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Abstract: 

The dynamical competition between the chemical mixing forced during energetic particle 

irradiation and thermally activated decomposition can lead to the stabilization of self-

organized steady states in alloy systems comprised of immiscible elements. Continuum 

modeling and atomistic simulations predicted the stabilization of steady-state nanoscale 

compositional patterns for a well-defined range of ballistic mixing frequencies 

normalized by the irradiation-enhanced thermal atomic jump frequencies. Irradiation-

induced compositional patterning has now indeed been observed experimentally, but a 

quantitative comparison has been lacking because models and simulations have relied on 

a simplified treatment with a fixed point defect concentration. We overcome here this 

limitation by using a kinetic Monte Carlo (KMC) code that includes the production, 

recombination, and elimination of point defects at sinks, as well as the chemical mixing 

forced by ballistic replacements. By varying the sink density and their efficiency, the 

temperature range of stabilization of steady-state compositional patterns is investigated in 

model binary alloys for point defect regimes dominated by either recombination or 

elimination on sinks. We find that in the sink regime, compositional patterning can be 

extended to remarkably high temperatures. The results are discussed by analyzing the 

relative diffusivities of A and B species, and their dependencies on temperature. 

 



I. Introduction 

Materials subjected to continuous irradiation by energetic particles constitute 

dynamical systems, whereby the disorder introduced by irradiation, in the form of non-

equilibrium point defects and forced chemical mixing, competes with thermally activated 

relaxation toward equilibrium. This dynamical competition can trigger self-organization 

reactions, such as the formation of voids and bubble lattices in pure metals [1,2], and the 

stabilization of nanoscale compositional patterns in multi-phase alloys [3,4]. The latter 

reaction, which is the focus of this work, has been studied and rationalized using 

atomistic simulations [5,6] and continuum modeling [7]. The dynamical stabilization of 

nanoscale composition patterns results in microstructures with a high density of chemical 

interfaces under irradiation. These interfaces are of interest since they are potential traps 

for point defects. They are therefore likely to limit long range diffusion, and with it, 

degradation of the material from swelling, irradiation creep, or radiation-induced 

segregation and precipitation [2,8-14]. Implementation of this approach requires the 

ability to control and tune the regime where compositional patterns are stable under 

irradiation. In particular, as many advanced nuclear reactor designs call for very high 

temperatures of operation [9,15], a significant challenge is to extend the patterning 

regime to these high temperatures. We demonstrate in the present work that the 

introduction of a high number density of point defect sinks can dramatically extend the 

stability of the patterning regime. 

The influence of sinks on irradiation-induced composition patterning can be 

readily seen using as an example the model proposed by Enrique and Bellon [5,7]. This 

model employs a phase-field-type approach to calculate dynamical phase diagrams, 



representing the most stable steady state under given irradiation conditions. For an 

equiatomic A-B model alloy, comprised of immiscible elements, two parameters control 

the evolution and stability of the composition field. The first parameter γ  characterizes 

the forcing intensity, while the second parameter, R, refers to the characteristic relocation 

distance of atomic mixing events. The forcing intensity is defined as the ratio, 

                                                (1) 

where irrD%  is the chemical diffusion coefficient, typically accelerated by the 

supersaturation of irradiation-induced point defects, and Γ  is the ballistic jump frequency. 

Γ  is directly related to the atomic displacement rate, K0, through 0bKΓ = ,  where b is the 

number of atoms undergoing ballistic relocation per atomic displacement [16][17]. At 

temperatures below the equilibrium critical temperature of the binary alloy Tc, three 

possible steady states were identified in the ( , )Rγ parameter space, as illustrated in 

Figure 1. At large γ , ballistic mixing dominates and forces the system into a solid 

solution, while at low γ  and R values, thermally activated diffusion wins out and 

maintains macroscopic phase separation. At intermediate γ  values, and with R exceeding 

a critical value Rc, a third steady state evolves, where compositional patterns with a finite 

length scale are stabilized. These types of patterns have indeed been observed 

experimentally, initially by Nelson et al. in order-disorder alloys [3], and more recently 

by Krasnochtchekov et al. [18], Chee et al. [4] and Stumphy et al. [19,20] in Cu-base 

immiscible alloy systems. These experiments also support the model prediction that the 

transition from the compositional patterning to macroscopic phase separation, the 1γ  



boundary in Figure 1, should be a first-order type transition, with a discontinuity of the 

characteristic phase separation length scale, from nanometric in the patterning regime to 

macroscopic in the coarsening regime.  

 

Figure 1. Steady-state phase diagram for an equiatomic model immiscible binary alloy. 
R is the average relocation distance of ballistic jumps, and γ  represents the forcing 
intensity (see text and Eq. (1) for definition). R and γ  are given in units of the A and C 
Ginzburg-Landau free energy parameters used in ref. [7]. Adapted from ref. [7]. 

 

The dependence of  with temperature, and thus the temperature range of the 

compositional patterning regime, is dictated by the chemical diffusion coefficient, as 

ballistic mixing is largely independent of temperature. It is well recognized that the 

dependence of the radiation-enhanced diffusion coefficient on temperature and 

displacement rate is a function of the alloy microstructure. This dependence can be 

estimated, for instance, using standard rate theory [21], as illustrated next. For the simple 

case of infinitely dilute alloys, the chemical diffusion coefficient entering in the 

denominator of Eq. (1) can be approximated by the radiation-enhanced solute (B atom) 

