P Out

method.40 Here there is no random selection of the training subsets but rather for the N

instances in the training data all N !/(N −P )!/P ! subsets of (N −P )-sized training subsets

are used and their scores on the P test subsets are evaluated and averaged to produce a

training score. In this procedure, for small values of P , which are the only ones practical

because of the exponential growth in the number of possibilities with increasing P , the

model always fits the training data well as it is being fit to almost all the data. For each

fit the scores for the M instances in the test set are calculated and averaged to produce a

cross-validation score. This procedure was repeated 200 times to generate a mean test score

and its standard deviation. In Fig. 5, on the left, we show the validation curve for C = 1 as

we varied d; on the right we show the curve with d = 3 as we vary C. In both cases we used
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FIG. 6. The learning curve for a kernel polynomial of d = 3, C = 1, ε = 0.01, r = 0, and γ = 1.

P = 2. We see d = 3 has the smallest cross-validation score and it has the smallest standard

deviation for the score. A similar result with slightly smaller root-mean-square error was

obtained with P = 3. For P = 1, the Leave One procedure, we got a similar result but the

variances as a function of parameter d were much larger.

We now use learning curves to study the sensitivity of our model to changes in the training

set size.40 A learning curve is simply a plot of the cross-validation and test scores of a model

as a function of the training set size. In Fig. 6, we show these the cross-validation and

training scores for d = 3 and C = 1. We used a nested Leave 2 Out cross-validation which

allowed the training set size to vary from 3 to 45. When the training set size is small, the

model overfits the data, and the training score is small and the cross-validation (testing)

score is large. The scores converges around the maximum size of the training set. With

convergence, the analysis has reached a point where adding additional data will not improve

the results.10 A more complex model, and possibly more features, are needed to decrease

the error. In Fig. 7, we show the same analysis but for d = 2 (on the left) and d = 4 (on the

right).

The lower and nearly equal cross-validation and test scores score for d = 3 and C = 1

is our basis for selecting this set of parameters as defining our model and saying with

68% confidence the root-mean-square error in its melting temperature predictions lie in the
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interval [25◦K, 325◦K].

To set C and d, we actually iterated a few times between using validation curves as a

function of C and learning curves as a function of d and vice versa. We also replaced the

Leave P Out cross-validation with a shuffle-split cross-validation procedure that we repeated

for several hundred times. Previously, we shuffled only before the k-folds were selected. Here

shuffling occurs before each training/cross-validation set is selected. While noisier than those

from the Leave P Out method, the curves were similar.

For other models, the behavior of the cross-validation and testing scores in the learning

curve generally behaved like those in Fig. 7. For a small training set sizes the cross-validation

score is large, and the training score, low. As the training set size increases, the cross-

validation score decreases and the test score increases. When the set size reaches its limit,

either these scores were far apart, but within the statistical error of the cross-validation

score, or they are beginning to meet. If they are meeting, their average scores are typically

large. In all cases, the statistical error of the cross-validation score is nearly equal to the

value of the score.

For melting temperature analysis, as for our classification analysis, it is important the

distinguish the error computed with cross-validation, which is a prediction based on a subset

of the data, and the error of the model computed for the entire data set. In Fig. 8, we plot

our model predictions applied to the entire data set versus the experimental values. From
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FIG. 7. The learning curve for a kernel polynomial of C = 1, ε = 0.01, r = 0, and γ = 1. On the

left, d = 2; on the right, d = 4.
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the figure, we see that we actually have an excellent fit except for about 4 to 6 compounds.

Here the root-mean-square error of the predictions is 134◦K, a bit more than half of the

error predicted by cross-validation. We also note that different accuracy metrics portray

this fit in an even more favorable manner: The average absolute deviation of the predictions

is 47◦K; the median absolute deviation is 0.18◦K. The latter is the size of the deviation

between the absolute values of the predictions and measurements that splits the absolute

deviations in half. The error computed by cross-validation however is more indicative of the

error expected if a new solid were added the the data set. It is the error more appropriate

for materials design. The object is not producing fits to the data that remember the data

well but predicting from the data with confidence in the predictions.

