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The intrinsic charge and spin conductivities of doped graphene in the Fermi-Liquid
regime
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The experimental availability of ultra-high-mobility samples of graphene opens the possibility to
realize and study experimentally the “hydrodynamic” regime of the electron liquid. In this regime
the rate of electron-electron collisions is extremely high and dominates over the electron-impurity
and electron-phonon scattering rates, which are therefore neglected. The system is brought to a
local quasi-equilibrium described by a set of smoothly varying (in space and time) functions, i.e.
the density, the velocity field and the local temperature. In this paper we calculate the charge and
spin conductivities of doped graphene due solely to electron-electron interactions. We show that, in
spite of the linear low-energy band dispersion, graphene behaves in a wide range of temperatures
as an effectively Galilean invariant system: the charge conductivity diverges in the limit T → 0,
while the spin conductivity remains finite. These results pave the way to the description of charge
transport in graphene in terms of Navier-Stokes equations.

PACS numbers: 73.25.+i,72.80.Vp,73.63.-b,75.76.+j,72.25.Ba

I. INTRODUCTION

Graphene, a two-dimensional (2D) layer of carbon
atoms arranged in a honeycomb lattice, has attracted a
great deal of theoretical and experimental interest in the
last few years1–6. Its properties, due to the gapless and
linear low-energy band dispersion, make it highly attrac-
tive for several practical applications spanning the fields
of optoelectronics, photonics, nanoplasmonics, metrol-
ogy, and energy generation and storage3,7–13. At the
same time it still offers an extremely interesting play-
ground for fundamental science. As the quality of sam-
ples continues to improve14, new breakthroughs are ex-
pected. Many-body interactions are indeed expected to
play a crucial role in the physics of ultra-high-mobility
samples6.

The transport properties of graphene are controlled
by the highly-mobile electrons in the π (valence) and π?

(conduction) bands, which arise from the hybridization of
the pz orbitals1 (ẑ denotes the direction orthogonal to the
graphene plane). The two bands touch with a linear dis-
persion at two inequivalent points (K and K ′) at the cor-
ners of the hexagonal Brillouin zone. For small energies,
momenta, and doping concentrations, it is possible to ex-
pand the tight-binding Hamiltonian around these points
in a k ·p fashion1. The resulting low-energy Hamiltonian
describes massless Dirac fermions (MDFs) characterized
by the density-independent Fermi velocity vF which is
about 300 times smaller than the speed of light.

A high-mobility gas of free carriers can be created in
graphene by, e.g., electrostatic gating or chemical dop-
ing. We assume these carriers to be in the “Fermi-
liquid” regime15. The Fermi energy is thus εF = ±vFkF

(energies are measured from the Dirac point), where

kF =
√

2πn/Nv is the Fermi wavevector, n is the ex-
cess carrier density, and Nv = 2 is the valley degeneracy.
The sign of εF depends on the type of carriers (+ for
electrons and − for holes). In what follows, owing to the

particle-hole symmetry of the low-energy MDF model1,
we consider only samples doped with an excess electron
density.

Most of the previous theoretical works on the trans-
port properties of doped graphene5 considered samples in
which the transport is dominated by disorder effects, and
in which electron-electron interactions play a minor or no
role. In this paper instead, in view of the possibilities of-
fered by the experimentally-available ultra-high-mobility
samples14, we focus on the “intrinsic” transport regime.
By intrinsic we mean that the transport properties are
solely determined by electron-electron interactions, and
disorder and phonons, as well as finite size effects, are
considered to be irrelevant. In this Paper we focus on
two fundamental properties of doped graphene, namely
the charge and spin conductivities. Let us write these
conductivities, at a finite frequency ω, in the common
form

σ(`)(ω) =
Q2
`D`

−iω + 1/τ
(`)
tr

, (1)

where ` = c for the charge conductivity, ` = s for the

spin conductivity, Qc = e and Qs = ~. Here τ
(c)
tr and τ

(s)
tr

are the transport relaxation times of charge and spin cur-
rents, respectively, whileDc andDs are the corresponding
“Drude weights”.