γ



diffusion coefficient in an A-atom matrix, . At low temperatures and sink densities, 

recombination is the dominant mechanism of point defect annihilation, and is 

proportional to  [16,21], where  is the vacancy diffusivity. In this 

recombination regime, therefore, the forcing intensity scales as 1/2 1/2
VDγ −∝ Γ , and it thus 

decreases continuously as the irradiation temperature increases. Eventually, γ  will cross 

the 1γ  boundary and the system will undergo macroscopic precipitate growth. If the alloy 

microstructure possesses a sufficiently high density of effective sinks, on the other hand, 

vacancies and interstitials will be lost predominantly at sinks. Accordingly, the solute 

diffusion coefficient scales as 0( )irr
B VD D∝ Γ , and therefore the forcing intensity is 

independent of both Γ  and T. Therefore, if the alloy microstructure can be tailored to 

contain a high density of stable sinks, compositional patterning could be stable at high 

temperatures, as the forcing intensity would never cross the 1γ  boundary. This prediction 

is however quite speculative since diffusion in alloys under irradiation is far more 

complex than assumed in the above discussion, owing to the coupling between chemical 

and defect fluxes [22]. Moreover the sink efficiency of irradiated microstructures is likely 

to evolve, albeit slowly, as precipitate and dislocation densities are affected by the 

irradiation temperature and the displacement rate. In the present work, we overcome 

many of these complexities encountered by rate theory in studying compositional 

patterning by using kinetic Monte Carlo (KMC) simulations. We note that the KMC 

model developed here includes both the effects of radiation-induced ballistic mixing, 

which plays an essential role in stabilizing compositional patterns, and the non-conserved 

character of point defects, which can lead to the redistribution of chemical species under 
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irradiation. As detailed below, this extended model now makes it possible to investigate 

the influences of point defect sinks and radiation-induced fluxes on compositional 

patterning. 

II. Method 

1. Kinetic model and KMC simulations 

The kinetic model employed in the present simulations is a combination of the 

models developed by Enrique and Bellon [5], to study compositional patterning under 

irradiation, and Soisson [23], to study the effects of sinks on radiation induced 

segregation. In particular, the model includes finite-range ballistic mixing, defect 

production, and defect annihilation. The main ingredients of the model are summarized as 

follows (details of the model are given in Appendix A). Atoms are assumed to migrate 

either by thermally activated jumps, mediated by vacancies and interstitials, or by 

athermal, ballistic relocations forced by irradiation. Atoms are located on a perfect, rigid, 

face-centered cubic (fcc) lattice, having periodic boundary conditions. The resulting 

simulation volume is a 1 2 3nn nn nnL a L a L a× ×  rhombohedron whose faces are {111} planes 

of the fcc lattice,  being the nearest neighbor distance of the fcc lattice of 

lattice parameter a. Irradiation induced Frenkel pairs, i.e., vacancies (V) and dumbbell 

interstitials (I), are introduced randomly into the system at a rate specified in units of 

displacements per atom (dpa) per second. The model for defect generation, migration, 

and annihilation on sinks is similar to the one described by Soisson [23], for a bcc lattice. 

For simplicity, we ignore point defect clustering, during both defect production and 

migration. The impact of this approximation will be discussed in Section IV.  

ann = 2a / 2



The internal energy of a given atomic configuration is computed as the sum of 

nearest neighbor pair interactions, including atom-atom interactions (  ) and 

effective atom-vacancies and atom-interstitial dumbbell interactions ( , I 

= AA, AB, BB). These interaction energies determine the cohesive energy of the pure 

elements, the mixing enthalpy of the alloys, and the defect formation energies. Values of 

ijε were selected to give an ordering energy of , yielding a critical 

temperature for phase separation of . The frequency of all thermal jumps is 

determined using standard rate theory, with the activation energy calculated by a broken-

bond model,  

  (1) 

  (2) 

where m and n label the nearest-neighbor sites of point defect (V or I) and atom X, 

respectively. The saddle point energies and  are the interaction energies between 

the atom-defect complex and the surrounding atoms at the saddle point configuration. 

With a predetermined set of pair interactions, the saddle point energy is set by the 

activation energy for the migration of the corresponding defect. We assume here for 

simplicity that these saddle point energies depend on the identity of the jumping atoms, 

but not on their environment. The parametrization of these saddle point energies is 

detailed later in this section. 
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Once created, the point defects migrate on the lattice through thermally activated 

jumps until they either recombine or reach a sink. Sinks are defined as sets of lattice sites 

where the point defects have a pre-defined, non-zero probability p to be absorbed. Perfect 

sinks are characterized by p=1. The ballistic mixing forced by nuclear collisions is 

modeled by randomly exchanging atoms at a certain frequency, which is calculated by 

multiplying the displacement rate,  by b, the number of relocations per displacement. 

Following Enrique et al. [6], the distribution  of relocation distances is chosen to be an 

exponential-decay, exp( r/ R)− , where r is the relocation distance, and the average 

relocation distance, R is set to be . This value is a little larger than the average 

relocation distance determined by molecular dynamics (MD) simulations for Cu-Ag 

alloys, 1.09 ann. We have used this somewhat larger average relocation distance since it 

increases the region of compositional patterning (see Figure 1), and enhances the effects 

illustrated in the present parametric study.  

The kinetic evolution of the system is constructed using the residence-time 

algorithm [24], considering all possible events at each KMC step. After each time step, 

the algorithm checks whether recombination or absorption at sinks should take place 

based on the rules given previously. When recombination or defect elimination at sinks 

occurs, the KMC time is not changed, since we consider these events to be instantaneous.  

The particular thermo-kinetic parameters used in the KMC simulations are listed 

in Appendix A, Table 1. As indicated in Section I, the present modeling work is 

motivated in part by experimental work on dilute Cu-base alloys. The parameters of the A 

metal have thus been chosen to be representative of Cu. We note that Cu has a fairly 
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small atomic volume, and thus for many copper alloys, such as Cu-Ag and Cu-Nb, the 

solute species is oversized compared to Cu atom, making mixed dumbbells and solute 

dumbbells unstable in the Cu matrix. We thus set the formation energies of AB and BB 

dumbbells in A significantly larger than the other formation energies, see Appendix A 

Table 1 for details. Turning next to vacancy-mediated transport, the relative diffusivity of 

the solute and solvent species can be different from alloy to alloy. For example, in a Cu 

matrix, the thermal diffusivity of Ag atom is larger than that of Cu; that for Fe is similar; 

while the diffusivity of Co is smaller [25-27]. In the present work, we thus employ three 

different parameter sets, so as to investigate the effect of the relative diffusivity of solute 

and solvent atoms. These three parameter sets are obtained by varying the saddle point 

energy for the B-vacancy exchange in pure A, see Table 1 in Appendix A. The saddle 

point energy for the A-vacancy exchange in pure A is kept constant, and its value is 

chosen so that the vacancy migration energy in pure A is 0.8 eV, close to the 

experimental value for Cu [28]. As seen in Figure 2, in the dilute limit, the ratio of partial 

diffusivities by vacancy motion, , is less than one, equal to one, and greater than 

one for the parameter set 1, 2, and 3, respectively. Note also that the ratios of partial 

diffusivities depend differently on temperature, either increasing, constant, or decreasing 

with temperature for parameter set 1, 2, and 3, respectively. 

