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Abstract

An atomistic numerical scheme is developed and used to study the prototype of relaxor ferroelectrics,

that is PbMg1/3Nb2/3O3 (PMN), at finite temperature. This scheme not only reproduces known complex

macroscopic properties of PMN, but also provides a deep microscopic insight into this puzzling system. In

particular, relaxor properties of PMN are found to originate from the competition between (1) random elec-

tric fields arising from the alloying of Mg and Nb ions belonging to different columns of the periodic Table

within the same sublattice; (2) the simultaneous condensation of several off-center k-points as a result of a

specific short-range, antiferroelectric-like interaction between lead-centered dipoles; and (3) ferroelectric-

like interactions. Such origins contrast with those recently proposed for the homovalent Ba(Zr,Ti)O3 solid

solution, despite the fact that these two materials have similar macroscopic properties – which therefore

leads to a new and comprehensive understanding of relaxor ferroelectrics.
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Relaxor ferroelectrics have attracted much attention since their discoveries more than five

decades ago. In particular, numerous studies have been conducted on the prototype of ferroelectric

relaxors, that is lead magnesium niobate PbMg1/3Nb2/3O3 (PMN), and have revealed anomalous

features, which are also inherent to some magnetic systems1,2 therefore extending their signifi-

cance beyond ferroelectrics. For instance, PMN adopts a dielectric response-versus-temperature

function that possesses a rounded peak, having a large magnitude and is strongly dependent on the

frequency of the applied ac electric field, while PMN remains macroscopically non-polar, down

to the lowest temperatures3,4. Measurements of its inverse dielectric permittivity5 as a function of

temperature have also revealed an unusual deviation from linear behavior for a specific tempera-

ture, which is now known as the Burns temperature, TB6.

Several conflicting models have been proposed to understand the microscopic origin of relaxor

ferroelectrics, in general, and of PMN, in particular. A popular belief to explain their macroscopic

anomalies is the existence of the so-called polar nano-regions (PNRs)5–9. These polar correlations

are thought to appear at TB and to freeze on cooling, as similar to dipole glass state. Another

widespread and alternative model is that PMN owes its unusual properties to the development of

a state formed by nanoscale multidomains10–13. Indeed, Ref. [12] proposed that quenched random

fields (arising from the fact that the randomly distributed Mg and Nb cations posses different nom-

inal ionic charges) prevent the normal ferroelectric state to take place and rather break it down into

a nanodomains state. Reference [10] suggested that the large magnitude of the dielectric permit-

tivity of PMN is then due to the side-wall motion in these nanodomains. Actually, the glassy-state

versus nanodomains model is still debated and no consensus or satisfactory description of the real

structure currently exists. As detailed in some reviews3,13–15, other concepts have also been consid-

ered to explain the peculiar properties of PMN, including chemically-ordered regions16 possessing

large dielectric response17,18, overbonded oxygen ions19, polaronic mechanism20,21, and the coex-

istence of ferroelectric and antiferroelectric couplings22. It is also unclear if the recent mechanism

that has been determined from first-principles-based calculations on the homovalent (Ba,Zr)TiO3

relaxor ferroelectric – that is the coexistence within the same material of ferroelectrically active

and ferroelectrically inactive (silent) ions23 – holds for PMN.

A comprehensive understanding of lead-based relaxors, in general, and its representative com-

pound, i.e. PMN, in particular, is therefore still lacking, despite the introduction of remarkable

pioneering analytical approaches, such as the Random-Site24, Spherical-Random-Bond-Random-

Field25, and Soft Pseudospin Glass26 models as well as other models27. One reason behind this

2



paucity of knowledge is that finite-temperature properties of heterovalent lead-based relaxors are

rather challenging to mimic due, e.g., to the facts that its mixed B-sublattice is formed by ions that

are chemically very different (Mg and Nb in PMN) and that the other cation sublattice possesses

(lead) ions that strongly desire to move away from their ideal positions7,28,29.