Any conductivity, associated with the transport of a
physical quantity, is, in general, affected by electron-
electron interactions. Both its “Drude weight” and its
relaxation time change when interactions are turned on.
In fact, as it happens for the quasiparticle lifetime (τqp

ee ),
also transport relaxation times are limited by thermally-
activated electron-electron scattering processes. More-
over, interactions renormalize the quasiparticle proper-
ties as the Fermi velocity, and accordingly the Drude
weights. The self-energy corrections which “dress” the
interacting Fermi velocity, v?F, are especially important
in graphene, since its low-energy MDF Hamiltonian has
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an infinite bandwidth1,6. Interactions between electrons
at the Fermi surface and states at large negative ener-
gies (in the valence band) lead to a logarithmic diver-
gence of v?F

16 as the system approaches the undoped
regime. Furthermore, electron-electron interactions are
also responsible for “vertex corrections” to the Drude
weights, which are encoded in the Landau parameters15

F
a/s
n . Vertex corrections are usually small in a wide

range of interaction strengths15. The full renormaliza-
tion of the charge Drude weight takes the form15,17,18

Dc = D(0)
c v?F(1 + F s

1)/vF, while the spin Drude weight

becomes19 Ds = D(0)
s v?F(1 + F a

1 )/vF (see also App. F).

Although this is a very general scheme, care must be
exerted when dealing with charge currents. In the case
of a parabolic band 2D electron gas (2DEG), for exam-
ple, Galilean invariance leads to a perfect cancellation
between self-energy and vertex corrections to the charge
Drude weight. In formulas v?F(1+F s

1) = vF. For the same
reason, the charge transport time of a clean Galilean-
invariant Fermi liquid is unaffected by electron-electron
interactions in the absence of Umklapp processes, and
it is thus infinite as in the non-interacting case. These
facts show that electron-electron interactions, which con-
serve the total momentum of the system at any scatter-
ing event, are also inefficient in relaxing a homogeneous
current. In Galilean invariant systems, the latter is in-
deed proportional to the total momentum, which is a
conserved quantity. At odds with this, the spin current
follows the “general rule” outlined above and is relaxed
by electron-electron interactions, which can transfer mo-
mentum between the two spin populations, giving rise to
the phenomenon of the spin-Coulomb drag20–22.

Since graphene is not a Galilean invariant system,
charge relaxation due to electron-electron interactions is
not forbidden a priori by any symmetry. In the low-
energy MDF model, indeed, the current and total mo-
mentum are not proportional to each other. It is there-
fore not surprising that electron-electron interactions af-
fect the charge Drude weight of graphene in a non-trivial
way17,18, i.e. the product v?F(1 + F s

1) 6= vF. It has been
shown that, to the first order in the strength of electron-
electron interactions17, vertex corrections exactly cancel
the self-energy renormalization due to particle-particle
scattering at the Fermi surface, but do not affect the log-
arithmic divergence of the Fermi velocity17. Moreover,
while it is clear that in a 2DEG the charge transport
time is unaffected by interactions, no conclusion can be
drawn a priori for graphene.

In this paper we prove that at low temperature the

charge transport time is infinite, i.e. 1/τ
(c)
tr = 0+, while

the spin transport time τ
(s)
tr is limited by electron-electron

interaction and it is thus finite. As noted above, the rela-
tion between the current and total momentum is highly
non-linear in graphene. Is it thus somewhat surprising
that the charge transport time is not affected by electron-
electron interactions, and that only the Drude weight is
renormalized. This result can be understood as follows.

While the momentum k and velocity vλ = λvFk/|k|
of a quasiparticle are not directly proportional to each
other, they become approximately linearly related at low
temperature for any finite doping concentration. Indeed,
in the limit of kBT � εF, the dominant contribution
to the transport comes from electrons in a thin shell of
size kBT around the Fermi energy. All these quasipar-
ticles have magnitude of momentum equal to kF, and
velocity v+ ' vFk/kF, if the system is n-doped. This
in turn implies that a linear relation is established be-
tween the momentum and velocity of each quasiparticle
and, accordingly, between the current and total momen-
tum of the system. Since the latter is conserved, at low
temperature electron-electron interactions cannot relax a
homogeneous current and doped graphene behaves as an
effectively Galilean-invariant system.

We stress that this argument applies only to the calcu-
lation of the charge transport time and breaks down when
one considers the charge Drude weight. The latter has
contributions from virtual processes between all quasi-
particle states, not only those around the Fermi energy.
Since these processes span all the quasiparticle spectrum,
the non-linear relation between the current and momen-
tum operators becomes apparent and the Drude weight
gets renormalized.

The situation is completely different for the spin con-
ductivity. In this case electron-electron interactions (i)
renormalize the spin Drude weight and (ii) provide a fi-
nite transport time for spin currents. While the former
effect is expected to be small in a wide range of values of
the strength of electron-electron interactions19, the lat-
ter is large. The spin conductivity, which was infinite
in the non-interacting limit, turns out to be finite in
an interacting system. It thus offers a more powerful
probe of electron-electron interactions as compared with
the charge conductivity. The physics behind the spin
conductivity is intimately related to the phenomenon of
spin-Coulomb drag. When a pure spin-polarized current
is injected into the system, each spin component of the
current exerts friction on the other spin component via
electron-electron interactions. The relative velocity of
the spin populations therefore decays in time, and even-
tually vanishes unless an external driving field is present,
in which case it reaches a steady state. This in turn im-
plies that the spin conductivity must be finite. Our cal-
culation shows that typical values for the spin transport
time range between 1− 10 ps.