dB
V dA
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Figure 2. Ratio of partial diffusion coefficients of A and B atoms via vacancy diffusion 
mechanism, as a function of temperature, for the three alloy parameter sets (see Table 1 
for definitions). (Color online) 

Two sink geometries are considered in this work, planar and spherical. The first 

situation corresponds to multilayer composites, while the second situation represents 

semi-coherent or incoherent precipitates. Simulations are run until the system reaches 

steady state, as monitored by the structure factor. Typically, for systems with spherical 

sinks, each run is comprised of 800 iterations of  jumps, which corresponds to 

jumps per atom. For selected simulations, we verified that the system reaches a 

unique steady state by using two very different initial configurations, a random solution 

and a single B precipitate embedded in the A matrix.  

We first use the simulation to consider a pure metal, using both planar and 

spherical sinks. This is done to validate the KMC model by comparing the computed 
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defect concentration profiles with analytic results from rate theory. We then examine 

compositional patterning in alloys using spherical sinks. In this case, we use the structure 

factor S(k), which is the Fourier transform of the pair correlation function, to distinguish 

the three possible steady states illustrated in Figure 1 [29]. The simulated microstructures 

are on average isotropic, and it is thus sufficient to consider the spherically averaged 

structure factor S(k):  

  (3) 

In the case of a solid solution, S(k) decreases monotonously with k, following closely a 

Lorentzian shape. In the patterning regime, the maximum of S(k) is located at a finite k 

value, and the intensity of that peak is independent of the size of the system [29,30]. In 

order to obtain a characteristic decomposition length scale, we calculate the first moment 

of S(k). In the macroscopic phase separated regime, S(k) is maximum for the first nonzero 

k point, i.e., the system decomposes at the largest length scale compatible with the 

simulation cell size.  

2. Point defect evolutions from rate theory  

We briefly recall here some key results obtained from rate theory on point defect 

evolutions in pure metals under irradiation [23]. We use these expressions in Section III 

to validate our KMC simulations and to introduce a criterion for the transition between 

defect elimination regimes. In the absence of defect clustering, the evolution of point 

defect concentrations can be described by two reaction-diffusion equations [21] 

1( ) ( ) d
4

S k S
π
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   (4) 

where is the defect production rate of Frenkel pairs, , ,  are rate constants 

for recombination and defect-sink reactions, the subscripts v, i, and s, referring to 

vacancies, interstitials, and sinks. We focus here on steady states, i.e.,

, and consider two simple situations: planar sinks and spherical sinks.  

We first consider in Section III the case of planar sinks, which is relevant for 

multilayered samples. Demkowicz and coworkers have used this geometry to evaluate the 

effect of imperfect sinks on both the average defect concentration and the concentration 

profile [31]. In this case, there are no distributed sinks, and thus the  and  terms 

are set to zero and the boundary conditions become  

   (5) 

where and are the equilibrium vacancy and interstitial concentration. For an imperfect 

sink, the sink efficiency η  is defined as [32]  

   (6) 

where  and  are the defect flux into the interface for an imperfect and a 

perfect sink, respectively. Solving the simplified governing equations numerically with 

this new imposed boundary conditions, Demkowicz et al. [31] obtained the average 

defect concentrations within the entire cell and concentration profiles along the domain. 
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III. Results 

III.1. Defect regimes in irradiated pure metal 

We first reconsider the case of a layered structure to test our KMC model. We 

thus introduce a planar sink on one of the {111} planes terminating the rhombohedral 

simulation cell; owing to the periodic boundary conditions, this represents a layered 

geometry. The results presented below are for a system size of 200 200 96× × ; additional 

results with different system sizes are given in Appendix B. At T = 406 K, which 

corresponds to ~ 0.25 , a series of simulations was carried out with different absorption 

probabilities p, simulating sinks of different efficiencies. The defect production rate was 

set to . The resulting steady state vacancy concentration profiles are 

compared in Figure 3 with the solutions to the reaction-diffusion Eq. (4). Note that in the 

calculated profiles the sink efficiency  is not fitted, but it is instead obtained directly 

from the KMC simulations using Eq. (6) and then used as the flux boundary condition for 

solving Eq. (4). The profiles illustrate the expected result that less efficient sinks lead to 

higher vacancy concentrations. The flat portion of the profiles away from the sinks 

corresponds to a region where the dominant mechanism for defect elimination is 

recombination. 

cT
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Figure 3. Vacancy concentration profile for a planar sink geometry as a function of sink 
absorption probability, p.  is the sink efficiency measured in the KMC simulation and 
used as input for rate theory calculation. Symbols are the KMC simulation results; solid 
lines are the results of rate theory (Color online) 

 

The results shown in Figure 3, along with others using different layer thicknesses 

(see Appendix B) clearly illustrate that the steady-state vacancy concentration, and thus 

the sink efficiency as defined by Eq. (6), is a function of both the sink absorption 

probability p and the distance between sinks. As expected, the sink efficiency η  indeed 

varies with the layer thickness for a given absorption probability p. The sink efficiency η  

defined by Eq. (6), therefore, is not an intrinsic property of a sink, like p, as its value 

depends on the layer thickness [31]. 

η



We next consider whether defects annihilate primarily by recombination or at 

sinks, as this will help in understanding the compositional patterning behavior, namely, 

its dependence on temperature and irradiation flux.  The criterion that is often used in rate 

theory to make this determination is based on the dependence of atomic diffusion 

coefficients with temperature or displacement rate [21]. We suggest here a simpler 

approach, one that considers only the fraction of point defects eliminated by 

recombination; this quantity is readily available in KMC. 