The goal of this paper is to report the development and results of a new atomistic numerical

scheme that is able to realistically mimic the subtle and intriguing features of PMN, and which fur-

ther provides a deep insight (that we believe to be unprecedented) into the microscopic description

of this prototypical relaxor ferroelectric. In particular, this scheme reveals the major importance

of random electric fields as well as complex and unexpected antiferroelectric-like interactions (in-

volving several off-center vectors in the reciprocal space), allowing to understand the properties

of PMN. The use of this scheme also resolves the aforementioned issues about the microscopic

nature of PMN, and also elucidates the (controversial) effect of chemical ordering on properties of

PMN.

As detailed in the Supplemental material30–35, we developed an effective Hamiltonian (Heff )

for PMN. Its degree of freedom are (1) the local soft-mode in unit cell i, ui , which represents

the collective motion of Pb, Mg/Nb and oxygen ions associated with the lowest transverse opti-

cal phonon branch36. ui is therefore directly proportional to the local electric dipole moment in

cell i. It is technically chosen to be centered on the Pb sites, as consistent with the known fact

that lead ions significantly move off-center in Pb-based perovskites28,29,37–40; (2) Nb/Mg-centered

dimensionless local displacements, vi , that are related to the inhomogeneous strain inside each

cell36; and (3) the homogeneous strain tensor, ηH 36. Such effective Hamiltonian also depends on

{σj} variables that characterize the atomic configuration of the PMN solid solution. More pre-

cisely, σj=+1 or −1 corresponds to the presence of a Mg or Nb atom located at the B-lattice site

j, respectively41. Here, we average properties over 30 different alloy configurations, all randomly

selected and frozen during the simulations, in order to mimic well disordered PMN systems42.

Monte-Carlo simulations using this Heff are performed using 18 × 18 × 18 supercells (29,160

atoms) with periodic boundary conditions. Note that the parameters entering the expressions

of the total energy of the Heff of PMN are initially determined by conducting first-principles

computations43–45 on small cells. However, these parameters are also allowed to vary from their

first-principles values in the present work, in order to obtain a better agreement with experiments.

In particular and as discussed below, we found that two types of these parameters play an important

role on properties of PMN and need to be carefully adjusted from their computed values. They
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are (i) the short-range parameter called j5 in Ref.36, that characterizes a specific interaction be-

tween second-nearest neighbors (e.g., between different Cartesian components of the local modes

that are centered on two Pb sites that are the closest along the <110> pseudo-cubic directions);

and (ii) the magnitude of the coefficients denoted by Q|j−i |(σj ), which represent the strength and

direction of the so-called random electric fields12,24,46,47.

Figure 1a reports the dielectric susceptibility, χ, of disordered PMN as a function of temper-

ature, computed from the cumulant method detailed in Ref.48 and involving the local soft modes

(χ therefore corresponds to the experimental situation for which small electric fields are applied).

The dielectric susceptibility of PMN has a rounded peak while, as shown in the right inset of Fig.

1b, no polarization is numerically found to appear on zero field cooling, even at the lowest temper-

atures. Such features are consistent with experiments on PMN and are characteristics of relaxor

ferroelectrics3–5. They also contrast with the case of “normal” ferroelectrics for which the dielec-

tric susceptibility has a sharp peak around the paralectric-to-ferroelectric phase transition temper-

ature. Other information revealed by Fig. 1a is that χ follows a Curie-Weiss law49 C/(T − T0)

(where T is the temperature, and with C = 1.27× 105K and T0 = 400K) for temperatures above

' 600K, while it deviates from this law for temperatures below 600K. Interestingly, this latter

temperature corresponds to the Burns temperature (TB = 620K) reported for PMN6 below which

there is a known deviation of χ from the Curie-Weiss law, and above which the Curie-Weiss law

is well obeyed with C = 1.25 × 105K and T0 = 396K according to Ref.5 (note that similar val-

ues of the Curie-Weiss constant were obtained in other experiments, e.g., C = 2.05 × 105K and

C ≈ 105K in Refs11 and14, respectively). Comparisons between the predicted and measured val-

ues of both TB and T0, as well as of the Curie-Weiss constant, therefore attest to the accuracy of

the simulations after careful selection of the effective Hamiltonian parameters. It is also worth

mentioning that χ exhibits rather large error bars for temperatures below TB, in general, and close

or below to its peak, in particular. This indicates that properties of PMN are rather sensitive to the

atomic configuration. Moreover, T0, which usually corresponds to the Curie temperature in normal

ferroelectrics, can be identified here as the so-called T ∗ temperature inherent to relaxors5,8,50–53.

