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We numerically study disorder effects in Bernevig-Hughes-Zhang (BHZ) model, and find that
Anderson transition of quantum spin Hall insulator (QSHI) is determined by model parameters.
The BHZ Hamiltonian is equivalent to two decoupled spin blocks which belong to the unitary class.
In contrast to the common belief that 2D unitary system scales to insulator except at certain critical
points, we find, through calculations scaling properties of the localization length, level statistics, and
participation ratio, that a possible exotic metallic phase emerges between QSHI and normal insulator
phases in InAs/GaSb-type BHZ model. On the other hand, direct transition from QSHI to normal
insulator is found in HgTe/CdTe-type BHZ model. Furthermore, we show that the metallic phase
originates from the Berry phase and can survive both inside and outside the gap.

PACS numbers: 72.15.Rn, 73.20.Fz, 73.21.-b, 73.43.-f

I. INTRODUCTION

Topological insulators (TI) identified as a class of quan-
tum state of matter have generated intensive interests
recently.1,2 The two dimensional (2D) TI - quantum spin
Hall insulator (QSHI), is characterized by odd pairs of
counter propagate gapless edge states.3,4 The QSHI was
firstly realized in HgTe/CdTe quantum well (QW)4,5

and subsequently in InAs/GaSb QW.6,7 These two ex-
perimentally realized QSHI systems can both be rep-
resented by the inverted bands Bernevig-Hughes-Zhang
(BHZ) model but with different parameters. Specifi-
cally, the coupling strength between two inverted bands
in InAs/GaSb QW is an order of magnitude smaller than
that of HgTe/CdTe QW. Considering the remarkable pa-
rameter difference, one open question remains: whether
this difference will have some physical consequences in
these two QSHI systems.

The Anderson metal-insulator transition in 2D disor-
der system manifests as a lasting research issue in con-
densed matter physics.8–14 Generally, the disordered elec-
tron systems can be classified into three universality en-
sembles according to the random matrix theory.14,15 In
the presence of time reversal symmetry (TRS), the sys-
tem is classified as orthogonal ensemble if spin rotation
symmetry is preserved; otherwise, it belongs to symplec-
tic ensemble. In contrast, when the TRS is broken, the
system turns into unitary ensemble.14,15 For TRS QSHI
with Rashba spin orbital coupling (SOC), the system falls
into the symplectic ensemble because spin rotation sym-
metry is broken. Oppositely, without Rashba SOC, QSHI
is divided into two spin species of quantum anomalous
Hall (QAH) systems, which belong to unitary ensemble.
Previous studies on metal insulator transition in QSHI
can be summerized into two paradigms: (i) for (symplec-
tic) QSHI with Rashba SOC, it was found that TI and
normal insulator (NI) phases are separated by a metal-

lic phase;16–18 (ii) for (unitary) QSHI without Rashba
SOC, direct transition from TI to NI was discovered.16–19

Surprisingly, recently a crossover from weak localization
to weak anti-localization (WAL) is suggested in BHZ
model without Rashba SOC.20–22 Since WAL can add
positive correction to β-function,8,23,24 there is the pos-
sibility that a metallic phase might exist in the 2D uni-
tary system (QSHI) with weak disorder, although that is
against the traditional view.

In this paper, we study whether a metallic phase can
exist between TI and NI phases in a unitary QSHI sys-
tem. Starting from BHZ model Hamiltonian,4,6 we cal-
culate localization length and two-terminal conductance
numerically, and analyze the scaling behavior of the
system.10,25 It is worth to note that the BHZ Hamil-
tonian is equivalent to two decoupled spin blocks which
belong to the unitary class. The main results are sum-
marized in the phase diagrams in Fig. 1. In all these
phase diagrams, we find a metallic phase between TI and
NI phases, in contrast to the common view of Anderson
transition behavior in 2D unitary class. Furthermore,
we find different parameters in BHZ model (unitary sys-
tem) can lead to different Anderson transition behav-
iors. The transition from TI to metal is likely to exist in
InAs/GaSb-type BHZ model but not in HgTe/CdTe-type
BHZ model [see dash lines in Fig. 1(b)]. By employing
the Berry phase, the parameter-dependent metallic phase
can be well explained.22,26