A set of simulations was thus carried out at various temperatures, keeping the 

displacement rate constant, to determine atomic diffusion coefficients and the fractions of 

vacancies annihilated by recombination with interstitials. The atomic diffusion coefficient 

was obtained as the product of the steady-state vacancy concentration measured in the 

KMC simulations and the vacancy diffusion coefficient [21], the latter being directly 

calculated using the parameters given in Table 1. In this calculation, and in the following 

ones, we ignore the effect of correlation factors on vacancy and atomic diffusion since 

they do not vary significantly in the temperature range examined. At low temperatures, 

the A diffusion coefficient increases as temperature increases, see Figure 4 (a) and (b), 

with an apparent activation energy of 0.4 eV, equaling half of the vacancy migration 

energy, in agreement with rate theory for the recombination regime. At higher 

temperatures, the increase of the atomic diffusion coefficient plateaus, which in rate 

theory corresponds to the sink elimination regime. As expected in this regime, the plateau 

value scales linearly with the displacement rate (results not shown here). The transition 

temperature between the two defect regimes was taken as the point where the two 

asymptotic behaviors intersect, as illustrated in Figure 4. The KMC measured 



recombination fractions at this crossover are 28.3% and 32.1% for perfect sinks (p = 1) 

and imperfect sinks (p = 10-3), respectively. One can also estimate the intersection of 

these asymptotic regimes by using the steady-state solutions of Eq. (4) for uniform defect 

concentrations, i.e., without the Laplacian terms, to calculate the diffusion coefficients 

under irradiation. This procedure yields a cross-over recombination fraction of 

, thus in very good agreement with the KMC results. The rate theory 

calculation suggests that the recombination fraction at the cross-over should be 

independent of the sink geometry. Results obtained for the case of spherical sinks, 

detailed in Appendix C, yield a recombination fraction of ≈ 29%, thus supporting the 

above analysis. In Section III.2, we will thus use a recombination fraction of 30% as the 

boundary separating the recombination and sink-limited regimes.  

( )5 1 4 0 309/ .− ≈



(a)  

(b)  

Figure 4. A atomic diffusion coefficient and the KMC measured recombination fraction 
as a function of temperature for planar sink geometry. (a) perfect sinks, p = 1.0 (b) 
imperfect sinks, p = 0.001. The dash-dot lines are the asymptotic lines of the 



recombination and sink elimination regimes; their intersection corresponds to the 
transition point. (Color online) 

 

III.2. Effect of sinks on compositional patterning in irradiated alloys 

We next examine the effect of sinks on compositional patterning in immiscible 

alloys. The solute concentration selected for this study is 12 at.% B, as it is high enough 

compared to the solute solubility under irradiation to result in the formation of 

precipitates that are easy to identify and characterize, but low enough to prevent the 

formation of connected precipitates. We begin with patterning in the recombination 

regime, and then turn to the sink elimination regime. 

III.2.1. Patterning in the recombination regime 

 

Figure 5. Steady state phase separation length scale as a function of temperature for three 
parameter sets for the low sink strength case. The length scale is given by the inverse of 



the first moment of structure factor, in unit of a . The largest possible phase separation 
length scale compatible with the 643 simulation cell equals to 64 / (2 3 5.) 88a aπ ≈ . In 
the figure, for points at high temperatures, the length scale of the circled data points is 
limited by the size of simulation cell, and would be larger with a larger simulation cell. 
(Color online) 

 

In this section, we consider a 643 alloy with one spherical sink. This yields a 

relatively low sink density, .  We also choose a low absorption probability p 

= 0.001 so that recombination is the dominant mechanism for point defect annihilation. 

Specifically, the recombination fraction will be greater than 90% for all parameters used 

in this sub-section. As irradiation temperature is increased while keeping the 

displacement and the ballistic mixing rates constant, the solute diffusion coefficient 

increases, and accordingly the value of the forcing parameter γ decreases. We expect, 

therefore, that as the temperature increases the steady-state microstructure will first 

undergo a transition from solid solution to compositional patterning, and then from 

compositional patterning to macroscopic phase separation. In order to study the effect of 

alloy properties on compositional patterning, three different sets of parameters are used, 

leading to three different relative diffusivities between solute and solvent atoms. For 

parameter sets 1, 2, and 3, the partial diffusion coefficient of B by vacancy diffusion is 

smaller, equal to, and larger than that of A, respectively. The number of ballistic 

relocations per displacement, b is fixed at 20 for each case, a value typical of light to 

medium mass ion irradiations [33], and the displacement rate is set to dpa/s. The 

evolution of the steady-state decomposition length scale is plotted in Figure 5 as a 

function of the irradiation temperature. For all three sets of parameters, the steady-state 

structure factors shows that the systems undergo a transition from the compositional 
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patterning regime to the macroscopic phase separation regime as temperature increases. 

The transition temperatures are similar for the three parameter sets, as they all lie 

between 580 K and 638 K. Figure 6 shows the steady state structure factors and 

microstructures for parameter set 3 near the transition. At 522 K, the structure factor has 

a peak at finite wave vector, characteristic of the compositional patterning regime. At 580 

K the structure factor has a maximum at the first k point, however, its intensity is low 

compared to that of a macroscopically phase separated system and it does not increase 

with time. This suggests that the system still lies within the patterning regime. In contrast, 

the structure factor is very large on the first k point at 638 K, suggesting macroscopic 

phase separation. Direct visualization of steady-state microstructures provides further 

support for these conclusions. In particular, at 638 K, the microstructure contains only 

one precipitate, see Figure 6 (d), and it is thus decomposed at the largest scale allowed by 

the size of the simulation cell; in contrast, at 522 K and 580 K, multiple finite size 

precipitates are observed in (b) and (c). Noteworthy in these figures are small A 

precipitates inside B precipitates. Such microstructures, referred to “cherry-pit” structures, 

were reported previously both in experiments [19,20] and in KMC simulations [34]. This 

structure will not be discussed here in further detail, but the interested reader is referred 

to the above references.  



 

Figure 6. (a) structure factor evolution near the transition temperature for parameter set 3, 
b = 20. The wave vector k is given in unit of 1 / a . (b) microstructure at 522 K (b) 
microstructure at 580 K (b) microstructure at 638 K. Red: A, blue: B. (Color online) 

III.2.2.  Patterning in the sink elimination regime 



 

Figure 7. Phase separation length scale as a function of temperature for three parameter 
sets for high sink strength case. p = 1.0, 8 perfect sinks in the simulation cell. The length 
scale is given by the inverse of the first moment of structure factor, in unit of a . The 
largest possible phase separation length scale compatible with the 643 simulation cell 
equals to 64 / (2 3 5.) 88a aπ ≈ . In the figure, for points at high temperatures, the length 
scale of the circled data points is limited by the size of simulation cell. (Color online)  

Patterning in the sink l imited regime is quite different. This regime is of potential 

applied interest as it can extend the temperature range of patterning, as discussed in the 

Introduction. In order to favor annihilation of point defects at sinks, we increase the sink 

density by a factor 8, to , and employ perfect sinks, i.e., p = 1. The high sink 

density and efficiency result in the sink elimination regime being dominant for irradiation 

temperatures above ≈ 400 K. The number of ballistic relocations per displacement, b is 

set to be 20, 40 and 175 for parameter set 1 to 3. This setting leads to similar phase 
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separation length scale at lower temperatures for the three cases, and allows us to 

examine the patterning evolution for all three cases at the same temperature range. 