Our intent was to systematically add features to the St. John-Bloch pair and observe how

the additions made a difference. We are reporting only our best result. With fewer features

consistent results were harder to obtain.
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FIG. 8. The melting temperatures computed for a kernel polynomial of C = 1, ε = 0.01, r = 0,

and γ = 1 plotted against the experimentally measured values.
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IV. DISCUSSION

Our main new finding is that replacing rπ with the excess Born effective charge of the A

atom improves the accuracy of our structural classification task significantly. Our application

of machine learning methods to the classification of crystal structures and the prediction

of the melting temperatures of the octet AB alloys produced models that in the best cases

classify the crystal structure with a success rate of 99% and predict the melting temperature

with an error of 2% of the data’s mean. In the worst cases, they classify the crystal structure

with a success rate of 96% and predict the melting temperature with an error of 21% of the

data’s mean. The worse case is at least as good as previously reported6 averages.

The better success with classification has to do with the St. John-Bloch pair being an

excellent classifier to build upon. With this pair alone and using the pencil-ruler method on

the data in Fig. 2, the complete data set has at best only four misclassifications. With the

number of instances being 75, this means that using this pair the best accuracy is 94.7%.

It is interesting to note that adding extra features to this pair does not necessarily increase

the accuracy. If one of the added features is the excess Born effective charge, then its

presence generally helps. For our data, machine learning methods, and features, we gave an

explicit demonstration that (MA,MB) ≺ (rσ, rπ) ≺ (rσ,∆ZA) and thus have found a more

effective two-coordinate structure map of the type Chelikowsky and Phillips plus others were

searching for. As rσ defines an electronegativity scale and ∆ZA defines an ionicity scale for

the solids, our proposal updates the electronegativity and ionicity feature pair proposed by

Van Vechten and Phillips12 several decades ago, establishes this new scale as more effective

(at least for this set of solids), and affirms their belief about the ionicity being a critical

factor in the classification.

Our result of identifying the excess Born effective charge as an important feature is novel.

To appreciate more fully its significance, we present in Fig. 9 the same type of structure

plot for the (rσ,∆Za) feature pair as we did for the St. John-Bloch pair in Figs. 1. We

clearly see that with the new feature pair the linear and cubic support vector machines,

without the cross-validation training, misclassify only the same single solid (InN), while the

quadratic and quartic machines misclassify this solid plus ZnO. Both solids are wurtzites

and the Born effective charge was computed assuming they were zincblendes. The linear

kernel is an automated version of the pencil-ruler method for constructing a structure map.
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FIG. 9. Comparison of different cross-validated optimizers for classification based on the feature

pair (rσ,∆ZA). The green region is rocksalt.

We recall this automation of the drawing of the straight line for the St. John-Block pair

structure map produced 3 misclassifications (Fig. 1a). With the new feature pair we have

just one.

Born effective charge are central to the long wavelength LO-TO phonon splitting in polar

crystals and to spontaneous polarization of materials. If a relative displacement of the

sublattices is made (that is, an optical phonon), the energies of the bonds on one side of an

atom are lowered relative to those on the other side. The generates a charge transfer from

one side to the other and produces a polarization with an effective charge. In some materials

this charge is anomalously large.41 The Born effective charge reveals the mixed ionic and

covalent charge of a bond.42
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We offer that the excess charge succeeds as an effective classifier mainly because of its

sign as distinguished from its magnitude. For example, if we used just the Born effective

charge, the sign change would disappear, and instances of octets with similar values of the

effective charge would have atoms with different nominal charges. Using the excess charge

produces a feature more distinctively poised to function effectively as a classifier.

Why does the sign of the excess Born effective charge differ between rocksalt and non-

rocksalt? (c.f. Table I, Supplemental Material).23 This question would be best answered

by doing a band-by-band calculation of the Born effective charge for each atom42 in the

solid. Doing this allows the identification of the charge different orbitals contributing to

the atom’s total dynamical charge. These types of calculations have been more actively

pursued for perovskite materials than AB solids. For AB solids, except for non-octet ZnO,

few calculations for cubic materials exist. For ZnO, a wurtzite, the excess charge is nearly

zero for the various orbitals.43,44 Hence the total excess is small. For PbTiO3 and the non-

octet α-PbO, the Pb 5d and 6s+2p orbitals show opposite trends with respect to the excess

charge, making the first more negative and the second less negative.45 With the apparent

exception of a study of the non-octet cubics MgO, CaO, SrO, and BaO,44 a systematic study

of Born effective charges within and across various crystal structures apparently has yet to

occur.

