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The physics of thermal transport on strained, 2D materials graphene, boron nitride, and 

their superlattices is analyzed by molecular dynamics, lattice dynamics, and numerical 

solutions to Boltzmann transport equation. The thermal conductivity of these materials is 

found to be highly sensitive to tensile strain, and the strain dependence itself is also 

highly dependent on the sample total length. Both finite-sized systems (varying from 

~100 to 300 nm long) as well infinitely long systems are considered. In contrast to the 

typical reduction of thermal conductivity with strain exhibited by bulk 3D materials, the 

thermal conductivity initially increases to a peak value, after which it then decreases with 

further strain. Modal decomposition of the phonon spectrum shows that the non-

monotonic behavior arises from a competition between in-plane softening and flexural 

stiffening of phonons. The length sensitivity arises from the nature of the linear/quadratic 

dispersion of the in-plane/flexural modes and their distinct scattering selection rules: 

longer systems favor out-of-plane flexural phonon stiffening while smaller systems favor 

in-plane phonon softening. Additionally, we show that this competition occurs in concert 

with a strain-induced transition in the nature of the phonon flow from ballistic-dominant 

to diffusive-dominant. Overall these effects give rise to a complex dependence of thermal 

conductivity on strain and sample size. 

 

 

 

 

PACS numbers(s): 05.60.-k, 63.20.-e, 63.22.-m, 66.70.-f, 68.65.
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I.   INTRODUCTION 

The class of two-dimensional materials including graphene, boron nitride, and their 

planar superlattices has received interest as a playground for nanoscale thermal 

engineering1-2. These materials exhibit rich thermal physics and potentially offer a route 

to tailored thermal properties.3 Through confinement of a material to one atomic plane, 

interesting phononic effects can arise. For example, flexural phonon modes emerge with 

unique characteristics such as parabolic (rather than linear) dispersion and peculiar 

selection rules governing their scattering.3 This leads to a crossover of thermal 

conductivity to that of 3D graphite when layers of graphene are stacked.4 The flexural 

modes are also intimately related to the recent debate regarding possible divergence of 

the thermal conductivity of graphene5-6. Furthermore, 2D superlattices of graphene and 

boron nitride have recently been studied, and sensitive dependences of thermal 

conductivity on superlattice period and interfacial defects have been reported7. 

Amongst the many questions that remain regarding 2D materials, one question is how 

the presence of strain affects the thermal transport. On one hand, ab initio lattice 

dynamics simulations 8  and classical equilibrium molecular dynamics simulations 9 

demonstrate that the thermal conductivity κ of unstrained graphene ultimately converges 

to a finite value as the sample size increases. However these simulations demonstrate not 

only that κ is enhanced when strain is present, but also that strain changes the asymptotic 

behavior of the length-dependence, yielding now a diverging κ. The change is attributed 

to the ZA flexural phonon modes: when unstrained, their vanishing group velocities 

contribute negligibly to conduction, but serve primarily as scattering pathways and 

prevent the logarithmic divergence predicted for purely 2D systems. According to these 
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analyses, strain ‘linearizes’ the normally parabolic dispersion of the ZA modes, and the 

increased group velocities then enable the ZA modes to contribute to conduction8-9. 

Interestingly, these results are in sharp contrast with those of several non-equilibrium 

molecular dynamics simulations5,10-11, which instead tend to find that (i) without the 

presence of strain, the  of graphene may already diverge logarithmically as the system 

size increases5, and (ii) that the effect of strain for a fixed sample size is to reduce (rather 

than increase) κ.10-11 Conventional wisdom based on what is known about bulk 3D 

materials supports the idea that in general tensile strains soften phonon modes, depress 

group velocities, and decrease relaxation times.12  Additionally, even before strain is 

imposed, decomposition of κ into modal contributions suggests that the ZA modes 

contribute to (and may even be dominant contributors to) κ. However many of these 

studies have been carried out for single, finite-sized samples and the length-dependence 

of the reported trends is not clear.  We have found one exception to this trend in the 

literature, which is an NEMD study of the effects of strain on silicene, a 2D allotrope of 

graphene, in which an increase in κ with strain is reported13.   