In Figure 7, the phase separation length scale is plotted as a function of 

temperature. The precipitate evolutions are seen to be distinctively different for the three 

alloys, and in some cases they depart from the simple predictions obtained using rate 

theory for estimating the forcing parameter . For parameter set 3, i.e., > 1, the 

evolution is close to that predicted by this simple approach, as patterning is extended to 

high irradiation temperatures and the decomposition length scale (or precipitate size) is 

nearly independent of the irradiation temperature in the range 500 K – 800 K. The slight 

decrease of the precipitate size at 800 K is due to an increase in solute solubility at this 

high temperature. For parameter set 2,  = 1, the system also remains in the 

patterning regime, however, the steady-state size increases continuously with temperature. 

For parameter set 1, the phase separation length scale increases with temperature, with 

the system undergoing a transition from patterning to “large-scale” phase separation at ≈ 

700 K, as described below. 

Direct visualization of the steady state configurations reveals important additional 

differences between the three alloys. Figure 8 shows that at 580 K B-rich precipitates 

form predominantly around the sinks for parameter set 1, but away from the sinks for 

parameter sets 2 and 3. The different morphologies will be rationalized in the Discussion 

section based on the coupling between solute fluxes and defect fluxes. We note that, 

cherry-pit precipitate structures are also observed in this regime (Figure 6), especially in 

the larger precipitates. Lastly, the microstructures for parameter set 1, see Figure 8 (a-d), 

suggest a transition to a large-scale phase separation regime between 580 K and 696 K. 
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The characteristic length-scale of this phase separation could be either the size of the 

system, as in the macroscopic phase separation identified in the recombination regime in 

section III.2.1, or it could be determined by the separation distance between sinks. A 

definitive answer to this question, however, would require much larger simulation 

volumes so as to vary separately the simulation cell size and the sink separation distance. 

These simulations are beyond our present capabilities and therefore we defer additional 

discussion of this point to a later time. 



 

Figure 8. Steady state microstructures in (111) planes containing sinks or half-way 
between sinks for three parameter sets: (a) and (b) parameter set 1 at 580 K, (c) parameter 
set 1 at 696 K, (d) parameter set 1 at 812 K, (e) and (f) parameter set 2 at 580 K, (g) and 
(h) parameter set 3 at 580 K. (a), (c), (d), (e) and (g) are (111) cuts in a plane containing 



the sinks; (b), (f) and (h) are (111) cuts half-way between the sinks. Red: A atoms, blue: B 
atoms, yellow: sink sites (Color online). 

 

IV. Discussion 

The main objective of this work has been to investigate the effect of the non-

conservative character of point defects on irradiation-induced compositional patterning, 

and in particular on the range of irradiation temperatures over which patterning can be 

observed. We investigated the possibility of an extended stability of compositional 

patterning in the sink-dominated regime using atomistic simulations, so as to describe on 

the same footing chemical and point defect evolutions. More specifically, we employed 

kinetic Monte Carlo simulations relying on a kinetic model that combines finite range 

chemical mixing as modeled by Enrique et al. [5,6], with the creation, recombination and 

sink elimination of point defects, following the procedure proposed by Soisson [23]. This 

model was first validated by considering the case of a pure metal, by comparing diffusion 

coefficients to the values predicted from rate theory for systems with planar or spherical 

sinks. The agreement between the two approaches is very good, and the transition from 

the sink-dominated regime at high temperature to the recombination-dominated regime at 

low temperature takes place when the recombination fraction reaches ≈ 30 %, in 

agreement with rate theory. 

The KMC simulations were applied to several model immiscible binary alloys, 

using irradiation parameters that allowed stabilization of compositional patterning at 

steady state [5,7]. The domain of stability of compositional patterning was investigated as 

a function of irradiation temperature with sink density and efficiency such that the point 



defect evolution is controlled either by recombination or by elimination on sinks. In the 

recombination regime, the three alloys considered for the present KMC simulations 

showed a transition from compositional patterning at lower temperature to macroscopic 

phase separation at higher temperature. This transition is expected within the Enrique-

Bellon model since, in the recombination regime, the forcing intensity should scale as

1/2 1/2
0 VK Dγ −∝  , and therefore increasing the irradiation temperature should lead to a 

continuous decrease of γ . Eventually the system crosses the 1γ  boundary in Figure 1. 

The transition temperatures from patterning to macroscopic phase separation are similar 

for the three alloys, at least to within the 60 K temperature steps used in this study. This 

small shift, if any, is consistent with a transition temperature shift of ≈ 30 K calculated 

from the change in diffusion coefficient values between the alloy parameter set 1 to set 3. 

One effect that is however not included in the Enrique-Bellon model is the composition 

dependence of the interdiffusion coefficient. The present study indicates that the larger 

the solute diffusion coefficient, as is the case with parameter set 3, the larger the steady 

state size of the precipitates. This is a first illustration of the important role played by 

alloying effects.  

In the sink elimination regime, a more intriguing situation is expected since, using 

rate theory for calculating atomic diffusion as function of the irradiation parameters, the 

forcing parameter should now scale as 0 0
0( ) ( )VK Dγ ∝ . This scaling suggests that the 

forcing parameter should be independent of both the irradiation temperature and 

displacement rate, and result in an unlimited extension of the domain of stability of 

compositional patterning at higher temperatures, until equilibrium vacancies come into 

play. 



