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Optimal working points or “sweet spots” have arisen as an important tool for mitigating charge
noise in quantum dot logical spin qubits. The exchange-only qubit provides an ideal system for
studying this effect because Z rotations are performed directly at the sweet spot, while X rotations
are not. Here for the first time we quantify the ability of the sweet spot to mitigate charge noise by
treating X and Z rotations on an equal footing. Specifically, we optimize X rotations and determine
an upper bound on their fidelity. We find that sweet spots offer a fidelity improvement factor of at
least 20 for typical GaAs devices, and more for Si devices.

I. INTRODUCTION

A great challenge in quantum computation is to per-
form prescribed operations with very small error rates.
Logical qubits are important for achieving this,1 since
they are fundamental for quantum error correction.2

Moreover, logical qubits can have symmetries that give
rise to so-called sweet spots, at which the effects of noise
are suppressed.3 Several logical spin qubits have been
proposed for quantum dot architectures.4 Here, we con-
sider the exchange-only logical qubit,5 formed of three
electrons in a triple dot,6–8 as illustrated in Fig. 1(d).
This qubit has the advantage that it has the potential
to be very fast, since all operations can be implemented
without spatially varying magnetic fields.

The effects of charge noise can never be fully sup-
pressed, even near a sweet spot.9 In this paper, we quan-
tify the effect of sweet spots on gate fidelities by perform-
ing theoretical simulations of pulsed gate operations in an
exchange-only qubit. The sweet spot in this device occurs
at the symmetry point shown in Fig. 1(b), where the de-
tuning parameters ε = εM = 0, and the charge-induced
fluctuations of the detuning10 are suppressed, to leading
order. (Charge noise in the tunnel coupling11 is not sup-
pressed at this point, but is not thought to be a dominant
noise source.12) As consistent with recent experiments,13

Z-rotations are performed at the sweet spot, while X-
rotations are obtained by pulsing away from this point.
In principle, the different rotations can be turned on and
off independently. However, in practice it may be neces-
sary to turn on the exchange interactions and magnetic
field at all times, to suppress leakage into the non-logical
sector of the Hilbert space.14,15

The exchange-only qubit provides an ideal platform
for assessing the effect of sweet spots, since all gate op-
erations are generated by the same physical process (the
exchange interaction).5,16,17 The only difference between
X and Z-rotations is their proximity to the sweet spot.
The fidelities of these operations can therefore be used to
quantify the effectiveness of the sweet spot for mitigat-
ing charge noise. This is in contrast with logical qubits
where the different rotation axes correspond to different

physical processes (e.g., exchange vs. magnetic couplings
in singlet-triplet qubits).18,19

In Ref. 15, we provided a detailed account of magnetic
noise from the Overhauser fields of nuclear spins on the
decoherence of an exchange-only qubit. Here, we sim-
ulate realistic gate operations including quasistatic ran-
dom Overhauser fields20 and charge noise.14 In certain
regimes we find that the main limit on the gate fidelities
arises from the Overhauser fields, as consistent with ex-
perimental observations.13 However, when the gates are
properly optimized, we predict that charge noise should
determine the upper bound on gate fidelities. After op-
timization, we find that gate fidelities at the sweet spot
are typically 20 times better than away from the sweet
spot.

II. THEORETICAL MODEL

We model the coherent evolution of the exchange-only
qubit using a 3-electron, 3-site Hubbard model with the
Hamiltonian (see Appendix A)

H =
∑
〈i,j〉σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
j

nj↑nj↓

+
∑
j

εj(nj↑ + nj↓)− gµBB
∑
j

(nj↑ − nj↓)

+ gµB
∑
j

∆Bj(nj↑ − nj↓), (1)

where the labels {i, j} = 1, 2, 3 correspond to dot loca-
tions, ↑, ↓, and σ refer to individual spin sz eigenstates,

c†jσ and cjσ are electron creation and annihilation op-
erators, and njσ is the electron number operator. The
first term in Eq. (1) describes the tunneling, with tun-
nel couplings tij . We assume a symmetric, linear triple
dot geometry, as shown in Fig. 1(d), with t12 = t23 ≡ t
and t13 = 0. The second term describes the onsite
Coulomb repulsion, with energies U that are the same
at every site. (Off-site Coulomb interactions are dis-
cussed in Appendix A.) The third term describes the lo-
cal electrostatic potentials εj . The fourth term describes
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FIG. 1. (Color online). (a) A two-dimensional cut through
the charge stability diagram of a triple quantum dot as a
function of top-gate voltages, for a fixed value of the detuning
parameter εM . (b) Energy level diagram of the Sz = 1/2
manifold as a function of the detuning parameter ε. In the
central region, the low energy states |0〉-|2〉 are in the (1,1,1)
charge configuration, while the high energy states are doubly
occupied. (c) Bloch sphere representation of the logical qubit,
with the rotation axes corresponding to J23 = 0 (left) and
J12 = 0 (right). (d) Hubbard model of a triple quantum dot
containing three electrons.