The rest of the paper is organized as follows. In Sec. II,
we introduce the lattice model Hamiltonian and give the
details of numerical simulations. In Sec. III, we show the
main results by scaling of the localization length and scal-
ing of the conductance. We discuss energy level statistics
and participation ratios of eigenstates in In Sec. IV. In
Sec.V, we discuss the phase diagram and interpret our
numerical results by the Berry phase. In Sec.VI, a brief
summary is presented.
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FIG. 1: (Color online). The phase diagrams for disorder strength W and (a) topological mass M , (b) electron-hole hybrid
strength A, and (c) Fermi energy EF . The black filled circles are critical points determined by finite size scaling, while the
red filled squares for W = 0 are analytic critical points. In (b), the dark cyan dash lines (InAs/GaSb-type BHZ parameter)
indicates the TI-metal-NI transition. The dark yellow dash lines (HgTe/CdTe-type parameter) shows direct NI-TI transition.

II. MODEL AND METHODS

We consider the disorder BHZ Hamiltonian on a square
lattice:4,6,27

H =
∑

i

ϕ†
iEiϕi +

∑

i,α=x,y

ϕ†
iTαϕi+α̂ +H.C., (1)

with

Ei = (C −
4D

a2
+ Vi)σ0 ⊗ τ0 + (M −

4B

a2
)σ0 ⊗ τz ,

Tx =
D

a2
σ0 ⊗ τ0 +

B

a2
σ0 ⊗ τz −

iA

2
σz ⊗ τx,

Ty =
D

a2
σ0 ⊗ τ0 +

B

a2
σ0 ⊗ τz +

iA

2a
σ0 ⊗ τy. (2)

Here i = (ix, iy) is the site index, and α̂ is the unit vec-
tor along α̂ = (x, y) direction. ϕi represents the four
annihilation operators of electron on the site i. The
model parameters A, B, C, D can be experimentally
controlled and a is the lattice constant. Specifically,
two important physical parameters are coupling strength
between inverted bands A and the mass M . σ and τ
are Pauli matrices in spin and orbital spaces, respec-
tively. We consider long range disorder potential Vi

at ~ri with Vi =
∑NI

n=1 U0 exp[−| ~rn − ~ri|
2/(2ξ2)], where

U0 is uniformly distributed in (−W/2,W/2) with disor-
der strength W and NI impurities are randomly located
among N lattices at {~r1, ~r2, ..., ~rNI

}.28–31 We fix the im-
purity density n = NI/N = 5% and the disorder range
ξ = 2a, where different n and ξ will not significant influ-
ence our results. Since the two spin block are decoupled,
we only consider spin up block in the rest of the paper.
Because one spin species of QSHI is a QAH insulator, our
results in this paper are applicable to the QAH or Chern
Insulator.
In our numerical calculations, we study the localization

length λL as well as the dimensionless intrinsic conduc-
tance g of the cylindrical sample with width (circumfer-
ence) L,27 which can eliminate the effect of the helical

edge states. g is defined as 1/g = 1/gL − 1/N , with
gL the two-terminal conductance and N the number of
propagating channels.31–33 The localization length λL of
the sample is calculated by transfer matrix method10

with the sample’s length 106 to 107. The two termi-
nal conductance gL at Fermi energy EF is evaluated by
Landauer-Büttiker formula25,31,32 with considering a dis-
ordered middle region with size L× L being coupling to
two clean semi-infinite leads. In addition, we also inves-
tigate the energy level statistics as well as participation
ratios. For simplicity, the parameters B = 1, C = 0,
D = 0 and a = 1 are fixed in the rest of paper, where we
have assumed the particle-hole symmetry (D = 0).