This paper is organized as follows. In Sect. II we de-
fine the low-energy MDF model of graphene, and we set
up the all-order diagrammatic calculations needed to de-
termine the charge and spin conductivities. The main
steps of the calculation are given in Sect. III, which also
presents the main results of our paper, namely the charge
and spin transport times. Our results are summarized in
Sect. IV. Appendices. A-F provide several technical de-
tails of the calculation.
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II. MODEL AND BASIC DEFINITIONS

We model graphene with the low-energy MDF Hamil-
tonian (per valley flavor – hereafter ~ = 1)1,6

Ĥ =
∑
k,λ

εk,λψ̂
†
k,λ,σψ̂k,λ,σ +

1

2

∑
q

vq(n̂qn̂−q − n̂0) , (2)

where ψk,λ,σ (ψ†k,λ,σ) destroys (creates) a particle with
momentum k and spin σ = ± in band λ = ±, εk,λ =
λvFk, and vq = 2πe2/(εq) is the non-relativistic Coulomb
interaction. Here ε models the dielectric environment
surrounding graphene and, as a first approximation, it
is the average of the dielectric constants of media above
(ε1) and below (ε2) the sheet, i.e. ε = (ε1 + ε2)/2. The
strength of electron-electron interactions is characterized
by the density-independent “fine-structure constant” of
graphene (restoring ~) αee = e2/(~εvF). Finally, the den-
sity operator is

n̂q =
∑

k,σ,λ,λ′

Dλλ′(k−,k+)ψ̂†k−,λ,σψ̂k+,λ′,σ , (3)

where we defined k± = k± q/2, and the matrix element
of the density operator between the eigenstates of the
bare Hamiltonian is1

Dλλ′(k,k′) =
ei(ϕk−ϕk′ )/2 + λλ′e−i(ϕk−ϕk′ )/2

2
. (4)

Here ϕk is the angle between the momentum k and the
x̂-axis.

The spin-resolved current operator of MDFs is

ĵ(σ)
q =

∑
k,λ,λ′

Jλλ′(k−,k+)ψ̂†k−,λ,σψ̂k+,λ′,σ , (5)

where Jλλ′(k,k
′) ≡ [J

(x)
λλ′(k,k

′), J
(y)
λλ′(k,k

′)], and

J
(x)
λλ′(k,k

′) = vF
λ′ei(ϕk+ϕk′ )/2 + λe−i(ϕk+ϕk′ )/2

2
,

J
(y)
λλ′(k,k

′) = vF
λ′ei(ϕk+ϕk′ )/2 − λe−i(ϕk+ϕk′ )/2

2i
, (6)

are the matrix elements of the current operator between
the eigenstates |k, λ〉 and |k′, λ′〉 of the system.

Fig. 1 summarizes the all-order diagrammatic re-
summation needed to calculate the charge and spin con-
ductivities,23,24 which are microscopically defined as25

σ
(c)
αβ = lim

ω→0

[
ie2

ω

∑
σσ′

χ
j
(σ)
α j

(σ′)
β

(q = 0, ω)

]
, (7)

and

σ
(s)
αβ = lim

ω→0

[
i~2

ω

∑
σσ′

σσ′χ
j
(σ)
α j

(σ′)
β

(q = 0, ω)

]
. (8)

FIG. 1: a) The diagrammatic representation of the current-
current response function. The left dot is the bare vertex
Λ(0,α) (we suppress the momentum-energy dependence for
brevity), while the solid double lines are Green’s functions
dressed by the self-energy. In the large-N limit (where N is
the number of fermion flavors – 4 for graphene) it correspond
to the GW self-energy, which is depicted in panel b). Wavy
lines represent RPA screened interactions. Finally, the tri-
angle represents the vertex function Λβ which is dressed by
e-e interactions and satisfies the Bethe-Salpeter equation in
panel c). Note that the form of the irreducible interaction I is
uniquely determined by the choice of the self-energy, provided
Λβ must satisfy the Ward identities15 (see Fig. 2).

FIG. 2: The diagrams that contribute to the irreducible
interaction I of Fig. 1.