the Zeeman energy due to a uniform external magnetic
field B = Bẑ, with the Landé g-factor and Bohr mag-
neton µB . The fifth term describes the local variations
of the Zeeman energy due to Overhauser field fluctua-
tions ∆Bj . Here, we take ∆Bj‖B because the lateral
components of ∆Bj generate couplings between Sz man-
ifolds that are highly suppressed in the regime of large
Zeeman splittings, which we consider below. We also ig-
nore Coulomb interactions between electrons in different
dots. The detuning ε = ε1 − ε3 is defined in analogy
with experiments,7,13 and corresponds to the energy dif-
ference between the (2,0,1) and (1,0,2) charge configu-
rations. For a triple dot, there is also a second, inde-
pendent detuning parameter,21 which we define here as
εM = ε2 − (ε1 + ε3)/2. In experimental systems, the de-
tunings ε and εM are controlled by voltages, including
VL and VR, which are applied to the top-gates. A typical
charge stability diagram is shown in Fig. 1(a) for a fixed
value of εM .

The Hilbert space associated with Eq. (1) is large. For
GaAs-based devices, most leakage channels can be sup-
pressed by enforcing sizeable energy splittings.15 As con-
sistent with recent experiments,13 we therefore consider
the energy hierarchy gµBB � J � gµB∆B > 0, where
J is the exchange interaction generated by the tunnel
couplings. (In Appendix F, we also consider 28Si-based

devices, which do not require such an energy heirar-
chy, due to the absence of nuclear spins.) Since gµBB
is large, the energy spectrum splits into manifolds of
constant total spin Sz. Our simulations focus on the
seven states in the Sz = 1/2 manifold, where the two
qubit states are defined in the decoherence free sub-
space with S = Sz.

5,13 For a basis set, we consider the
seven eigenstates of Eq. (1) when ε = εM = ∆Bj = 0,
consisting of three singly-occupied (1, 1, 1) states, |0〉 =√

1/3|T0〉13|↑〉2 −
√

2/3|T+〉13|↓〉2, |1〉 = |S〉13|↑〉2, and

|2〉 =
√

2/3|T0〉13|↑〉2+
√

1/3|T+〉13|↓〉2, and four doubly-
occupied states, |3〉 = |S〉1|·〉2|↑〉3, |4〉 = |·〉1|S〉2|↑〉3,
|5〉 = |↑〉1|S〉2|·〉3, and |6〉 = |↑〉1|·〉2|S〉3. Here, the
subscript denotes the dot index, |S〉 = 1√

2
(|↑↓〉 − |↓↑〉),

|T0〉 = 1√
2
(|↑↓〉 + |↓↑〉), and |T+〉 = |↑↑〉 are the singlet

and triplet states of two spins, and |·〉 represents a dot
with no electrons. |0〉 and |1〉 are the logical qubit states,
|2〉 is the main leakage state, and the doubly occupied
states mediate the exchange interaction.

The gate simulations described below include the full
set of seven basis states, in order to address questions
of leakage and decoherence. However it is instructive to
consider the effective Hamiltonian in the {|0〉, |1〉} logical
subspace,14

H =

√
3

4
(J12 − J23)σx −

1

4
(J12 + J23)σz, (2)

where J12 and J23 are exchange interactions. The latter
may be tuned independently as a function of the control
parameters ε and εM , yielding a continuous set of rota-
tions in the x-z plane of the Bloch sphere. For example,
we could independently set J12 or J23 to zero, yielding
the pair of rotation axes shown in Fig. 1(c). From Eq. (2),
we see that Z-rotations are obtained when J12 = J23. In
Appendix B, we show that this requirement is met when
either ε = 0 or εM = 0. We also show that the special
combination ε = εM = 0 corresponds to a detuning sweet
spot, because ∂E01/∂ε = ∂E01/∂εM = 0, where E01

is the energy splitting between the qubit states. Since
always-on exchange interactions are needed to prevent
leakage, and since J12, J13 > 0, Eq. (2) suggests that we
cannot achieve pureX-rotations. We overcome this prob-
lem by implementing a three-step pulse sequence.22 This
procedure requires moving away from the sweet spot,
with consequences for the decoherence and gate fidelity.
Finally, we note that a complete set of single-qubit oper-
ations must include initialization and readout. The latter
are accomplished in experiments by adiabatically tuning
the device to the (2, 0, 1) or (1, 0, 2) charge configurations
in the far-detuned regime of Fig. 1(b).13 In our simula-
tions, we do not investigate readout and initialization;
we consider only the unitary gate operations. Moreover,
we assume instantaneous (diabatic) pulses and do not
investigate pulse imperfections. We consider only the er-
rors caused by charge and nuclear noise sources, and by
leakage outside the logical qubit Hilbert space.
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III. GATE SIMULATIONS

We simulate the dynamics of the logical qubit gate
operations by solving the master equation

dρ(t)

dt
= − i

~
[H, ρ(t)]−D[ρ(t)] (3)

for the 7 × 7 density matrix, ρ. The first term on the
right-hand side of Eq. (3) describes the unitary evolution,
while the second term describes the decoherence.