III. METAL INSULATOR TRANSITION

Firstly, we study Λ = λL/L versus disorder strength
W by increasing mass from M = −0.1 to 0.5 at fixed
Fermi energy EF = 0, as shown in Fig. 2. These param-
eters resemble the InAs/GaSb QW k · p parameters.34

Notably, we find TI-metal-NI transition in InAs/GaSb-
type BHZ model (unitary system) by increasing mass M .
In NI phase with M < 0, Λ = λL/L monotonously de-
creases with increasing L in Fig.2(a) which indicates all
the states are localized. In contrast, when M = 0.05 in
TI phase (M > 0), the system shows one critical (touch-
ing) point where Λ is independent of L [see Fig.2(b)],
which is consistent with the previous studies of 2D uni-
tary system.16,18,19 Due to the inverted gap, TI is robust
to weak disorder, and NI phase appears after a certain
disorder strength Wc = 2.3 ± 0.13. Therefore, this criti-
cal (touching) point indicates a direct transition from NI
to TI. Surprisingly, in Fig. 2(c), when the mass M is in-
creased to 0.38, the metallic phase (Λ increasing with L)
appears between Wc1 ≈ 1.40 [see inset of Fig. 2(c)] and
Wc2 ≈ 7.10. This metallic phase is contradict to the com-
mon behavior of 2D unitary class. The unitary system,
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FIG. 2: (Color online). (a)-(d) renormalized localization length Λ = λL/L versus disorder strength W for different masses M
and widths L with fixed Fermi energy EF = 0. The inset of (c) and (d) are the zoom-in of the critical point on left side of
main panel of (c) and (d), respectively.
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FIG. 3: (Color online). (a) and (c) shows Λ = λL/L vs
disorder strength W near two critical points. The parameters
are the same as those of Fig. 2(c). (b) and (d) are single
parameter scaling of Λ in (a) and (c), respectively. ν is the
critical exponent at critical disorder strength Wc.

e.g. quantum Hall system, is scaled to localized states ex-
cept at certain critical (touching) points. Moreover, upon
further increasing M , the metallic phase region becomes
larger, i.e. for M = 0.5, the metallic phase remains in
Fig. 2(d) between Wc1 ≈ 1.40 [see inset of Fig. 2(d)] and
Wc2 ≈ 8.2. This peculiar metallic phase between TI and
NI phases in InAs/GaSb-type BHZ model is the main
finding of our paper.

Next, we analyze the one parameter scaling behav-
ior of the renormalized localization length Λ = λL/L
near the critical points of Fig. 2(c). According to fi-

nite size scaling law, all Λ are fitted to Λ(W,L) =

Λc +
∑4

n=1 an(W −Wc)
nL−n/ν + b0L

y near the critical
point,9–11,16,35,36 whereWc is disorder strength at critical
point, ν is critical exponent and y is exponent assoicated
with the leading irrelevant operator. Here, an and b0
are the fitting parameters. For convenience, we define
Λ′(W,L) = Λ(W,L) − b0L

y, with the same parameters
as Λ. The best fit is given by minimizing χ2 statistic

χ2 =
∑N

n=1(Λn −Λ(Wn, Ln))
2/σ2

n, where N is the num-
ber of the data and σn is the error of the nth data Λn.
The finding of the metallic phase and the large critical
exponent ν (almost twice as large as that obtained previ-
ously) in Fig.3(c) and (d) suggests the existence of a pos-
sible new universality class.19,37–39 We caution that the
standard deviations (χ2/N) are 3.3 and 3.5 for Fig.3(b)
and (d), respectively, which are somewhat larger than the
common value unity and even larger size computations
are desirable to obtain a high precision critical exponent
ν.

Up to now, we have found the metallic phase for small
A = 0.28, which resemble the parameters of InAs/GaSb-
type BHZ model. To compare with previous studies,17,18

it is necessary to investigate Anderson transition for large
A cases, i.e. HgTe/CdTe-type BHZ model. In Fig. 4 (a)
and (b), where M = 0.38 and EF = 0, A increases from
1 to 2.1, in the region of HgTe/CdTe-type model pa-
rameters. The other parameters are the same as those
of Fig. 2(c). Compared with the case A = 0.28 [see
Fig. 2(c)], the metallic phase disappears for A = 1 and
A = 2.1 because Λ hardly changes with the size near
the touching point [see Fig. 4(a) and (b)]. This direct
transition from TI to NI (i.e. A = 1, 2.1) is consistent
with previous study in HgTe/CdTe-type BHZ model.17,18