In this work, we use several techniques (non-equilibrium molecular dynamics, 

equilibrium molecular dynamics, harmonic lattice dynamics, and the Boltzmann transport 

equation) to understand how strain influences thermal transport in 2D materials. We 

considered samples ranging from 100-300 nm using non-equilibrium molecular dynamics 

and the Boltzmann transport equation; further we use the latter to extend our analysis to 

infinite systems. The length-dependent analysis presented here offers an explanation for 

the above discrepancies. As the applied strain increases we find that graphene, boron 

nitride, and graphene/boron nitride superlattices generally become more thermally 
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conducting up to a threshold strain, beyond which  begins to decrease. The non-

monotonic behavior occurs as a result of a competition between stiffening of flexural ZA 

modes and softening of in-plane phonon modes. The position of the peak in , however, 

is highly sensitive to the total length: for reasons that we will discuss, the former effect is 

dominant in large systems, and the latter in small systems. Our analysis brings the 

seemingly disparate results reported above into concert. Further, we demonstrate that the 

application of strain induces a transition in the nature of the phonon flow from ballistic-

dominant to diffusive-dominant. Overall these effects give rise to a complex dependence 

of κ on the applied strain and sample size for 2D materials.  

 

II.  MODEL STRUCTURES & COMPUTATIONAL METHODS  

    We consider three 2D systems: graphene (G), hexagonal boron nitride (BN), and 

planar graphene-boron nitride superlattices (G/BN). For example, FIG. 1(a) illustrates a 

G/BN superlattice composed of alternating graphene and boron nitride sections. We have 

implemented several different atomic-scale methods in our analysis: equilibrium and non-

equilibrium molecular dynamics (EMD, NEMD), lattice dynamics (LD), and iterative 

solutions to Boltzmann transport equation (BTE). The EMD and NEMD simulations are 

implemented within LAMMPS14; we have used Tersoff potentials15 for G and BN as 

optimized by Lindsay and Broido 16  for thermal properties. (For the case of the 

superlattice in which both carbon and boron/nitrogen atoms are present, Tersoff’s mixing 

rules15 are applied to describe their interactions at superlattice interfaces). For the LD 

analysis that we use to spectrally decompose the heat carriers, we employed GULP17. 



 5

Finally, in order to evaluate scattering effects through numerical solution of the BTE 

solutions, we used the open-source package PhonTS18.  

    It is important to note that the different approaches used in our study introduce 

different levels of approximations. While LD truncates the spatial derivatives of the 

potential to second order (ignoring phonon-phonon scattering), it can still extract limited 

but useful harmonic information. By contrast, both molecular dynamics and the BTE 

account for phonon-phonon scattering, although in different manners. Within the BTE, 

the third derivatives of the energy are effectively incorporated via phonon relaxation 

times, and the resulting equations are solved numerically within a computational 

supercell18. On the other hand the classical molecular dynamics simulations incorporate 

anharmonic effects directly within the many-body potential. 

    In our EMD and NEMD simulations, periodic boundary conditions are always applied. 

We use a time step of 0.1 fs. All systems are initially relaxed and then thermalized for at 

least 10 ps with Nose-Hoover thermostats;  the systems are considered to be thermalized 

when steady ensemble fluctuations around the target temperature T = 300 K have been 

established. In NEMD, the system is sandwiched between two heat baths as shown in 

FIG. 1(a). To mimic real world experiments, a quantity of heat Q is extracted from the 

cold bath and replenished to the hot bath. This procedure establishes a steady thermal 

gradient � ,19 based on which the thermal conductivity can be estimated from Fourier’s 

law =- �  (computational details of our NEMD approach are described in detail in 

Ref. 7). All molecular dynamics results reported are determined from a minimum of three 

independent simulations (each is run for at least 1 ns), and system averages are 

determined by binning quantities of interest to ensure statistically uncorrelated sampling; 
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all error bars denote 95% confidence intervals in the sampled quantity. In our NEMD 

simulations for finite systems, the computational domain is comprised of supercells with 

total lengths L0 = 300, 500, and 700 unit cells (~130, 215, and 300 nm respectively). As 

described below, the corresponding widths W are selected to maintain a constant aspect 

ratio. For the superlattice, a pitch of P = 10 unit cells (~4 nm) was selected; based on our 

previous work this is the pitch that minimizes the thermal conductivity7.  