Despite not having direct calculations of this subtle process to infer from, we offer the

following hypothesis as to why the excess charge changes sign: The origin of anomalous

effective charge is linked to a polarization effect created by intrasite hybridizations of occu-

pied orbits and charge transfer effects created by intersite hybridizations of unoccupied and

occupied orbitals.42 The strengths of the latter hybridizations are unimportant. What is

important is the rate of change of the existing hybridizations between occupied and unoccu-

pied or those induced by the optic-mode-like displacements of the A and B atoms relative to

each other. Convention has the A atom to have a smaller electronegativity than the B atom.

With a positive excess charge a fraction of unity, the ionic AB solids have an A ion that has

almost completely transferred its nominal valence to the B atom. The small excess charge

is mainly a polarization effect. For the ionic/covalent AB solids, the A ion has transferred

most of its charge from s-orbitals to the p-orbitals of B ion but charge transfer from A to B

through hybridizations with the d-orbitals of A to orbitals of B is incomplete. In short, the

situation for the ionic/covalent AB solids mimics that of PbTiO3 and α-PbO. The degree of
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FIG. 10. Melting temperatures of the octet AB solids versus the excess Born effective charge. The

rocksalts are green circles and the non-rocksalts are depicted in red.

incompleteness of the charge transfer serves as measure of the degree of ionicity in a bond

tending to be otherwise covalent.

Our secondary finding is the degree of confidence that we could place in our machine

learning predictions was strongly affected by our data sets being small. Here we rediscovered

what is already known in bioinformatics13–17 where data and feature sets are typically larger

than those presently available in the materials sciences. The much larger error in predicting

the melting temperature in a large part has to do with this data set having a large range

in melting temperatures. The average melting temperature of the data is 1580◦K with a

standard deviation of 791◦K. We note that if applied to the entire data set, that is, without

the cross-validation training, our model predicts an average melting temperature of 1562◦K

and a standard deviation of 767◦K. Hence, it faithfully reproduces the data. However, large

error associated with this predicted error is mainly due to the small size of the data set. With

cross-validation training, the standard deviation estimate of the average standard deviation

is 150◦K which decreases confidence in any melting temperature predictions.

What is not understood, and not explicitly adressed here, is why the octets show such

a wide range in melting temperture. This dispersion in melting temperatures is generally

the case for most classes of AB solids,46 including the simpler subocets considered by Che-

27



likowsky and co-workers.3,6,47,48 As noted by Chelikowsky and Anderson,47,48 features useful

for classification generally show little correlation with the melting temperature. We illus-

trate this in Fig. 10 for the excess Born effective charge. The excess Born effective charge

is an indicator of the type of bonding; for melting temperatures predictions, it would seem

we need at least some features that are indicators of bond strength.

The principal physical model of melting remains the venerable Lindemann’s criterion.49

For the octets, there is also the scaling theory of Van Vechtan. As noted by Van Vechtan,50

using Lindemann’s criterion requires an estimate of the Debye temperature which is often

hard to infer from data. His scaling theory obviates the need to know this feature for

other than one instance of data from which the melting temperatures of other instance

are obtained by scaling. His theory has limited generality. His results for 24 zincblends

octets showed about a 35% root-mean-square deviation relative to the mean. The mean

temperature was 1785◦ K. The data had a standard deviation of 857◦ K. More recently,

Kumar et al.51 estimated the Debye temperatures from data fits to the zincblende octets,

and with Lindemann’s criterion, they reduced the average deviation between fitted and

observed values by a factor of two relative to Van Vechtan’s results.