Meanwhile, the localization length decreases rapidly with
increasing A from 0.28 to 2.1. For example, for a typ-
ical unitary case A = 1, the localization length λL is
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FIG. 4: (Color online). (a)-(d) Λ = λL/L versus disorder strength W . The parameters are shown on top of each panel. The
inset of (c) shows a zoom-in of the critical point on the left side in the main panel. The inset of (d) shows average intrinsic
conductance 〈g〉 of square sample versus W with same model parameters as (d).

only 1 ∼ 2 times of width of the system L. From the
above results, it is natural to conclude that the existence
of the metallic phase is highly dependent on the mag-
nitude of A. To be specific, the transition TI-metal-NI
in InAs/GaSb-type BHZ model is absent in HgTe/CdTe-
type BHZ model.
Now we consider the influence of Fermi energy EF

on the metallic phase. In Fig. 4(c), when A = 0.28,
M = 0.38, and EF = 0.08 in the neighborhood of gap
center, the transition TI-metal-NI remains almost the
same as that of Fig. 2(c) with EF = 0. When Fermi
energy is moved outside the band gap Eg ≃ 0.16, i.e.
EF = 0.17, the transition from metal to NI is still ob-
served by scaling Λ and 〈g〉 in Fig. 4(d). It is clear that
〈g〉 and Λ increase with size of the system in metallic
phase, decrease in insulator phase, and has a crossing
point (W ≈ 8) at the phase transition. To conclude, the
localization length scaling and the conductance scaling
suggest that the metallic phase could survive both inside
and outside the band gap.

IV. ENERGY LEVEL STATISTICS AND

PARTICIPATION RATIO

Furthermore, we have verified the existence of the
metallic phase by studying the energy level statistics and
evaluating the participation ratio of eigenstates. Ac-
cording to the random matrix theory, the delocalized
and localized states can be characterized by the en-
ergy level statistics.14,40 In Fig.5, the histograms of the
level spacings are drawn at different energies EF . The
sizes is 48 × 48 with a periodical boundary condition
on two directions, i.e. a torus geometry.41,42 In the en-
ergy region EF = 0 to 0.2, the histograms [see Fig.5(b)-
(d)] and corresponding variances [see Fig.5(a)] are very
close to those of Wigner surmise of unitary ensemble
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FIG. 5: (Color online). (a) solid blue line is the variances of
the energy spacing distributions at different energies EF with
the disorder strength W = 4. The red dash line indicates the
variances of Wigner surmise of unitary ensemble. (b) - (i)
The histograms of nearest energy level spacings centered at
different energies EF = 0 - 8 with W = 4. The solid red lines
and green lines represent Wigner surmise of unitary ensemble
and Poisson distribution, respectively. The model parameters
are A = 0.28 and M = 0.38 with the sizes 48 × 48.

p(s) = (32/π2)s2 exp[−(4/π)s2].40 So, the level correla-
tion is long ranged which indicates extend states may
exist. However, near the top of the band (E = 8) [see
Fig.5(i)], the histogram is close to the Poisson distribu-
tion p(s) = exp(−s), which implies that the states are
uncorrelated and localized.

However, in the histograms of the level spacings, it
is difficult to distinguish the critical point ( or region)
from the true metallic phase, because they are both close
to Wigner surmise of the unitary class. In order to
identify the true metallic phase, we test the larger sizes
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FIG. 6: (Color online). Distributions of the unfolded level spacings s under different disorder strength (a) W = 1 to (f) W = 12
are fitting by Wigner surmise p(s) = Asα exp(Bsβ) for whole s region and Poisson distribution p(s) = A exp(Bs) for s > 2.
The model parameters are A = 0.28 and M = 0.38 at EF = 0.