We will come back to these points later on.

We also conducted simulations for which disordered PMN is cooled down under a dc elec-

tric field that is oriented along the pseudo-cubic [111] direction, and having Cartesian compo-

nents equal to 1.0 × 107V/m along the x-, y-, and z-axes (the magnitude of this field is therefore
√

3×107V/m). Under these circumstances, PMN adopts a significant electrical polarization along
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the direction of the applied field below a certain temperature, and, correspondingly, a large dc

susceptibility (not shown here), which differs from the susceptibility, obtained by the cumulant

method, and that can be considered as one of the main features of the relaxors and glasses26. Inter-

estingly, such polarization remains finite when this field is removed at low temperature. The left

inset of Fig 1b reveals that this polarized state (obtained at 10 K here) possesses some degrees of

disorder in it since not all the dipoles are aligned along the [111] direction – which is in contrast

with the case of a typical ferroelectric like BaTiO3 but is consistent with what was observed exper-

imentally in PMN by local probes such as the nuclear magnetic resonance technique in Ref. [7].

We numerically find that this degree of disorder originates from the random electric fields existing

inside PMN. The system is then heated under no electric field starting from this low-temperature,

polarized state. The resulting temperature dependence of the Cartesian components of the super-

cell average of the local mode, 〈u〉, is displayed in Fig. 1b (note that the x-, y- and z-axes are

chosen along the pseudo-cubic [100], [010] and [001] directions, respectively). One can, e.g.,

see that the x-, y- and z-Cartesian components of 〈u〉 are all predicted to have a magnitude of

0.050 a.u at 10K, 0.045 a.u. at 150 K, and of 0.039 at 250K, which corresponds to a polarization

of 0.54C/m2, 0.49C/m2, and 0.43C/m2, respectively, that is oriented along [111]. These magni-

tudes agree rather well with measurements providing 0.46C/m2 at temperature close to 0K54 and

0.41C/m2 at 150K55 as well as with first-principles calculations yielding values ranging between

0.40C/m2 and 0.65C/m2 at 0K38,39 – which further emphasizes the capability of our Heff to re-

alistically mimic the complex properties of PMN. Figure 1b also indicates that the polarization

decreases on heating and then, at about 250± 50K, experiences a sudden jump down leading to its

vanishing. Such striking behavior has indeed been experimentally reported, with the temperature

associated with this jump being called the depolarization, temperature, Tdepol, and being equal to

' 210−230K for (111) crystals12,56–58. The temperature at which this jump occurs is also linked to

the freezing temperature, Tf , below which PMN is non-ergodic12 – as evidenced in Fig. 1b by the

different ground states obtained depending on the cooling regime (zero-field cooling or removing

of electric field after field cooling).

Having demonstrated the predictive capability of our simulations at both global/macroscopic

(cf Fig. 1a) and local/nanoscopic (left inset of Fig. 1b) levels, let us now provide a microscopic

insight of PMN by showing, in Figures 2 (a-d), snapshots of the dipolar patterns within a (x, y)

plane for different temperatures, when the system is cooled under no field. These snapshots reveal

that correlated clusters, usually referred to as polar nanoregions (PNRs) and inside which dipoles
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are nearly parallel to each other and contain at least two Pb-centered dipoles, indeed exist in

PMN, as suggested in Refs.6,40,58–61 and similar to the case of the homovalent BZT relaxor23,42,62,63.