The KMC simulations indeed indicate that in the sink-dominated regime, the 

phase separation length scale has a weak temperature dependence, especially for 

parameter sets 2 and 3, extending the compositional patterning regime to ~ 800 K. The 

maximum patterning temperature in the simulations is in fact limited by the increase in 

solute solubility at these high temperatures, which leads to a reduction in the precipitate 

volume fraction (for the parameters used in the simulations, thermal vacancies outnumber 

point defects created by irradiation at temperatures above ~700 K, but, for simplicity, 

they were not included). In the case of parameter set 1, a transition from compositional 

patterning to another decomposition regime, with a coarser characteristic length scale, 

took place between 638 K and 700 K, even though the point defect kinetics remained in 

the sink elimination regime. This appears to contradict the prediction from rate theory. 

Visualization of the microstructures, Figure 8(a-d), suggests, however, that the scale of 

decomposition may be dictated by the separation between sinks, rather than the system 

size. The precipitation morphology for the three alloy parameter sets is, in fact, 

influenced by the inverse Kirkendall effect, as detailed below. 

The three alloys considered in the simulations are such that  , and 

therefore the permanent interstitial fluxes to the sinks favor solute depletion near the 

sinks in all three cases. In contrast, vacancy fluxes and the inverse Kirkendall effect favor 

solute segregation on sinks in parameter set 1, is neutral for parameter set 2, and favors 

solute depletion for parameter set 3. Overall, it is thus expected that solute precipitation 

should preferentially take place on the sinks for parameter set 1, and between sinks for 

parameter sets 2 and 3. This is indeed observed at 580 K, as seen in Figure 8. Note that 

owing to the formation of cherry-pit structures and to irradiation-induced kinetic 

DB
i < DA

i



roughening of interfaces the B-rich precipitates develop non-equilibrium morphologies. 

At higher temperatures, 700 K and above, the precipitation morphology for parameter set 

1 is different from the one observed at 580 K in the sense that precipitates are only found 

near the sinks. This transition from a finer to a coarser decomposition scale for parameter 

set 1, but not for parameter sets 2 and 3, is favored by the spherical geometry of the sink. 

The segregation of B atoms around the sinks for parameter set 1 is indeed concentrated 

on a smaller volume than the one for parameter sets 2 and 3, raising the local solute 

concentration to much higher values, thus promoting the growth of the precipitates that 

formed on the sinks, at the expense of the ones that formed away from the sinks. As 

mentioned in Section III.2.2, the exact nature of the phase separation for parameter set 1 

at 700 K and above, see Figure 9, cannot be unambiguously determined with the 

simulation volumes employed in this study. Further work will be needed to determine 

whether the phase separation length scale is set by the sink separation distance, or by the 

system size.  

Returning now to the compositional patterning regime, the three parameter sets 

produced distinct evolutions of the decomposition length scale. It is nearly independent 

of temperature for set 3, while it increases slightly for set 2 and significantly for set 1. 

These differences can be rationalized by considering the effect of alloying parameters on 

the forcing parameter . As the ballistic jump frequency was kept constant in the 

simulations, the characteristic phase separation length scale should be determined by the 

temperature dependence of  (note that the number of forced relocations per 

displacement, b, has been adjusted so that all three parameter sets lead to a similar 

patterning length scale at low temperature; we also ignore the role of interstitials since 

γ

DB
irr



they have little influence on the diffusion of B atoms). The thermal solute diffusion 

coefficient in alloys can be expressed as the product of the partial diffusion coefficient of 

B atoms via vacancies and the vacancy concentration, i.e., . It is advantageous 

to rewrite  as  

   (7) 

The matrix is highly diluted in B, and thus the defect regimes should be similar to those 

found in pure A. Indeed, the vacancy diffusion coefficient can be written as

, where and are the vacancy partial diffusion coefficient via 

exchanging with A and B atoms, respectively. Note that,  and , since 

either jump involves the exchange of a given atom-vacancy pair [14]. In the matrix where 

 is small, we can thus approximate  as A
V VD d≈ . Therefore, in the sink elimination 

regime,  should be approximately constant, and  is mainly determined 

by the ratio of two partial diffusion coefficients, . This ratio was calculated as a 

function of temperature in the dilute limit, using the standard five frequency model [35]. 

As shown in Figure 9(a) the partial diffusion coefficient ratio displays different 

temperature dependencies for the three sets of parameters. For parameter set 1, the ratio 

increases with temperature, resulting in a larger , and thus smaller and larger phase 

separation length scale. This first effect dominates the evolution for parameter set 1. For 

parameter sets 2 and 3, however, this analysis alone cannot fully explain the evolutions 

reported in Figure 7. An additional effect that contributes to these evolutions is the fact 
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that point defects can be trapped at the chemical interfaces in a phase separated alloy, 

lowering the concentration of “freely migrating” point defect [36]. This trapping effect 

introduces another temperature dependence into CV and thus . To incorporate this 

effect, we measured in a set of separate KMC simulations the B diffusion coefficient in 

an infinitely dilute A-B alloy with the same sink density and sink efficiency. Also, we 

estimated the fraction of “freely migrating” point defects in the concentrated A88B12 alloy 

by measuring the fraction of time that the vacancy has less than three B nearest neighbors. 

This analysis suggests that the fraction of “freely migrating” vacancies have slightly 

different temperature dependencies for parameter sets 1, 2, and 3 of, as shown in Figure 

9(b). Finally, by combining the results from both effects, the relative partial diffusion 

coefficients and the trapping of vacancies at chemical interfaces, we obtain a more 

accurate estimation of in the matrix of the concentrated alloy. Figure 9 (c) shows that, 

for parameter set 1 and 2,  increases monotonically with temperature, while for 

parameter set 3, first increases, then reaches a plateau, and lastly drops slightly at the 

highest temperatures. These temperature dependencies for DB thus offer a clear 

rationalization for the dependence of the compositional patterning length scale with 

temperature reported in Figure 9 for the three alloy parameter sets. 
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(a)  

(b)  



(c)  

Figure 9   (a) B tracer diffusion coefficients for three sets of parameters, measured by 
KMC in a dilute limit (b) “freely migrating” vacancy fraction for three sets of parameters, 
measured by KMC in the A88B12 alloy (c) estimation of B diffusion coefficients for three 
sets of parameters in the A88B12 alloy after considering the “freely migrating” vacancy 
fraction (Color online) 