(L×L = 128× 128) results at fixed energy EF = 0 with
different disorder strength W = 1 to 12. Then we fit
the distributions to Wigner surmise p(s) = asα exp(bsβ)
for the whole s region and Poisson distribution p(s) =
k exp(κs) for s > 2, with the fitting parameter α (β, κ)
and the renormalization parameter a (b, k).43 The fitting
error of a set of data {p̄(s1), p̄(s2), ..., p̄(sN )} is defined as

σ2 =
∑N

i=1[p(sn)/p̄(sn) − 1]2/N , where p(sn) is the fit-
ting value at sn and N is the number of data. It is noted
that if energy level spacings data follows Wigner surmise
with α = 2 and β = 2, metallic phase exits; however,
if the data only follows this distribution in small s re-
gion but violates in large s region, the critical behavior
emerges.43,44

Fig.6 shows a logarithmic plot of p(s) the distributions
of the unfolded level spacings s.45 In Fig.6(c) and (d),
for W = 4 and 6 the fitting parameters α and β are
very close to the Wigner surmise of the unitary ensemble
α = β = 2. So the level correlation is long ranged. On
the other hand, for W = 1.4 and 8.2 [see Fig.6(b) and
(e)], although the fitting parameters α and β are very
close to the Wigner surmise of the unitary ensemble, the
large s region is not well described by the Wigner sur-
mise. Instead, the tail of the large s region is clearly
fitted to Poisson distribution. The hybrid of the Wigner
surmise statistics and Poisson statistics behavior at crit-
ical point is coincident with level statistics results at 3D
Anderson metal-insulator transition.44 In this case, the
level correlation is finite ranged, which manifests as a
crossing over from (long ranged correlated) Wigner sur-
mise statistics to (uncorrelated) Poisson statistics. For

W = 1 and W = 12 [see Fig.6(a) and (f)], the level
spacings clearly deviated from the Wigner surmise of the
unitary ensemble for whole s region and the energy lev-
els will become totally uncorrelated in thermodynamic
limit, identifying an insulating phase. In conclusion, the
level statistics results strongly support the existence of a
metallic phase between W = 4 and W = 6 at EF = 0.
This is coincident with the region indicated by finite size
scaling results of localization length (see Fig.1).

The participation ratio characterized the spatial ex-
tension of the eigenstates. Next, let’s come to inves-
tigate the participation ratio under different disorder
strength. The participation ratio is defined as R =∑N

i=1 |ai|
4/(N

∑N
i=1 |ai|

2)2 where ai is the wave function
at lattices i and N is the number of the lattice.31,46–48 R
has its maximum 1 for one single Bloch wave, reaches a fi-
nite value typical around 1/3 for an disordered extended
state, and approaches ∼ 1/N for a localized state. In
Fig.7(b) and (c), the (highly possible) extended states
characterized by the peaks R ≈ 0.6 are found near the
bulk gap at W = 1, and then come into the gap with
increasing the disorder strength W = 3. As a result,
the metallic phase in the gap indeed comes from the ex-
tended states near the gap, which originates from the
nearly π Berry phase. At last, the peak of R diminishes
with increasing the disorder strength [see Fig.7(d)-(f)]
which indicates that the states are localized at W = 14
(R < 1/3).
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V. PHASE DIAGRAM AND DISCUSSION

We summarize our results into three phase diagrams:
W -M , W -A, and W -EF , as shown in Fig. 1. In Fig. 1(a),
the metallic phase emerges from TI phase atM ≃ 0.1 and
expands with increasing M from 0.1 to 1. On the other
hand, in Fig. 1(b), the metallic phase exists for small
A cases and disappears for A > 0.56. In other word,
the transition TI-metal-NI can exist in InAs/GaSb-type
BHZ model but not in HgTe/CdTe-type BHZ model [see
the dash lines in Fig.1(b)]. Furthermore, in Fig. 1(c), the
metallic phase spreads over both inside and outside the
gap (Eg = 0.16). The phase diagram Fig. 1(c) indicates
that the metallic phase inside and outside the gap have
the same physical origin.