These PNRs are delimited by red lines in Figs 2(a-d), and are numerically found by using the

same Bayesian algorithm as in Refs.42,62 from instantaneous snapshots (configuration of the last

Monte-Carlo sweep for any investigated temperature). Their average (dimensionless) size64 is

computed as 〈s〉 = 〈N2〉 / 〈N〉, where N is the number of Pb sites belonging to a PNR, and the

brackets denote the average over all the PNRs existing inside the supercell. Figure 2e displays

the predicted temperature dependency of 〈s〉. The data of Figs 2 indicate that 〈s〉 rapidly grows

and the number of PNRs becomes larger upon cooling below TB, in general, and below Tf , in

particular (note that PNRs containing a single Pb dipole are included in the definition of 〈s〉,

which explains why 〈s〉 is not equal to 0 above the Burns temperature). Indeed, Figs. 2c and 2d

reveal the large number of PNRs below 200K, and Fig. 2e demonstrates an average cluster size

of 19. Interestingly, such size corresponds, in one dimension, to a length of about 72Å, which

is similar to the spatial correlation length of 62.4Å obtained experimentally by neutron diffuse

scattering58 at 10K. Note that the Supplemental Material also discusses the dynamic versus static

characters of these PNRs for different temperatures (see Fig. 1 there), which is found to be in

line with experimental findings51,58. As a result, on decreasing temperature, the size (cf Figs. 2)

and the degree of the static character (see the Supplemental Material30) of the polar correlations

in PMN are increasing to get a microscopic configuration, below Tf , which is described by many

nanosize clusters that are separated from a few isolated, non-vanishing dipoles – which contrasts

with the case of BZT23.

Let us now discuss and reveal the key features at the origin of the aforementioned microscopic

description and properties of PMN relaxor. For that, we, first, decided to compute correlations

between dipoles as follows:

θα,α(r) =
1

Nsc

∑
i

ui,αui+r,α
|ui · ui+r|

, (1)

where the index i runs over all theNsc Pb-sites of the supercell and where ui and ui+r are the local

modes in cell i and in the cell centered on the Pb atom distant from r from the cell i, respectively65.

ui,α and ui+r,α are the α-Cartesian component of ui and ui+r, respectively. Note that θα,α(r) is

equal to 1/3 for any α (i.e., x, y or z) and for any r in the hypothetical case for which the dipoles

all have the same magnitude and are all lying along the pseudocubic [111] direction. Positive
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and negative signs of θα,α(r) are representative of correlations and anticorrelations, respectively,

between the α-component of ui and ui+r. Figures 3a and 3b display θx,x(r) for the r vectors

lying in the (x, y) plane, at 10K and for two different realizations of disordered PMN. While these

two correlations between the x-components of the local modes can present some differences in,

e.g., shape, anisotropy and values at some particular r distances, they also share a remarkable

feature: the existence of significant anticorrelations in regions of space centered about r1 =

±4.5alatx and r2 = ±4.5alatx ± 9alaty in our 18 × 18 × 18 supercell, where alat is the lattice

constant of the 5-atom primitive cell and where x and y are unit vectors along the x- and y-axis,

respectively. Note that we also numerically found (not shown here) (1) similar anticorrelations of

the x-components of the local modes in the (x, z) plane for regions centered about r1 and r3 =

±4.5alatx ± 9alatz (where z is the unit vector along the z-axis); and (2) similar anticorrelations

of the y- and z-components of the local modes in the planes and around positions that can be

deduced by cyclic permutations from the case of the anticorrelations between the x-components

of the local modes. These anticorrelations can be thought as representative of antiferroelectric-

like interactions existing inside PMN, which is consistent with the previously suggested idea that

antiferroelectricity plays some role in relaxor behaviors22,23,66–69. Moreover, such anticorrelations

between the x-components of the local modes were further found to be associated with the Fourier

transform of the distribution of the x-component of the local modes inside the supercell70 being

significant at several off-center vectors of the first Brillouin zone. Typically, in our 18 × 18 × 18