    As always, with the use of NEMD20, care must be taken to avoid spurious effects that 

may arise from the presence of heat baths and/or violation of the linear response regime. 

In our simulations, we have ensured that the induced temperature gradient is proportional 

to the heat flux so that linear response is not broken. Our choice of heat baths is based on 

the approach of Shiomi and Maruyama21, where the bath length is set to half of the 

system length L (we considered heat baths of different lengths, and find that our results 

are not substantially altered). A representative temperature profile was reported in our 

earlier work7, where no obvious effects due to thermal boundary resistance can be 

identified. We have also tested our results using baths made of different materials (i.e., 

either G, or BN, or both), from which very stable thermal conductivities are obtained. 

Additionally, given the large aspect ratio of the finite-sized systems that we consider, 

care must also be taken to ensure that the calculated results are not unphysically large due 

to the quasi one-dimensional nature of the computational domain22.  Therefore, FIG. 1(b) 

shows the results of a convergence test with respect to the width W for a system with total 

length L0 = 215 nm: widths of W = 12 nm are well-converged, and thus this aspect ratio 

of 215:12 will be maintained for the remainder of our NEMD analysis. 
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    To apply strain, materials of natural (unstrained) length L0 are uniformly stretched in 

the longitudinal (x) direction to a length L. The total strain is defined as ⁄ . We exclusively study pristine crystals with strains less than 20%, which is 

close to the limit strain for graphene23. As a result of the imposed strain, a stress  

develops in the systems. FIG. 2(a) shows a typical stress distribution (shown here for the 

G/BN superlattice) as a function of the applied strain; as required by mechanical 

equilibrium  is continuous across the interfaces from the G to the BN subdomain. A 

snapshot of an atomic configuration is captured in FIG. 2(b) at 15%, showing 

perfect crystalline interfaces and no resulting rips, tears, or other defects. We note that in 

our simulations, the width of the materials in the transverse direction is held fixed (rather 

than allowed to contract according to the Poisson ratio), resulting in the presence of 

smaller transverse stresses (σyy) as well. For several cases we checked the robustness of 

our results when transverse relaxations are allowed, and find that they are not 

substantially altered. 

 

III.  THERMAL CONDUCTIVITY OF FINITE SYSTEMS  

UNDER TENSILE STRAIN 

    FIG. 3(a-c) compares κ obtained via both BTE and NEMD for G, BN, and G/BN as a 

function of the applied strain for systems of total length Lo = 215 nm*. Here the BTE                                                         
* In comparison to experimental measurements of κ, the values reported here are low. Compare for instance our κ for 
unstrained graphene (~1500 W/mK) to measured values which range from 2000 to 5000 W/mK (see Ref. [1]). This 
underestimate is typical for simulations of finite sized samples for which the transport is largely ballistic. Moreover, 
discrepancies from experiment can be further aggravated by the use of an empirical potential, the neglect of quantum 
carrier statistics, and the introduction of boundary scattering.  Our reported values however are in good agreement with 
other simulations of similarly sized samples (e.g. Refs. [5] and [9]).  
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results are obtained without including anharmonic scattering effects in the relaxation 

times: only boundary scattering /  for each phonon is incorporated. In comparison 

with silicene results previously reported also from NEMD13, the lattice conductivities of 

G, BN, and G/BN behave very differently. At small tensile strains, κ of graphene appears 

relatively insensitive (in NEMD the fluctuations are within error bars), while that of BN 

somewhat increases, and G/BN increases markedly. At larger applied strains, κ for all 

three systems starts decreasing. As plotted in FIG. 3(a-c), overall the κ from NEMD 

coincide well with those from BTE; the agreement is particularly good in the low-strain 

regime but exhibits some deviations at increasing strain (to be discussed later).  