The present KMC simulations relied on several, often used, simplifications [5,37], 

however they deserve some comment. The assumption of a rigid lattice makes it possible 

to reach steady state for fairly large simulated volumes, and while stress effects can 

influence point defect and atomic diffusion, it is expected that the key conclusions 

regarding the sink effects on compositional patterning would remain valid. Another 

simplification was ignoring the collective nature of atomic motion in displacement 

cascades [38]. Past modeling [5,7,18,34,39] and experimental works [4,18,19] indicate, 

however, that for modeling compositional patterning in moderately immiscible alloy 

systems such as Cu-Ag, Cu-Co or Cu-Fe the  prevailing feature of cascades is the finite-



range of ballistic relocation distances. Following the detailed atomic modeling for 

Cu50Ag50 [6,39] this finite range mixing was modeled here as an exponential distribution 

with a decay length R. Another simplification of the present work is the neglect of defect 

clustering, either directly in displacement cascades or through the diffusion and reaction 

of point defects. These defect clusters should act as sinks and therefore they favor the 

stabilization of compositional patterning under irradiation. In addition, the sinks are 

modeled as geometrical sites and have no thermodynamic or strain interactions with 

solute atoms. In actual alloy systems, if present, these interactions could modify the sink 

efficiency of the nanoparticles and the stability of solute precipitates. This effect could be 

particularly important when solute precipitates form at the sinks, as observed for instance 

with parameter set 1, see Figure 8 (a,b). One more point is that the B-rich precipitates 

themselves, if semi-coherent or incoherent with the A-rich matrix, will provide sites for 

point defect elimination, promoting even further the stabilization of compositional 

patterning. One last point is that, we assume that the sink structure is stable for the whole 

range of irradiation temperatures investigated. In the case where nanoparticles serve as 

defect sinks, these nanoparticles could coarsen at high irradiation temperatures, and this 

would affect the sink strength. In particular, coarsening would result in a decreased 

nanoparticle number density and possibly a transition of the nanoparticle/matrix 

interfaces from semi-coherent to incoherent. The former effect would reduce the sink 

strength, while the latter could increase the sink efficiency of the interfaces. As a result, 

the characteristic length scale of the compositional patterns could change over large-dose 

irradiations. It will therefore be important to test experimentally the present simulation 

results and predictions. We note that progress in developing new nano-composite alloys, 



offers a means to  introduce a high density of stable small spherical sink particles in a 

matrix, either by severe plastic deformation and annealing, as in nano-ODS steels [9], or 

by intra-cascade precipitation during low temperature irradiation, as demonstrated in Cu-

W and Cu-Mo alloys [4,40,41].  

V. Conclusion 

In this work we investigate the effect of point defect regimes under irradiation on 

compositional patterning in model binary alloys. For that purpose, we extended existing 

KMC codes to allow for point defect production, recombination, and elimination on sinks, 

as well as irradiation-induced chemical mixing. The irradiation of pure metals is first 

used to validate and calibrate the KMC simulations using standard predictions from rate 

theory for the case of microstructures with planar and spherical sinks. This comparison 

provides a simple yet robust criterion, based on the fraction of point defects annihilated 

by recombination, to distinguish the steady-state point defect regimes of recombination 

and sink elimination. In the case of a model immiscible A-B alloy, the effect of point 

defect regimes on the temperature range of stability of irradiation-induced compositional 

patterning is then investigated using spherical sinks with various density and defect 

absorption efficiency. In the recombination regime, increasing irradiation temperatures 

leads to a continuous increase in steady-state B-rich precipitate sizes, and eventually to a 

transition to macroscopic phase separation, as expected from the Enrique-Bellon model. 

In the sink elimination regime, however, compositional patterning can be extended to 

much higher temperatures, in particular when the relative diffusivities of A and B atoms 

favor the depletion of B atoms at sinks via inverse Kirkendall effect. This stabilization of 



the compositional patterning regime to high temperature is rationalized by the weak 

temperature dependence of the forcing parameter in the sink-dominated regime.  
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Appendix A. Details of the KMC model and thermo-kinetic parameters  

Irradiation induced Frenkel pairs are generated by first choosing two atoms, X and Y, 

separated by a distance . A vacancy is then created on the lattice site initially occupied 

by atom X, by moving X to form a dumbbell with Y. The distance  could be chosen to 

reproduce physical distributions, but here is chosen as a random distance within the 

simulation cell, i.e., point defects are created uniformly in the cell. This choice is made so 

that the production rates are equivalent to those used in rate theory modeling. 

Recombination occurs when a vacancy and an interstitial come closer than a critical 

distance, , which corresponds to a recombination volume of 160 Ω (Ω is the 

atomic volume), similar to values reported for Cu and other fcc metals [21]. During a 

recombination event, one atom of the interstitial dumbbell is randomly chosen and moved 

into the vacancy site, the other atom of the dumbbell remaining at the original dumbbell 

site. In the case of the elimination of a vacancy on a sink site, an atom is assigned to the 

site originally occupied by the vacancy. Following Soisson [23], we introduce a 

‘reservoir’ of A and B atoms, which ensures the numerical stability of the program, and 

the chemical composition of the overall system ‘simulation cell + reservoir’ is conserved. 

xyr

xyr

xyr

3rec nnd a=



When a dumbbell interstitial is absorbed at a sink site, one atom of the dumbbell is 

randomly chosen and moved to the reservoir. When a vacancy is absorbed at a sink site, 

an atom is randomly chosen from the reservoir to replace the vacancy. In practice, the 

reservoir size (0.1% of the total number of atoms in the simulation cell) is very small 

compared to the size of the simulation cell and it has no significant effect on the results. 

As reviewed by Dederichs et al. [42] the dominant mechanism of dumbbell interstitial 

diffusion in fcc alloys is by isotropic diffusion of <100> dumbbells in three dimensions. 

We model these interstitial dumbbells by placing two atoms on one fcc lattice site and 

allowing either atom of the pair to jump to any of the 12 nearest neighbor sites. This 

corresponds to the case of a high rotation frequency of the interstitial dumbbells, for 

which the directionality of the dumbbells can be ignored [42]. With such approximation, 

during the exchange of an atom and a mixed dumbbell, two types of exchange occur with 

equal probabilities:  and . 