supercells, these off-center k-points are among the eight given by 2π
9alat

(±x±y) and 2π
9alat

(±x±z),

and that will be denoted as kmax,i in the following, where i runs from 1 to 8. Note that (1), for the

case of the x-components of the local modes, these kmax,i lie, close to Γ, along the Γ −M lines

of the first Brillouin zone, where the M points are given by π
alat

(±x± y); (2) the kmax,i are given

by 2π
9alat

(±x ± y) and 2π
9alat

(±y ± z) for the Fourier transform of the y-components of the local

modes, and by 2π
9alat

(±x± z) and 2π
9alat

(±y ± z) for the Fourier transform of the z-components of

the local modes; and (3) the kmax,i vectors also depend on the size of the periodic supercell used

in the simulations. For instance, they are still lying among the Γ −M lines of the first Brillouin

zone when using N ×N ×N supercells with N = 12, 14 or 16, but their magnitude is now equal

to
√

2 2π
Nalat

in these cases (note that these k-points are thus not located at zone boundaries). As a

result, one can infer that the magnitude of the “real” kmax,i for which the Fourier transforms of

the Cartesian-components of the local modes are maximum ranges in-between 0.0884 and 0.1571

in 2π
alat

units (note that this magnitude can also be rather sensitive to the j5 parameter).
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Furthermore, Figures 3c and 3d display the temperature evolution of the square of the Fourier

transform of the x-component of the local dipoles configuration at some of these kmax,i points for

the two alloy configurations associated with Figs 3a and 3b, respectively. Interestingly, these quan-

tities are non-zero only below 450±50K, which we identify as the so-called T ∗ critical temperature

of relaxors and which we also considered to be equal to T0 in the aforementionned Curie-Weiss re-

lationship for the dielectric response. Note that different measurements provide values of 350K50,

400K5,8,51, and 500K52 for T ∗ in PMN, and that both hyper-Raman71 and inelastic neutron72 scat-

tering techniques pointed out to a condensation of the soft polar mode at respectively 400K and

340K. It is interesting to realize that the onset of anticorrelations shown in Figs. 3c and 3d occurs

in a temperature range that is consistent with the condensation of the M - and R-point zone bound-

ary soft modes observed in PMN by Swainson et al.69 between 400K and 450K. Such experimental

data (i) therefore cover a rather wide temperature interval inside which our prediction falls in and

(ii) which can be understood by realizing that Figs. 3c and 3d reveal that this T ∗ can depend on

the alloy configuration (and thus should be experimentally dependent on the sample preparation

and the spatial (and probably time) scale resolution of the experimental technique). As a matter of

fact, Fig. 3c gives a T ∗ close to 400K while Fig. 3d yields a value closer to 450K. Note that the

Supplemental Material also provides additional details about the effect of atomic ordering on prop-

erties of PMN systems. Figures 3c and 3d further show that the square of the Fourier transform

increases when decreasing the temperature below T ∗ until reaching a rather significant value that

also strongly depends on the atomic configuration used to represent disordered PMN. For instance,

the two configurations resulting in the correlations depicted in Figs. 3a and 3b possess values of

about 12% for 2π
9alat

(x + z) and of about 7% for 2π
9alat

(x + y) of the total spectra gathering the

Fourier transforms at all possible k-points at 10 K, respectively. Such results indicate that, as sim-

ilar to the BZT case23, anticorrelations begin to occur at the T ∗ critical temperature and strengthen

as the temperature is reduced below T ∗. The fact that Figs. 3c and 3d demonstrate that several

of these symmetry-related kmax,i exist for any disordered atomic configuration at any temperature

below T ∗ makes the disordered PMN different from an incommensurate crystal, for which only a

single off-center k-point condenses at a critical temperature in one macroscopic domain15,73. The

simultaneous condensation of several k-points presently discovered here is also a key ingredient

of the so-called weak crystallization theory74 and is also likely consistent with the idea of phonon

localization advanced in Refs. [75 and 76] to explain the relaxor behavior in PMN (note also that

the occurrence of correlated regions localized in real space, such as the PNRs, also automatically
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imply the existence of more than one k-point in the Fourier transform of the local modes). It is

important to know that increasing the magnitude of a specific short-range order parameter between

second nearest neighbors (namely, the j5 coefficient indicated in the Method Section) was numer-

ically found to enhance both the strengths of the anticorrelations and of the Fourier transform of

the local modes at kmax,i for any temperature below T ∗, therefore demonstrating its relevance to

understand PMN, as well as, the possibility for tuning relaxor-like properties.