    To compare the relative sensitivity of the three systems to strain, FIG. 3(d) shows the 

conductivities normalized by their respective unstrained values. Overall, the superlattice 

exhibits the greatest sensitivity, followed by BN, and then by G. At small strains, while κ 

of BN and G/BN increase with strain, G appears to be relatively strain-neutral (variations 

are within 5% of the unstrained value). For the superlattice, which is most sensitive, κ 

first increases up to strains  ~ 7%  and then begins to decrease, giving a volcano 

shape. The non-monotonic response contrasts with the monotonically increasing trend 

reported for silicene13, and particularly contrasts starkly with the well-documented 

reduction of κ with tensile strain that is typically reported for NEMD simulations of 2D 

materials10-11. We note that a similarly non-monotonic relationship was reported in Ref. 

24, but in this case the initial increase was attributed to the relaxation of an initially 

buckled configuration.  This explanation does not apply to our materials, which are 

initially completely equilibrated before application of strain. Furthermore, even at the 
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largest applied strains, we see no tears, holes, or other defects (FIG. 2 (b)) that might give 

rise to the observed behavior.  

 

IV.  TRANSPORT REGIMES 

To explore the physics that gives rise to the non-monotonic dependence for the Lo = 

215 nm, W = 12 nm systems in FIG. 3, it is helpful to establish the ballistic vs. diffuse 

nature of the phonon flows. This can be accomplished via the phononic Knudsen number, 

defined by Λ⁄ , where Λ and  are respectively the phonon mean free path and a 

system characteristic length. Strict limits to the nature of flows are typically given by 10 for ballistic flow and 0.01 for diffusive flow25. While phonons carry heat 

and transfer energy between boundaries without inter-phonon collisions in the ballistic 

regime, they usually encounter multiple scattering events before delivering heat between 

boundaries in the diffusive regime. In the intermediate so-called ‘transitional’ regime 

(i.e., 0.01 10), both ballistic and diffusive natures coexist and compete. (We 

note that models such as non-equilibrium Green’s function (NEGF) and the Landauer 

formalism are rigorously valid when 10 , although in practice many reported 

ballistic flows are actually in the transitional regime.) Moreover, such coexistence and 

competition can often give rise to intriguing transport phenomena26. 

To determine the nature of the flow for the Lo = 215 nm systems in FIG. 3, it is 

necessary to obtain an estimate of the phonon mean free path Λ. For this, we employed 

EMD to extract long-ranged and short-ranged phonon relaxation times27. As suggested by 

previous studies (e.g. Refs. 10, 27 and references therein), the total κ can be decomposed 
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as , where  and  are contributions due to short-ranged and long-

ranged phonons (corresponding loosely to diffuse and ballistic carriers respectively). 

These two phonon families are characterized by their distinct relaxation times  and 

, which are extracted by fitting the heat flux auto-correlation function (HFACF) to the 

functional form ⁄ ⁄  as shown in the inset of FIG. 4(a) for a 

G/BN superlattice. While  is reported to be insensitive to temperature and strain, the 

long-ranged carriers are believed to respond sensitively and account for the temperature 

dependence of thermal conductivity.27 We find a similar trend as shown in FIG. 4(a): the 

short-ranged phonon relaxation time stays relatively constant for all strains (~0.2 ps), 

while the relaxation time for the long-ranged phonons drops monotonically from ~4 ps to 

~0.2 ps as the strain increases. This drop indicates a change in the nature of the flow from 

more ballistic-like towards more diffusive-like. 

Using the relaxation times of FIG. 4(a), a representative Knudsen number for the 

long-ranged flow can now be estimated by Λ ⁄ , where Λ ,  is the 

longitudinal sound speed, and  = L. The Knudsen number of long-ranged longitudinal 

phonons for G/BN is illustrated in FIG. 4(b) as a function of strain. For the unstrained 

system  ~ 15  (strictly ballistic flow); as the strain increases  decreases 

monotonically to  ~ 0.4 (although not shown here explicitly, the pure graphene and 

BN systems exhibit similar trends).  This observed change in Kn is consistent with the 

deviation between MD and BTE results in FIG. 3. Since inter-phonon collisions are not 

accounted for in the BTE analysis, the two techniques give similar results at small strains 

where collisions are not significant, but deviate somewhat from each other at larger strain 

where phonon collisions are enhanced.  
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    It is also interesting to note that for the majority of cases considered, the phonon flows 

are located in the transitional regime. Nevertheless, as the strain increases, the nature of 

the flow changes from ballistic-dominant towards diffusive-dominant. Although it is 

difficult to determine the precise physical mechanism underpinning the decrease of Kn, it 

is feasible that it arises from the softening of bonds when tensile strain is applied 

(discussed later), which can introduce inter-phonon scattering and reduce mean free 

paths12,24. 