We consider dephasing from charge noise and ran-
dom Overhauser fields. The nuclear fluctuations occur
at frequencies much lower than the relevant electronic
time scales;23 we take them to be quasistatic with a
Gaussian distribution of width σB = 4 mT, as appro-
priate for GaAs.24 We model the charge noise as ei-
ther much faster than the qubit gate frequency, with
a Markovian dephasing rate of Γ ∼ 1 GHz,25 or much
slower than the qubit frequency, with a Gaussian distri-
bution of width σε = 5 µeV.26,27 Both noise models have
been invoked previously to desribe charge noise in simi-
lar scenarios.23,29 We do not specifically treat noise at the
qubit rotation frequency, which, in contrast to resonantly
driven systems,28 does not play a special role in deter-
mining the fidelity of dc pulsed gates. In our Markovian
model, all high frequency noise is treated as uncorrelated.

We consider two types of fast charge noise. The vir-
tually occupied states |3〉-|7〉 mediate exchange interac-
tions, but they also contribute to double occupation de-
phasing errors of the form29 DU =

∑
i

Γ
2 [ni↑+ni↓, [ni↑+

ni↓, ρ]]. We also consider direct dephasing Dε of the
singly occupied states |0〉-|2〉, with rates that depend on
the derivative of the energy splitting Eij between eigen-
states |i〉 and |j〉 with respect to the detuning.23 We as-
sume that contributions from the individual detuning pa-
rameters contribute in quadrature, with the dephasing
rates γij = Γ[(∂Eij/∂ε)

2 + 2(∂Eij/∂εM )2]1/2. Here, the
factor of 2 reflects the relative magnitudes of the ε and
εM terms in the effective 2×2 Hamiltonian for the logical
qubit states. (See Appendix B.) The resulting dephasing
matrix is given by

D[ρ(t)] = DU +Dε = (4)

0 γ01ρ01 γ02ρ02 Γρ03 Γρ04 Γρ05 Γρ06

γ01ρ
∗
01 0 γ12ρ12 Γρ13 Γρ14 Γρ15 Γρ16

γ02ρ
∗
02 γ12ρ

∗
12 0 Γρ23 Γρ24 Γρ25 Γρ26

Γρ∗03 Γρ∗13 Γρ∗23 0 4Γρ34 3Γρ35 Γρ36

Γρ∗04 Γρ∗14 Γρ∗24 4Γρ∗34 0 Γρ45 3Γρ46

Γρ∗05 Γρ∗15 Γρ∗25 3Γρ∗35 Γρ∗45 0 4Γρ56

Γρ∗06 Γρ∗16 Γρ∗26 Γρ∗36 3Γρ∗46 4Γρ∗56 0


.

We treat the slow fluctuations of the detuning and
Overhauser fields by numerically solving the 49 coupled
real differential equations in Eq. (3) for a fixed noise real-
ization, as described in Appendix D. We then repeat the
calculations for 625 realizations of Overhauser field fluc-
tuations and 961 realizations of detuning fluctuations,
and perform the appropriate Gaussian averages. The

simulations are performed on the Open Science Grid at
the University of Wisconsin-Madison.30 The results re-
ported here represent > 23 compute years.

IV. GATE OPTIMIZATION

We begin by considering Z(π) rotations of the logi-
cal qubit. As described above, these operations are per-
formed at the sweet spot ε = εM = 0. Fluctuations of
the detuning and the Overhauser fields give rise to errors
within the qubit subspace as well as leakage. We monitor
these effects by performing quantum process tomography
(QPT), beginning the simulations in four different initial
states, and comparing the final results to the ideal final
states for a fixed value of the tunnel coupling t. (For de-
tails, see Appendix C.) In this procedure, the evolution
period τ is treated as a variable. The optimal value of
τ is chosen by maximizing the fidelity F obtained from
QPT, with results shown in Fig. 2(a). For small t, the
rotations are slow, and the fidelity is strongly suppressed
by the quasistatic random Overhauser fields. For large t,
the rotations are fast, and the fidelity is determined by a
combination of charge noise and leakage. Since the leak-
age process is coherent, the projection of the full density
matrix onto the logical qubit subspace undergoes oscil-
lations, as seen in the lower inset of Fig. 2(a). These
oscillations are severe for large tunnel couplings, causing
a deterioration of the fidelity as seen in the main figure.