In 2D system, the metal phase is related to WAL,
which adds the positive correction to the β-function and
leads to such phase in the thermodynamic limit.8,24,49 In
general, the WAL exists in SOC systems of symplectic
ensemble,23 and Dirac systems with π Berry phase, e.g.
graphene and helical surface states of 3D TI.50,51 In the
present case, the detailed analysis of symmetry classes
and Berry phases can help us to understand the peculiar
metallic phase in inverted band BHZ model. We first
analyze the symmetry classes of the BHZ model. The
spin-↑ part of BHZ Hamiltonian in momentum space is
H0(k) = A(kxτx + kyτy) + (M −Bk2)τz , where A,B,M
and τ have the same meaning as in Eq. (2). When the
mass termM−Bk2F = 0, the system satisfies pseudo-time
reversal symmetry, i.e. H0(kF ) = τyH

∗
0 (−kF )τy , which

is similar to the massless Dirac particles in graphene.
Therefore, the system is approximate symplectic and

shows WAL in the region near M − Bk2F = 0.20,21 On
the contrary, when |M − Bk2F | >> A|kx + iky|, the two
orbital bands are nearly decoupled, thus the system be-
longs to orthogonal ensemble approximately and shows
weak localization.20,21 So the existence of the metallic
phase is dependent on the system parameters. Moreover,
the Berry phase of the BHZ model at Fermi energy EF

reads:22,26

γ(EF ) = (1−
(M −Bk2F )√

A2k2F + (M −Bk2F )
2
)π, (3)

where kF is the momentum at EF . The Berry phase γ
monotonously increases with kF rising from zero. γ = 0
at kF = 0, γ = π at kF =

√
M/B, and γ → 2π while

kF tends to ∞. Since γ can vary from 0 to 2π, the sys-
tem can show both WAL and weak localization which
depends on the parameters. While M/B >> A2/B2,

kg =
√

M
B − A2

2B2 ≃
√
M/B where kg is the momentum

at the conduction band bottom and the valence band
top, and then the Berry phase γ ≃ π. In this case,
the system shows WAL and the metallic phase exists be-
tween TI and NI phases (see Fig. 1). For the case of
InAs/GaSb-type BHZ model, i.e. A = 0.28, B = 1, and
M = 0.38, M/B >> A2/B2 is well satisfied, the metallic
phase appears consequently. Oppositely, for HgTe/CdTe
type model, i.e. A = 1, B = 1, and M = 0.38 with
M/B < A2/B2, kg = 0 which is far away from

√
M/B.

At kg = 0, the Berry phase γ = 0, which leads the weak
localization behavior and the disappearance of the metal-
lic phase.

VI. DISCUSSION AND CONCLUSION

The Berry phase argument is well applicable to the
present numerical simulations and it is also in accor-
dance with previous investigations.20,21 When the sys-
tem is “approximate symplectic”, electrons interfere as a
symplectic system on the length scalings smaller than
lM = vF τM . Here vF is the Fermi velocity, τM =
τ
2
(A2k2F +(M−Bk2F )

2)/(M−Bk2F )
2 is the TRS-breaking

scattering time and τ is the elastic scattering time.20,21

In this case, lM acts as large-size cufoff for WAL cor-
rection resembling the dephasing length, and the WAL
correction dominates if system width L << lM .20,21 In
our numerical simulation, for example, when EF = 0.17
in Fig.4(d), lM = vF τM = lsτM/τ ∼ 300, where the

mean free path ls ∼
√
1/n ∼ 4 and τM/τ ∼ 75. Here we

have used the impurity density n = 5% and the Fermi
vector kF ∼ 0.605. Since lM >> L the system width in
the numerical simulations, the TRS-breaking scattering
time τM is not important and the system resembles sym-
plectic with metallic behaviors. This metallic behavior
can show up in mesoscopic systems52 and may apply to
recent transport experiments7. For larger systems with
L > LM , the scaling behavior should be interesting, how-
ever, is beyond our present numerical capability, and thus
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left for further study.
In summary, we investigate Anderson metal-insulator

transition in QSHI and find different localization behav-
iors depending on model parameters. Notably, the tran-
sition TI-metal-NI likely exists in InAs/GaSb-type sys-
tems but not in HgTe/CdTe-type systems. The peculiar
metallic phase, which originates from the Berry phase π
near the band gap, contradicts to the common view of
Anderson transition behavior of 2D unitary class.
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