 

V.  SPECTRAL DECOMPOSITION  

    To further provide insights to the strain dependence of , we decomposed the total  

into contributions from distinct phonon families for the systems shown in FIG. 3.  In the 

Boltzmann framework, the total lattice conductivity is given by    

, 12 , , , d  (1) 

where  ,  denotes phonon density of states, , ⁄  and  ,1  are respectively the modal group velocity and heat capacity,  

denotes the Boltzmann constant, ⁄ , and χ denotes a summation over phonon 

branches. The parameters in Eq. (1) such as the DOS, group velocity, etc., are obtained 

with lattice dynamics (LD).  

    Figure 5(a-c) shows the phonon dispersion spectrum from LD for G, BN, and G/BN 

under various strains, where the acoustic branches are labeled according to their 

character: LA (longitudinal acoustic), TA (transverse acoustic), and ZA (out-of-plane 
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acoustic). As shown in FIG 5(a-c), a competition between softening of the LA modes and 

a stiffening of the ZA modes occurs as the applied strain increases (indicated by the 

arrows). This manifests as a drop in the LA frequencies and an increase in the ZA 

frequencies (and corresponding changes to their group velocities). Take BN for example: 

the sound speed of the LA modes is reduced by ~1% at 10% applied strain, and ~17% at 

15% applied strain. Meanwhile, the ZA mode group velocity is enhanced by a factor of 

~7.5 and ~9 for the same strains, respectively. Particularly notable is that the change 

observed in the ZA modes represents not only a stiffening, but is also associated with a 

change from parabolic dispersion (vanishing group velocity at the zone center) to a linear 

dispersion (non-vanishing group velocity at the zone center). This ‘linearization’ has been 

observed previously in ab initio LD8 and EMD simulations9. (In comparison to the 

behavior of the LA and ZA modes, FIG. 5(a-c) shows that the TA modes here appear less 

sensitive to the application of strain.) 

    In FIG. 5(d-f), we decomposed the total  in Eq. (1) into contributions summed 

individually over the different phonon families. This decomposition shows that before 

strain is applied, the contribution of the planar modes is larger than that of the flexural 

modes (at least for this system size).  It also quantitatively shows however that the 

contribution of the ZA modes increases with tensile strain, while that of the LA modes 

decreases. We also find that this analysis of the LA, TA, and ZA contributions at 

different applied strains can reproduce the non-monotonic trends in FIG. 3. For instance, 

for G/BN, by summing the total contribution over all modes, the maximum enhancement 

in  of the superlattice is 32.9% and occurs at a strain of 7%, which is in very close 

agreement to NEMD results in FIG. 3(c).  (Note that there are some differences in the 
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magnitude of , since the LD results do not include scattering and in general are expected 

to give larger thermal conductivities). 

 

 

 

VI.  EFFECT OF TOTAL SYSTEM LENGTH 

The results presented thus far correspond to G, BN, and G/BN systems with total 

length Lo = 215 nm.  It is necessary to consider how the trends may vary for systems of 

different size. The length-dependence of the strain response is expected to be non-trivial, 

given the competing role of strain in both softening in-plane modes, while stiffening and 

linearizing flexural modes.  Since the nature of the transport in our systems ranges from 

ballistic to transitional, as the total sample length increases the contributions to κ of 

longer wavelength phonon modes (both in-plane and out-of-plane) will increase 

accordingly; however, in addition the affect of the applied strain on the modal 

contributions must also be ascertained.  