We also investigate X(π) rotations of the logical qubit.
As noted above, it is not possible to perform a direct rota-
tion around x̂; accurate rotations require multi-pulse gate
sequences. Here, we consider a three-step procedure22

that can be visualized as shown in the lower inset of
Fig. 2(c). The sequence consists of (i) a π-rotation

around the −(x̂ + ẑ)/
√

2 axis on the Bloch sphere, (ii)
a Z(π) rotation, and (iii) a final π-rotation around the

−(x̂ + ẑ)/
√

2 axis. For steps (i) and (iii), the values of
ε and εM that determine the axis tilt are not known a
priori ; we find them by performing fidelity simulations
for the desired gate operations in the absence of detun-
ing and nuclear fluctuations. The results are shown in
Fig. 2(b) for a fixed value of t, with a line shape that
is analytically determined in Appendix B. The optimal
fidelities along this line are obtained via simulations, as
indicated by the red star. This calibration procedure is
then repeated for other values of t. The three-step proto-
col is then optimized, step by step, by performing simula-
tions to determine the evolution period τ that maximizes
the fidelity of each step. The final fidelities of the three-
step X(π) protocol are shown in Fig. 2(c). We observe
results similar to those in Fig. 2(a). However, the ef-
fects of leakage and charge noise are more severe because
steps (i) and (iii) are not performed at sweet spots. The
suppression of the fidelity due to leakage is most obvi-
ous at large t. The lower inset shows a typical evolution
projected onto the logical qubit Bloch sphere.
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FIG. 2. (Color online). Optimized rotation fidelities, F , obtained from simulations of the exchange-only qubit, including
random nuclear fields and detuning fluctuations typical of GaAs quantum dots. (a) Z(π) rotations. Circles include fast and
slow detuning fluctuations, while the longitudinal magnetic field gradients are held fixed at ∆Bz

2−∆Bz
1 = ∆Bz

3−∆Bz
2 = 3 mT.

Diamonds include quasistatic fluctuations of the Overhauser fields and fast detuning noise, but no slow detuning fluctuations.
Both solutions assume an onsite Coulomb repulsion of U = 1 meV. For small t, the fidelity is mainly limited by nuclear noise
and leakage into state |2〉, while for large t, the fidelity plateau is mainly limited by charge noise. For very large t, leakage
into the excited charge states causes fidelity oscillations that are nearly independent of nuclear noise, as demonstrated in
Appendix F. The lower inset shows the evolution of the density matrix projected onto the Bloch sphere of the logical qubit for
the tunnel coupling t = 10 GHz; the small, rapid oscillations are caused by leakage. The upper inset shows results of averaging
over detuning noise for U = 1 meV (circles, as in the main figure), U = 2 meV (triangles), and U = 3 meV (squares), with
larger U yielding higher maximum fidelities. (b) Fidelity of π-rotations around the axis −(x̂ + ẑ)/

√
2, in the absence of noise,

corresponding to step (i) of a three-step X(π) rotation protocol,22 for t = 5 GHz. The red star indicates the optimal values of
ε and εM . (c) Final fidelity of X(π) rotations, via the three-step protocol, where step (i) occurs at the red star in (b), step (ii)
occurs at the white star (ε = εM = 0), and step (iii) occurs at the red star. The circles and diamonds have the same meaning
as in (a). Here, the fidelity-limiting mechanisms are similar to (a), with a much stronger suppression of the fidelity at large t,
due to leakage and charge noise. The insets are also defined as in (a). Note the large leakage oscillations during steps (i) and
(iii) of the protocol.

V. RESULTS AND DISCUSSION

The X and Z-rotation protocols used in Fig. 2 are dif-
ferent. However, by comparing fidelities obtained using
QPT, we can compare the final results effectively. We
observe that maximal fidelities (or minimal infidelities,
1 − F ) occur over a range of moderate to large tunnel
couplings, t ' 5-20 GHz, that depends on the Hubbard
repulsion parameter U . Our results also depend on the lo-
cal field gradients ∆Bj , which determine the leakage rate.
The values of ∆Bj considered here are typical for GaAs
triple dots. The optimal fidelities in Fig. 2 occur on a
plateau, whose value is largely determined by the detun-
ing noise. This is not the same conclusion reached in,13

where fidelity limits were attributed to nuclear noise. We
speculate that those experiments were performed at lower
t, below the plateau, where nuclear noise predominates.
We emphasize that larger t should be used to achieve
maximal fidelities.