Physical models such as those of Lindemann and Van Vechtan have a different basis than

the statistical models of our work and the recent machine leaning works of Saad et al. and

Seko et al. Both types of models are predictive, but the statisical models are simply fits

to generic, convenient functions and not fits to explicit functional forms suggested by the

physics. As we illustrated in the present work, fitting too few data to too many features

can result in overfitting that leads to large variance in the predictions. In such fits, one

would like to use features that are physically relevant in the sense that they correlate with

the objective of the fit, such as the excess Born effective charge with the bonding type. It

seems that such features have yet to be found for melting temperatures predictions.

Both Saad et al. and Seko et al. attempted to assess the importance of features used on

their fits. The Seko et al. instances of AB solids spanned several quite different classes of

solids. As noted and illustrated by Hullinger and Villiars,46 an optimal uniform description

of melting temperatures of AB classes has yet to be found. Two of Seko et al.’s features, the

cohesive enegies and bulk moduli of the solids, are indicators of bond strength. A surprising

result of the work of Saad et al. on the 44 suboctets was their conclusion that their 16

feature fit to the data was the least sensitive to the four features suggestive of bond strength
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of the elements, such as their boiling points and heats of vaporization, as well as, their two

atomic numbers. The atomic number relates to the atomic mass of the element. This mass

influences the amplitudes of atomic vibration, the key ingredient in a Lindemann criterion.

As Seko et al., we estimated confidence intervals on our results. Saad et al. did not. It would

have been useful if they had so one could assess how well they controlled overfitting of the

data. Our work has illustrated the importance of reporting such confidence intervals when

fitting to small data sets. We note the Saad et al. did not create one statisical model for

their 44 suboctets, but created a statistical model for each suboctet, one at a time, using

an unstated-sized subset of the 44 that was judged similar to the octet under consideration.

We remark that none of our features were indicators of bond strength. Still, our statisical

model had a reasonably high predictive accuracy and stated confidence limits tempering the

value of that accuracy. Clearly, there is more to understand about building statistical and

physical models of melting temperatures of the octet solids.

Virtually all machine learning methods optimize something, generally a cost function.

Accordingly, it is appropriate to mention the No Free Lunch Theorems for optimization.9

These theorems state that a universal optimizer, that is, one that is optimal for all optimiza-

tion problems, is not possible. With respect to machine learning, these theorems say that

one can learn only what is in the data and that while for a given task, data, and feature set

we can tune our algorithm so it performs better than the others we choose to consider, if

we change the tasks, data, or features, there is no guarantee that the chosen algorithm still

works the best. Even more specifically, an algorithm optimized for the training data might

not be optimal for the test data. Because of these theorems, we should not be surprised

to find variations in our results depending on the subset of data selected to validate our

predictions via cross-validation. What was surprising however was the degree these results

changed as this subset changed without any change in the algorithms being used. The vari-

ations we found, which we believe are due to the small sizes of the data sets, shift the use

of the machine learning methods from being deterministic to being probabilistic. Instead of

executing several such methods and comparing the results for consistency, cross-validation

became part of the method as opposed to being an ancillary procedure. The procedure we

reported to estimate the confidence interval for our results is a version of the bootstrapping

method.9,10

We do believe the machine learning methods such as those used here will be useful for
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pursuing similar tasks for materials that have larger data sets. The octets are only part of the

over 545 known AB solids.5,22 The full group has many more crystal structures, with some

having a small number of solids per structure. This situation could make a complete multi-

class classification task challenging. The classification task however would have an advantage

because of the effectiveness of the St. John-Bloch pair and excess Born effective charge to

build on. Solids of the type AnBm are also numerous, and in many cases are classified by

using pairs of averages of the Mendeleev numbers. Would adding averages of the excess Born

effective charge of the A atoms help? Many materials have chemistries of the type ABO3,

and whether they are perovskites or not is an important question. Perovskites exhibit a

spectrum of functionalities, so the prediction of the Curie temperatures for ferromagnetism

or ferroelectricity is important. These materials would not have the St. John-Bloch pair on

which to build. However, for nearly a century, the tolerance factor has played an analogous

role, and many perovskite materials have anomalously large effective Born charges.42,45
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