To analyze how our results change for different lengths Lo, we carried out NEMD 

simulations of thermal conductivity vs. strain for a 2D G/BN superlattice now with total 

lengths Lo = 130 and 300 nm to compare to the previous result with Lo = 215 nm.  We 

chose the superlattice because it exhibited the largest strain sensitivity, and provides the 

best opportunity to probe the mechanism underlying the response. FIG. 7 shows a 

comparison of the results for the different sizes. As expected, regardless of strain  is 

always larger for the longer systems.  The non-monotonic response is maintained for all 

systems.  However, two additional trends are present.  First, larger system size amplifies 
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the initial increase in  (the slope of the curve is larger). Second, for larger systems, the 

onset of the turn around is delayed (i.e. the peak appears at larger strain).  

We attribute both of these observations to the nature of the (i) dispersion and (ii) 

scattering for the LA and ZA families. Regarding (i): before strain is applied, as sample 

length increases we expect that the effect of ZA modes on κ should be more pronounced 

than that of the LA modes, due to the quadratic dispersion and infinite density of states of 

the former. (Relatedly, in EMD simulations9 the contribution to κ of in-plane acoustic 

modes has been shown to converge relatively fast with system size, whereas the 

contribution arising from the ZA modes requires much larger simulation cells). When the 

sample is strained, these ZA modes become contributing carriers due to the linearization 

of their dispersion, resulting in a pronounced increase in . Regarding (ii), it is possible 

that the positive contribution to  of the ZA modes may be even further enhanced by the 

selection rules that prevent their scattering1,3 and allow them to remain ballistic carriers. 

(Note however that when strain is applied, since the dispersion of the ZA modes becomes 

linearized, the special selection rule that prevents them from being scattered will 

gradually be destroyed.)   

Based on these considerations, it is reasonable that in FIG. 7 the larger systems (L = 

300 nm) in which the effects of the zone center ZA modes (and their 

stiffening/linearization) are better captured show a more pronounced increase in  with 

strain, and a delayed onset of the turn around. Correspondingly for smaller sizes (Lo = 

130 nm), the effects of ZA mode linearization cannot be fully realized so the softening of 

the LA modes dominates the response: as strain is applied these systems show only a 

modest initial increase in , which quickly turns over into a more pronounced reduction. 
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This explains the observed length dependence of the system’s response to strain. 

Additionally, this length-sensitivity also explains the difference between previous EMD9 

and ab initio LD results8 (carried out for more macroscopic systems and show increasing 

κ with strain) and the typical NEMD results10-11 (which often report reduction in κ, but 

have been carried out for smaller systems a few 10’s of nm for which the initial 

enhancement is completely suppressed). Indeed, the only NEMD result that reports an 

increase in  with strain (silicene13) was also carried out for relatively large sample size 

(~687 nm). 

To test further this analysis, BTE solutions enable predictions for systems that are 

infinite in size. In FIG. 8 we present a comparison of the strain effects on finite (L = 215  

nm) and infinite G and BN. For the infinite systems, the mean free paths are obtained 

using iterative BTE solutions so that inherent phonon mean free paths are used to 

calculate  directly. Similar to the comparison between finite G/BN of different lengths 

(FIG. 7), the larger (infinite) systems (dashed lines) exhibit a more pronounced initial 

increase in κ. Moreover, at infinite length, a slight enhancement of  at small strains can 

also be identified even for pure G, before it again begins to decrease.  

Before concluding, we consider possible reasons for the differences in the relative 

sensitivity of κ of G, BN, and G/BN to strain. In FIG. 3, the superlattice exhibited the 

largest sensitivity, while graphene was least sensitive. In both cases, as strain is applied, 

the softening of the in-plane modes gives a decreasing contribution to κ ����e the 

linearization of the ZA modes gives an increasing contribution: the question then is 

which effect is most dominant.  In graphene, the in-plane modes have large group 

velocities and their relative contribution to total κ is very dominant. Thus, LA mode 
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softening has a comparatively large influence on κ, sufficient to offset the effects of ZA 

mode linearization.  By contrast, in the superlattice even before strain is applied the 

planar modes are already substantially softened due to the superlattice itself structure 

(interfaces); their overall relative contribution to κ is lower to begin. Therefore, their 

softening with strain has a relatively smaller effect, allowing the linearization of the ZA 

modes to dominate the response. 