Our most important results are obtained by compar-
ing the maximal fidelities of X(π) and Z(π) rotations.
We find that X-rotations have maximum fidelities ∼20
times worse than Z-rotations, which can be directly at-
tributed to the fact that X-rotations occur away from the
sweet spot, while Z-rotations occur at the sweet spot.
The degradation of X-rotations is most noticeable for
large t, where the fidelity is dominated by charge noise.
Measurements of the quantum dot hybrid qubit show

a similar degradation of coherence away from a sweet
spot.31,32 This suggests that AC gating techniques could
yield better fidelities than the DC pulsing techniques
studied here, because the detuning is always centered
at the sweet spot.14 Indeed, recent experiments on the
exchange-only qubit have employed such a strategy.33 On
the other hand, AC methods tend to produce somewhat
slower gates, for which nuclear noise could be a problem.

Finally, we note that our analysis has focused on GaAs
quantum dot devices, where nuclear noise is known to be
important. For Si-based devices, especially isotopically
purified 28Si, the nuclear noise can be very small. As
a result, Si devices should yield better fidelities for DC
pulsed gates, especially in the low-t regime, as shown
in Appendix F. At higher t, where nuclear noise is not
predominant, Si and GaAs exchange-only qubits should
have similar fidelities.
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APPENDIX

In these Appendices, we provide details about the calcu-
lations and simulations discussed in the main text. Ap-
pendix A describes the Hamiltonian for the Sz = 1/2
spin manifold. Appendix B provides analytical estimates
for the exchange interactions in certain operating regimes
of interest. Appendix C provides details of the quantum
process tomography methods. Appendix D describes our
statistical averaging procedure for treating quasistatic
charge and nuclear noise. Appendix E describes some ad-
ditional results for simulations with averages over Over-
hauser field gradients. Appendix F describes results with
no Overhauser field gradients, consistent with pure, iso-
topically purified 28Si.

Appendix A: Calculation Details

In this Appendix, we describe our Hubbard model
Hamiltonian. We evaluate each individual term of Eq. (1)
using the 7D basis set defined by

|0〉 =
1√
6

(|↑↑↓〉+ |↓↑↑〉)−
√

2

3
|↑↓↑〉, (A1)

|1〉 =
1√
2

(|↑↑↓〉 − |↓↑↑〉) , (A2)

|2〉 =
1√
3

(|↑↑↓〉+ |↓↑↑〉) +

√
1

3
|↑↓↑〉, (A3)

|3〉 =
1√
2

(|↑↓〉1 − |↓↑〉1) |·〉2|↑〉3, (A4)

|4〉 =
1√
2
|·〉1 (|↑↓〉2 − |↓↑〉2) |↑〉3, (A5)

|5〉 =
1√
2
|↑〉1 (|↑↓〉2 − |↓↑〉2) |·〉3, (A6)

|6〉 =
1√
2
|↑〉1|·〉2 (|↑↓〉3 − |↓↑〉3) , (A7)

where the notation |↑↓〉j (or |↓↑〉j) indicates that both
electrons are in the same dot, labelled j = 1, 2, 3, and |·〉j
indicates an empty dot. The creation-annihilation oper-

ator combinations, c†iσcjσ, are then readily evaluated, as

are the particle number operators niσ = c†iσciσ, for dots
i, j, and spins σ =↑, ↓.

We then obtain the following expressions for the indi-
vidual terms in the Hubbard Hamiltonian, Eq. (1). The
tunnel coupling term is given by

Ht =



0 0 0
√

3
2 t −

√
3
2 t −

√
3
2 t

√
3
2 t

0 0 0 − 1√
2
t 1√

2
t − 1√

2
t 1√

2
t

0 0 0 0 0 0 0√
3
2 t −

1√
2
t 0 0 0 0 0

−
√

3
2 t

1√
2
t 0 0 0 0 0

−
√

3
2 t −

1√
2
t 0 0 0 0 0√

3
2 t

1√
2
t 0 0 0 0 0


.

(A8)

The onsite Coulomb repulsion term describes the
double-occupation energy cost for a single dot. It is given
by

HU =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 U 0 0 0
0 0 0 0 U 0 0
0 0 0 0 0 U 0
0 0 0 0 0 0 U


. (A9)

The detuning energies are given by

Hε =



εM 0 0 0 0 0 0
0 εM 0 0 0 0 0
0 0 εM 0 0 0 0
0 0 0 ε

2 0 0 0
0 0 0 0 2εM − ε

2 0 0
0 0 0 0 0 2εM + ε

2 0
0 0 0 0 0 0 − ε2


. (A10)