Interestingly, we can also infer that, in addition to j5, the random electric fields are also key in-

gredients at the very heart of the properties of PMN. To illustrate this fact, we conducted additional

simulations in which the random electric fields are switched off (practically, the Q|j−i |(σj ) coef-

ficients are imposed to be null). Figures 1c and 1d show the resulting temperature dependency of

the dielectric response and of the x-component of the < u > supercell average of the local modes

(which is also equal to its y and z components), respectively, when the system is progressively

cooled from high temperature down to 10K. Comparing Fig. 1a with Figs 1c and 1d tells us that

the random electric fields play a primordial role in the relaxor behavior of PMN: without them,

disordered PMN would display a first-order transition at around 550±50K (that is characterized by

a large and sharp peak in the dielectric susceptibility) above which the system is macroscopically

paraelectric while below which it is ferroelectric with an electrical polarization lying along the

pseudo-cubic [111] direction and increasing in magnitude as the temperature is reduced (as shown

by Fig. 1d). Figure 1c further shows that the Curie-Weiss law is also followed for temperatures

above 750K with a corresponding T0 of 633K, when random fields are not included in the simula-

tions. Surprisingly, for temperatures ranging between T = 550K to 750K (that is “just” above the

transition temperature) another Curie-Weiss law is obeyed, one for which T0 is now very close to

500K. We numerically find that the existence of these two different Curie-Weiss laws originates

from the appearance of the aforementioned (j5-driven) AFE-like features for temperatures ranging

between 550K to 750K. On the other hand, these AFE-like features are found to vanish in favor

of a ferroelectric state for temperatures smaller than 550 ± 50K, that is below the phase transi-

tion – as demonstrated by the inset of Fig. 1d revealing that the low-temperature polar state is

homogeneous, when random electric fields are turned off. Such findings therefore demonstrate the

strong competition between ferroelectric and AFE-like interactions. Moreover, It is also important

to know that the temperature at which the peak of the dielectric response occurs when random

fields are neglected does not neither necessarily coincide with the Burns temperature nor T0 or T ∗

of the true disordered PMN system (i.e., incorporating the Q|j−i |(σj ) coefficients). As a matter
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of fact, we numerically found that it is possible to find different combinations between the afore-

mentioned j5 and Q|j−i |(σj ) parameters giving the same T0 and TB as in Fig. 1a for disordered

PMN (in general the larger j5 is in magnitude the bigger Q|j−i |(σj ) is for these combinations),

while the position of the peak of the dielectric response reported in Fig. 1c (in case of no random

electric field) does depend on this combination. Note that, technically speaking, we also needed to

vary a third effective Hamiltonian parameter, along with j5 and Q|j−i |(σj ) coefficients, to have a

fixed T0 temperature. This third parameter is the harmonic coefficient of the local electric dipoles,

and is therefore directly related to the strength of the ferroelectric instability at the zone-center.

Such facts (further) demonstrate that ferroelectric degrees of freedom, antiferroelectric-like mo-

tions and random fields all interact with each other to produce the striking properties of disordered

PMN, and thus all need to be accounted for to understand this complex system, in particular, and

lead-based relaxors, in general.