 

VII.  CONCLUSIONS 

    In summary, in this work we demonstrate that the strain-dependent thermal 

conductivity of 2D materials exhibits anomalous features arising from the competition 

between out-of-plane flexural stiffening and in-plane longitudinal softening. These 

features include a non-monotonic dependence of the thermal conductivity on the applied 

strain, which is highly sensitive to the total system size. We show that the nature of the 

phonon flow, which is initially ballistic for the strain-free samples, changes to the 

transitional flow regime as an external strain is applied. Our analysis helps to resolve 

discrepancies between previous results presented in the literature. Moreover, we note that 

the length-dependent NEMD predictions presented here can in principal be verified 

directly by experiment.   
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FIG. 1. (a) Schematic of a G/BN superlattice with strain % . P denotes the 

superlattice period and L is the total length. Tensile strain is applied along the x-direction 

and meanwhile the superlattice sample is sandwiched between two heat baths for NEMD 

simulations. (b) The convergence of thermal conductivity of G/BN with varying widths 

W, for sample length L = 215 nm, both strained and unstrained.  
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FIG. 2. (a) Longitudinal stresses σxx on G and BN subdomains of the G/BN superlattice 

as a function of applied strain. (b) A snapshot of atomic configuration at 15%, 

showing that no tears or rupturing occurs; the strain is accommodated homogeneously 

throughout the superlattice. 
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FIG. 3. Thermal conductivity vs. strain for (a) graphene, (b) boron nitride, and (c) G/BN 

superlattices, all with total length Lo = 215 nm. The solid lines represent numerical BTE 

calculations, while the dashed lines indicate NEMD results. While graphene is initially 

insensitive to strain, BN and G/hBN become increasingly conducting under small strains; 

for all systems the conductivity then decreases under large strain. In (d), the NEMD 

results are normalized to compare the relative sensitivities of all systems, and for 

comparison to previously reported results for silicene.  
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FIG. 4. (a) Long-ranged and short-ranged phonon relaxation times obtained by fitting 

heat flux autocorrelation functions (as shown in the inset), and (b) longitudinal Knudsen 

number of long-ranged relaxation times vs. tensile strain for the Lo = 215 nm superlattice. 

All strained phononic flows turn out to be in the transitional regime. As the strain is 

increased, the reduction of the Knudsen number indicates that transport becomes more 

diffusive-like.  
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FIG. 5. (a-c): The phonon spectrum of (a) G, (b) BN, and (c) G/BN demonstrate that 

increased strain leads to reduced frequencies of LA modes and increased frequencies of 

ZA modes, while TA modes remain almost unchanged. The arrows indicate the trends for 

increasing strain, and the colors denote different mode families: blue (LA), orange (TA), 

and green (ZA). (d-f): The spectral decomposition for the three systems respectively 

shows the competition between LA and ZA modes. Here colors indicate the applied 

strain. Note that in (f) mode family differentiation has not been carried out for G/BN due 

to multiple zone folding, but the modes are approximately categorized by their relative 

contributions as indicated in the inset. In all cases, while the ZA contribution increases 

with strain, the LA contribution decreases. The competition between LA softening and 

ZA stiffening accounts for the variations of overall thermal conductivities.  
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FIG. 6. Schematic illustration of strain dependence, in this case for G/BN. Strain 

facilitates the crossover from ballistic-dominant to diffusive-dominant transport of long-

ranged phonons. These two regimes are, respectively, dominated by flexural mode 

stiffening and longitudinal mode softening. 
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FIG. 7. Thermal conductivity of G/BN with different total lengths (L=130, 215, and 300 

nm). For all strains, as L increases, so does κ. Additionally, as L increases, both (i) the 

initial increase of κ vs. strain becomes more pronounced, and (ii) the peak occurs at 

larger strains.   
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FIG. 8. Thermal conductivity of representative finite (Lo = 215 nm) and infinite G and 

BN obtained from BTE solutions, compared with previous silicene results. The infinite 

systems respond more sensitively than the corresponding finite systems to strain: they 

again show a more pronounced increase, and a delay in the onset of the turn around.   
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