Since the basis states all belong to the same Sz = 1/2 spin manifold, they all have the same Zeeman energy, which
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rotation, including quasistatic nuclear noise for three different values of the intradot Coulomb repulsion: U = 1 meV (black
diamonds, as in the main panel of Fig. 2(a)), U = 2 meV (triangles), and U = 3 meV (circles), with larger U values yielding
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U = 2 meV (triangles), and U = 3 meV (circles). All fidelity averages are obtained assuming a Gaussian distribution of
Overhauser field differences with standard deviation σB = 4 mT. Quasistatic noise in the detuning parameters are not included
in this simulation.
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FIG. 4. Comparison of gate infidelities, 1 − F , for perfect, isotopically purified 28Si (purple squares) and GaAs (red circles)
in the presence of detuning fluctuations. The GaAs results are identical to the red circles in Fig. 2. For 28Si, we assume no
Overhauser fields in the dots, while for GaAs, we assume the fixed values ∆Bz

2 −∆Bz
1 = ∆Bz

3 −∆Bz
2 = 3 mT, as for the red

circles in Fig. 2. In both cases, we assume an intradot Coulomb repulsion of U = 1 meV. (a) Z(π)-rotations. (b) Three-step
X(π) rotations, as described in the main text.

we ignore here. The local Overhauser field energies due to nuclear fluctuations are given by

H∆B = gµB



2
3 (∆Bl −∆Br)

1√
3
(∆Bl + ∆Br) −

√
2

3 (∆Bl −∆Br) 0 0 0 0

1√
3
(∆Bl + ∆Br) 0

√
2
3 (∆Bl + ∆Br) 0 0 0 0

−
√

2
3 (∆Bl −∆Br)

√
2
3 (∆Bl + ∆Br)

1
3 (∆Bl −∆Br) 0 0 0 0

0 0 0 −∆Br 0 0 0
0 0 0 0 −∆Br 0 0
0 0 0 0 0 ∆Bl 0
0 0 0 0 0 0 ∆Bl


, (A11)

where we define ∆Bl = Bz1 − Bz2 and ∆Br = Bz2 − Bz3
to be the differences in local magnetic fields in the ẑ di-

rection. As explained in the main text, we only consider
longitudinal (ẑ) components of the Overhauser fields, de-
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fined by B = Bẑ, as consistent with Ref. 23.
Equation (3) then represents a set of 49 real coupled

differential equations. We solve these equations numeri-
cally and check that the trace-preserving condition is sat-
isfied for the final density matrix, when the calculation
is complete.

To complete this section, we note that the single-
parameter model of Coulomb interactions in Eq. (A9)
was chosen for simplicity. In a more elaborate model, we
could expand this to include the following terms

U0

∑
j=1,2,3

nj↑nj↓ + U1

∑
j=1,2

njnj+1 + U2 n1n3, (A12)

corresponding to double-occupations, nearest-neighbor
couplings, and next-nearest-neighbor couplings. Such
models have previously been explored by some
authors,6,14,34 while other authors consider a basis set of
singly-occupied states,5 where all the Coulomb terms are
incorporated into the exchange interaction parameters of
an effective Hamiltonian.

We can estimate the relative magnitudes of the U1 and
U2 terms, which are not included in Eq. (A9), by as-
suming the following probability density for the lateral
distribution of the electronic wavefunctions:

|ψ(x, y)|2 =
1

2πR2
e−(x2+y2)/2R2

. (A13)

To leading order in the ratio R/L, where R represents
the lateral size of a dot, and L is the interdot separation,
we obtain the following relations between the Coulomb
interactions:

U0 =
√
π
L

R
U1, (A14)

U2 =
1

2
U1. (A15)

For a typical energy excitation of ∆E = 0.5 meV between
the two lowest orbital states in a GaAs quantum dot
(m∗ = 0.067me), we obtain R ' 34 nm. We also use
L ' 200 nm, as consistent with Ref. 13. We can then
estimate the ratios U0 : U1 : U2, which are given by
1 : 0.1 : 0.05.

The main effect of including the terms corresponding
to U1 and U2 is to suppress the filling of the doubly-
occupied states |4〉 and |5〉, relative to the doubly-
occupied states |3〉 and |6〉. This has a relatively small
effect on our numerical results, which we confirm by eli-
mating states |4〉 and |5〉 and repeating the analysis. On
the other hand, the model of Eq. (A9) includes fewer pa-
rameters, making it more intuitively practical. The main
conclusions of our calculation remain unchanged.

Appendix B: Exchange Interactions and the Sweet
Spot

In this Appendix, we estimate the effective exchange
interactions Jij that generate rotations. We can use the

results to provide initial estimates for the evolution pe-
riods for gate operations; we use these estimates to opti-
mize the gates, as discussed in the main text.