The parameters of the kinetic model are related to physical quantities through the 

following relationships:  

• homo-atomic pairwise interactions are related to cohesive energies for A and B 

metals through  and , where Z is the nearest-neighbor site 

coordination number (Z = 12 for fcc structure). 

• hetero-atomic interactions are defined through the ordering energy, defined as 

, and a positive value of  results in an immiscible alloy at low 

enough temperatures, which will be the case in all alloys considered in this study. 

AB A A AB+ → + AB A B AA+ → +

2
A
coh AA

ZE ε=
2

B
coh BB

ZE ε=

2AB AB AA BBω ε ε ε= − − ABω



• atom-defect effective interaction energies are used to reproduce realistic values of 

defect formation energies, which are defined as and 

 (X = A, B; I = AA, AB, BB) for vacancies and various interstitials, 

respectively, following  the procedure introduced by Doyama and Koehler [43]. 

The thermo-kinetic parameters used in the KMC simulations are listed in Table 1.  

The pre-exponential factor for all thermal jumps is set to be . The A-V saddle 

point energy was set so that the vacancy migration energy in the matrix is 0.8 eV, slightly 

higher than its value in Cu [28]. Three distinct parameter sets are considered, see in Table 

1, with different relative diffusivity of solute and solvent atoms, by varying the B-V 

saddle point energy. For saddle point energies involving interstitials, the A-AA saddle 

point energy is set to result in an interstitial migration energy of 0.37 eV, which is lower 

than that of the vacancy, as found in Cu and other pure metals [44]. Although the 

particular value of the interstitial migration energy we use in this study does not exactly 

match the experimental value for Cu system, we note that since the intersitital migration 

energy is still significantly lower than that of the vacancy, it has little effect on the main 

results. Other saddle point energies involving interstitial jumps are set equal for 

simplicity, but higher than that for the A-AA exchange. These settings capture the 

diffusion characteristics of binary alloys with oversized solute atoms, i.e., where solute 

atoms are mainly transported via vacancy mechanism. 

2
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Table 1 Thermo-kinetic parameters used in the KMC simulations. See text for definition of 
variables. 

  , , , ,  , 

-4.34eV -4.34eV
1.28eV 3.24eV 5.90eV 

Parameter set    (X,I combination other than A,AA)

1 

2 

3 

 

-10.22eV 
-9.83eV 

-9.88eV 

-9.96eV

 

-8.69eV 

 

-8.26eV 

 

Appendix B. Sink absorption probability and sink efficiency 

For the case of planar sinks, we study here the relationship between the sink 

absorption probability p and the sink efficiency η , as defined by Eq. (6). Simulations 

were run at the same temperature and displacement rate used in Section III.1.1, but for 

system sizes of 3200 200 L× ×  , with L3 = 12 to 256. The resulting steady-state vacancy 

concentration is plotted as a function of the layer thickness, assuming different absorption 

probabilities, see Figure 10. For a perfect sink with absorption probability , the 

vacancy concentration varies as the square of the layer thickness when the thickness is 

small, as sink elimination dominates over recombination. For a poor sinks, i.e. with small 

p values, the vacancy concentration does not depend much on the layer thickness, as 

recombination always dominates. 
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Figure 10 KMC simulation measured average vacancy concentration in the layer with 
constant absorption probability p. Irradiation temperature is 406 K. (Color online) 

 

For comparison, we also calculated using rate theory the vacancy concentration as a 

function of film thickness with constant sink efficiency , see Figure 11. One notices 

that the shape of the constant p curves in Figure 10 and the constant  curves in Figure 

11 are different. Although for perfect sinks, i.e., or or completely ineffective 

sinks, i.e., or , the two descriptions are equivalent, for intermediate sink 

efficiencies, the two descriptions are very different. The description relying on the defect 

absorption probability p provides an intrinsic characteristic of that sink. On the contrary, 

the sink efficiency defined through Eq. (6) is affected by the distance between sinks, and 

the possible presence of other type of sinks.  
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Figure 11 Rate theory calculated average vacancy concentration in the layer with constant 
sink efficiency (Color online) 

The difference between the two descriptions is more directly seen by plotting the 

sink efficiency η , measured during the KMC simulations, versus the sink absorption 

probability p, for various layer thicknesses, see Figure 12. The relationship between η  

and p can be highly non-linear. For p values below ≈ 1%, the η  values obtained for 

different layer thickness deviate significantly from each other. For large thicknesses, near 

the center of the layer, recombination is the dominating mechanism for defect 

annihilation, and the values reflect fairly accurately the quality of the sink. For small 

layer thicknesses, however, the two boundaries of the layer can no longer be considered 

as isolated sinks, and point defect annihilation on one sink is affected by the presence of 

η



nearby sinks (here the periodic image of the first sink). Therefore, the absorption 

probability p is a more physical parameter for describing the quality of the sink. We note 

also that the present description is equivalent to using a reaction rate that would 

characterize the reaction and elimination of the point defects with the sink structure. 

 

Figure 12  as a function of p for different layer thickness (Color online) 

 

Appendix C. Defect annihilation regimes for spherical sinks 

We present here simulations evaluating the transition from recombination to sink 

elimination for the case of spherical sinks, thus extending the results and analysis given 

in Section III.1. Such sinks are for instance found in microstructures containing semi-

η



coherent or incoherent spherical precipitates. In order to test the effect of different sink 

densities on sink efficiency, two sets of simulations were carried out with 1 or 8 spherical 

sinks, uniformly embedded in a simulation cell, keeping the volume fraction 

of sink sites fixed at ~0.1%, and the absorption probability at . The corresponding 

sink densities, and , are comparable to experimental 

observations for some nano-ODS steels developed for nuclear applications [45,46]. The 

transition temperature from recombination to sink elimination is lower for the higher sink 

density, and, the diffusion coefficient in the sink regime is decreased by a factor 4, see 

Figure 13. This is in agreement with rate theory, since, for a fixed fraction of sink sites, 

the sink strength scales as ,  being the number of sink particles in the 

simulation cell. Again, the recombination fractions at the transition point from 

recombination to sink elimination, 29.9% and 27.9% for the low and high sink number 

density respectively, agree well with the ≈ 30.9% value predicted by rate theory. 
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Figure 13 A atomic diffusion coefficients as a function of temperature for two sink 
densities, measured by KMC and calculated using rate theory (Color online) 
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