In summary, we use a new effective Hamiltonian method to study finite-temperature proper-

ties of PMN. This numerical technique reproduces known anomalous striking signatures of this

prototype of relaxor ferroelectrics, therefore demonstrating its accuracy and capability. It also re-

veals the nanoscale picture of PMN and the microscopic origins of its properties. It is also worth

realizing that a similar technique was recently used to investigate the lead-free and homovalent

Ba(Zr,Ti)O3 system23. Comparing that study23 to the present one reveals that different relaxor

ferroelectrics can exhibit similar macroscopic properties but their microscopic origins can be fun-

damentally different: in one case, the difference in polarizability between the ions belonging to the

mixed sublattice (that is Ti and Zr in Ba(Zr,Ti)O3) was found to be essential to reproduce relaxor

behavior via the formation of small embedded polar nanoregions. On the other hand, in case of

PMN, the major players are the random electric fields arising from the mixed B-sublattice, the

strong short-range interactions between lead-centered electrical dipoles and the competition be-

tween ferroelectric and antiferroelectric interactions, which result in a complex nanodomain struc-

ture exhibiting anticorrelations associated with several off-center k-points. We therefore hope

that the present work results in a deeper and broader knowledge of the fascinating class of re-

laxor ferroelectrics, and can also be useful for the understanding of other inhomogeneous systems

with remarkable properties like colossal magnetoresistance or high-temperature superconductivity

where competing states in the presence of random fields are key ingredients too78.
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Figure 1. (color online) Predicted temperature dependence of several properties in PMN solid solutions.

Panel (a) shows the dielectric susceptibility, and its inverse, when cooling down the disordered PMN system

under no bias field. TB and T0 correspond to the Burns temperature and the critical temperature extrapolated

from the Curie-Weiss law at high temperatures, respectively. Panel (b) displays the x-component of the

supercell average of the local mode, < u >, (which is equal to its y- and z-components) when heating

the system under no field, after having cooled it under an electric field and then having removed this field

at 10K. The depolarizing temperature is Tdepol = 250 ± 50 K and is indicated by a vertical dashed line.

The left inset of Panel (b) shows an example of the dipolar configuration when the field is removed at 10K.

The right inset of Panel (b) shows the x-component of < u >, but when the system is cooled under no

field. The error bars in Panels (a) and (b) are those arising from computing averages over 30 different

chemical configurations. Panels (c) and (d) show the dielectric susceptibility (as well as its inverse) and

the x-component of the supercell average of the local mode (which is identical to its y- and z-components),

respectively, when random fields are switched off. The left inset of Panel (d) displays the resulting dipolar

configuration at 10K, when random fields are turned off.

14



600 K (a) 400 K (b) 200 K (c)

10K (d)

0 200 400 600 800 1000
0

5

10

15

20

25

30

A
ve

ra
ge

 c
lu

st
er

 s
iz

e 
(d

im
en

si
on

le
ss

)

Temperature (Kelvin)

(e)

Figure 2. (Color online) Snapshots of the local modes’ patterns within a (x, y) plane for different tempera-

tures (Panels a-d) and temperature dependence of the average size of the polar nanoregion (Panel e), when

disordered PMN is cooled under no field. In Panels (a-d), the corresponding temperature is indicated on the

top left and the red lines delimit the PNRs. The error bars in Panel (e) are those resulting from incorporating

30 different chemical configurations into the computation of the averaged PNR size.
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Figure 3. (Color online) Properties associated with anticorrelations and off-center points in disordered

PMN. Panels (a) and (b) show the θx,x(r) correlation between the x-components of the local modes cen-

tered on lead atoms for the r-vectors ling in the (x, y) plane at 10 K for two different realizations of the

disordered PMN system. Panels (c) and (d) display the temperature dependence of the square of the Fourier

transform of the x-component of the local modes’ configurations for different kmax,i points for the atomic

configurations corresponding to Panels (a) and (b), respectively. The three integers, nx, ny and nz in-

dicated in the legends of Panels (c) and (d) index the kmax,i points, that is such k-points are given by

2π
18alat

(nxx+nyy+nzz) for our 18× 18× 18 supercell. Note also that the square of the Fourier transform

of the x-component of the local modes’ configurations is invariant by inversion in the reciprocal space, i.e.

2π
18alat

(nxx + nyy + nzz) and 2π
18alat

(−nxx − nyy − nzz) have precisely the same value of the Fourier

transform.
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