We now reduce the full 7 × 7 Hamiltonian, H =
Ht + HU + Hε, to an effective 2 × 2 Hamiltonian for
the logical qubit states. We consider the ideal case with
no nuclear fields, so ∆Bj = 0 and there is no coupling
between the qubit states {|0〉, |1〉} and the leakage state
|2〉. A Schrieffer-Wolff transformation35 to order t2 in
the small parameter t/U yields the well-known Heisen-
berg Hamiltonian

Heff = J12 s1 · s2 + J23 s2 · s3, (B1)

for the 3 × 3 subspace of (1, 1, 1) charge states. Here,
J12, J23 ∼ O[t2]. In the absence of any coupling to the
leakage state, we can immediately project Heff onto the
2× 2 logical qubit subspace, yielding

Heff = (const)+

√
3

4
(J12−J23)σx−

1

4
(J12+J23)σz, (B2)

where σx and σz are Pauli matrices. Here, we may drop
the constant term, giving Eq. (2).

We can also obtain Heff by directly performing a
Schrieffer-Wolff transformation of H onto the 2× 2 sub-
space, yielding

Heff ' −
2
√

3t2UεMε

D
σx −

2t2U(U2 − ε2
M − ε2/4)

D
σz,

(B3)
where the denominator is given by

D = U4 − 2(ε2
M + ε2/4)U2 + (ε2

M − ε2/4)2. (B4)

By comparing Eqs. (B2) and (B3), we can identify the
individual exchange interactions:

J12 =
4t2U(U2 − (εM + ε/2)2)

D
, (B5)

J23 =
4t2U(U2 − (εM − ε/2)2)

D
. (B6)

Diagonalizing Eq. (B3), we obtain the energy splitting

E01 =
4t2U

√
(U2 − ε2

M − ε2/4)2 + 3 ε2
Mε

2

D
. (B7)

Since E01 is an even function in the variables ε and εM ,
we immediately find that

∂E01

∂ε
=
∂E01

∂εM
= 0 (B8)

when ε = εM = 0, establishing this setting as a detuning
sweet spot.

At the sweet spot, we find that

Heff = −2t2

U
σz, (B9)
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corresponding to a Z-rotation. Indeed, we see that Z-
rotations are achieved when either ε = 0 or εM = 0.
From Eq. (B3), we see that rotations around the axis

−(x̂ + ẑ)/
√

2, used in the three-step X(π) protocol de-
scribed in the main text, are defined by the line

ε2
M + ε2/4 +

√
3 εMε = U2, (B10)

which correctly predicts the line of highest fidelities in
Fig. 2(b).

Appendix C: Quantum Process Tomography

Quantum process tomography (QPT) provides a
means of characterizing quantum gates by comparing the
ideal outcomes of gate operations with their actual out-
comes. Here, we follow the QPT recipe given in Ref. 36.
We solve the master equation, Eq. (3), for a specified
pulse sequence for a given gate operation. For each sim-
ulation, the detuning parameters and the local magnetic
fields are held constant. Using the simulation results,
we calculate the final fidelity, as outlined below. In the
following section, we describe our method for perform-
ing statistical averages of those fidelities, taking into ac-
count the fluctuations of the detuning parameters and
the random magnetic fields. We now summarize the QPT
method.

We consider a gate operation E(ρ) acting on an initial
state described by the density matrix ρ. Here, E(ρ) repre-
sents the final density matrix, and has no relation to the
detuning parameter. The E operation can be expressed
in terms of operation elements Ei, such that

E(ρ) =
∑
i

EiρE
†
i . (C1)

The operation elements can be decomposed with respect
to an orthogonal basis set of operators Ẽm for the state
space, such that

Ei =
∑
m

eimẼm, (C2)

where eim are complex numbers. If ρ describes a single
qubit, then each Ẽm is a 2 × 2 matrix. A convenient
choice is the basis set

Ẽ0 = I, (C3)

Ẽ1 = σx, (C4)

Ẽ2 = −iσy, (C5)

Ẽ3 = σz, (C6)

where σα are Pauli matrices. We then have

E(ρ) =
∑
mn

ẼmρẼ
†
nχmn, (C7)

where the process matrix χ is defined as

χmn =
∑
i

eime
∗
in. (C8)

The process matrix can be fully characterized by ini-
tializing the system into linearly independent basis el-
ements for the density matrix. A convenient choice
of initial states is |0〉, |1〉, |+〉 = (|0〉 + |1〉)/

√
2, and

|−〉 = (|0〉+ i|1〉)/
√

2. We then perform appropriate lin-
ear combinations of gate operations on the initial states,
as described in Ref. 36. Once the process matrix has
been reconstructed, the process fidelity for a single-qubit
rotation is given by37

F̄ =
1

3
(2Tr[χχideal] + 1) , (C9)

where χideal represents the ideal process matrix.

Appendix D: Averaging Procedure for Overhauser
Field and Detuning Fluctuations

In Appendix C, we described the calculation of QPT
fidelities for individual simulations. Each simulation is
performed for a constant value of the detuning parame-
ters and the local nuclear fields. However, these parame-
ters are all quasistatic, and we should perform an average
over these quantities, as described in the main text, to
describe the inhomogeneous broadening.

There are two different fluctuation axes for the detun-
ing parameters (ε and εM ) and two different axes for
the nuclear fields (∆Bl and ∆Br). While it is not com-
putationally feasible to perform accurate, simultaneous
averages over four different fluctuation axes, it is possi-
ble to perform simultaneous averages over two axes at a
time. We choose to perform simultaneous averages over
the detuning fluctuations and the random Overhauser
fields separately, to distinguish the effects of charge and
nuclear noise. These calculations are computationally in-
tensive.

We first consider the quasistatic random Overhauser
fields. When B � ∆B, we only need to consider the
longitudinal components of ∆Bl,r.

23 We model the prob-
ability distributions of these random fields as

P (∆Bl,∆Br) =
1

2πσ2
B

e−(∆B2
l +∆B2

r)/(2σ2
B), (D1)

where σB is the standard deviation of the random fields.
The master equation is solved over a grid (∆Bl,∆Br) of
size Ng × Ng, with Ng = 25, while keeping ε and εM
fixed. The noise-averaged fidelity is then given by



9

F =

∫
d∆Bld∆Br

2πσ2
B

F̄ (∆Bl,∆Br, ε, εM )e−(∆B2
l +∆B2

r)/(2σ2
B) (D2)

=
(∆Bmax −∆Bmin)2

2πσ2
BN

2
g

∑
〈∆Bl,∆Br〉

F̄ (∆Bl,∆Br, ε, εM )e−(∆B2
l +∆B2

r)/(2σ2
B). (D3)

In our simulations, we choose ∆Bl and ∆Br in the range
(-12 mT,+12 mT), and σB=4 mT, as consistent with
Ref. 24.

Similarly, we consider fluctuations of the detuning pa-
rameters keeping the local magnetic fields fixed. We
model the fluctuation probability distribution as

P (∆ε,∆εM ) =
1

2πσ2
ε

e−(∆ε2+∆ε2M )/(2σ2
ε) (D4)

over a grid (∆ε,∆εM ) of Ng ×Ng points, with Ng = 31.
The noise-averaged fidelity is then given by

F =

∫
d∆εd∆εM

2πσ2
ε

F̄ (ε+ ∆ε, εM + ∆εM ,∆Bl,∆Br)e
−(∆ε2+∆ε2M )/(2σ2

ε) (D5)

=
(∆εmax −∆εmin)2

2πσ2
εN

2
g

∑
〈∆ε,∆εM 〉

F̄ (ε+ ∆ε, εM + ∆εM ,∆Bl,∆Br)e
−(∆ε2+∆ε2M )/(2σ2

ε). (D6)

In our simulations, we choose ∆ε and ∆εM in the range
(-15 µeV,+15 µeV), and σε=5 µeV, as consistent with
Refs. 26 and 27.

Appendix E: Nuclear Noise Averages

Figures 2(a) and (c) show comparisons of nuclear and
charge noise averaging results, while the insets show com-
parisons of charge noise averaging for three different val-
ues of U .

In this Appendix, we extend these results by plotting
nuclear noise-averaged results for three different values
of U , as shown in Fig. 3. As before, we find that X(π)
rotations have fidelities that are approximately 20 times
worse than Z(π) rotations, with optimal values that im-
prove when U is larger.

Appendix F: 28Si

In the previous discussion, particularly in Figs. 2 and
3, we compared the effects of random nuclear fields and

detuning fluctuations. When we simulated detuning fluc-
tuations, we adopted a fixed, characteristic magnetic field
difference between the two dots. To complete this story,
we perform the same simulation here, setting the static
Overhauser fields to zero. This can be viewed as the
ideal case for perfect, isotopically purified 28Si devices,
whereas the previous simulations corresponded to GaAs.

The results of our 28Si simulation are shown in Fig. 4,
assuming only detuning fluctuations. We also show the
equivalent GaAs simulation for comparison, with the
same detuning fluctuations but setting ∆Bz2 − ∆Bz1 =
∆Bz3 −∆Bz2 = 3 mT, as in Fig. 2. We see that using 28Si
is highly beneficial in two ways. First, it yields an im-
provement in the maximum fidelity. Second, it lowers the
optimal tunnel coupling, and therefore the gate speed, to
a range that may be more convenient from a technological
perspective. At even lower gate speeds, fast charge noise
eventually degrades the gate fidelity. At higher tunnel
couplings, where the effects of quasistatic charge noise
and leakage to doubly-occupied charge states dominate
the fidelity, the presence of a magnetic field difference
is irrelevant. Once again, we find the optimal fidelity
for Z-rotations is approximately one order of magnitude
better than for X-rotations, due to the presence of the
sweet spot.
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