Here χ
j
(σ)
α j

(σ′)
β

(q = 0, ω) is the proper spin-resolved

current-current linear response function15 given by the
diagram in Fig. 1a). Its analytical expression on the
imaginary-frequency axis reads

χ
j
(σ)
α j

(σ′)
β

(q, iωm) = NvkBT
∑

k,λ,λ′

∑
εn

G
(σ)
λ (k−, iεn)

× Λ
(0,σ)
λλ′,α(k−,k+)G

(σ)
λ′ (k+, iεn + iωm)

× Λ
(σσ′)
λ′λ,β(k+, iεn + iωm,k−, iεn) , (9)

where α, β = x, y denote the Cartesian components of the
vectors, Nv = 2 is the number of valleys, εn = (2n+1)/β
(ωm = 2m/β) are fermionic (bosonic) Matsubara fre-

quencies (n,m = 0,±1,±2, . . .), G
(σ)
λ (k, iεn) = [iεn +

µ − εk,λ − Σ
(σ)
λ (k, iεn)]−1 is the spin-resolved Green’s

function on the imaginary-frequency axis (here µ is the
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chemical potential), and the bare current vertex deter-
mined by Eq. (5) reads

Λ
(0,σ)
λλ′,α(k−,k+) = J

(α)
λλ′ (k−,k+) . (10)

The term in the last line of Eq. (9), namely

Λ
(σσ′)
λ′λ,β(k+, iεn + iωm,k−, iεn), is the vertex function,

which is dressed by electron-electron interactions and
satisfies the self-consistent Bethe-Salpeter equation of
Fig. 1c) (see Sect. II B below). We stress that the choice
of the self-energy, together with the requirement of ful-
filling the Ward identities, uniquely determines the self-
consistent Bethe-Salpeter equation satisfied by the vertex
function, i.e. the irreducible interaction I.15

The GW self-energy shown in Fig. 1b) reads

Σ
(σ)
λ (k, iεn) = −kBT

∑
k′,λ′

∑
εn′

W (k′ − k, iεn′ − iεn)

× G
(σ)
λ′ (k′, iεn′)Dλλ′(k,k′)Dλ′λ(k′,k) .

(11)

Here W (q, iΩm) is the screened electron-electron inter-
action, represented in Fig. 1b) by a wavy line. In the
large-Nv limit this is given by

W (q, iΩm) =
vq

1− vqχnn(q, iΩm)
, (12)

where χnn(q, ω) is the proper density-density response
function15 of graphene. In principle, this should be cal-
culated in analogy to the current-current response func-
tion of Eq. (9), i.e. it should contain dressed Green’s
functions and vertex function. However, to simplify our
calculation we neglect the vertex corrections to χnn(q, ω),
which we define as

χnn(q, iωm) = NvkBT
∑

q′,εn,σ′

∑
λ′′,µ′′

G
(σ′)
λ′′ (q′, iεn)

× G
(σ′)
µ′′ (q′ + q, iεn + iωm)

× Dλ′′µ′′(q′, q′ + q)Dµ′′λ′′(q′ + q, q′) .

(13)

Note that the density vertices in Eq. (13) are not renor-
malized by electron-electron interactions. This is essen-
tially a large-N approximation for the self-energy. We are
indeed summing the diagrams with the largest number of
particle-hole propagators, dressing the Green’s function
with self-energy insertions.

Naturally, by neglecting the vertex corrections in
Eq. (13) we are breaking the gauge-invariance relation
between the current-current and the density-density re-
sponse functions15,26. Therefore, one should not try to
evaluate, e.g., the charge conductivity from the term of
order q2 in the small-q expansion of Eq. (13): the result
would indeed be finite (in contrast to what we show in
what follows) and completely meaningless. Retaining the
vertex corrections would be of capital importance in this
case.

In our calculation, however, Eq. (13) is used only to
produce an approximation for the single-particle self-
energy. The latter is then used to dress the Green’s
functions that enter in the expression for the current-
current linear response function, which contains also the
vertex corrections. The latter are chosen in such a way
that the Ward identities are satisfied. Namely, the self-
energy and the irreducible interactions I [see Fig. 2] are
chosen in a consistent way, and the form of the latter is
uniquely determined by the choice of the self-energy. The
choice of neglecting the vertex corrections in Eq. (13) has
of course a quantitative impact27 on the final result (as
any other approximation). However, the result has the
correct qualitative behavior: for example, we obtain a di-
verging charge conductivity in the absence of momentum-
non-conserving processes.

The dressed vertex satisfies the following self-
consistent Bethe-Salpeter equation15:

Λ
(σσ′)
λ′λ,β(k+, iεn + iωm,k−, iεn) = δσσ′Λ

(0,σ)
λ′λ,β(k+,k−)

+
∑

i=1,...,3

Λ
(i,σσ′)
λ′λ,β (k+, iεn + iωm,k−, iεn) . (14)

The three contributions Λ
(i,σσ′)
λ′λ,β (k+, iεn + iωm,k−, iεn)

(with i = 1, . . . , 3) correspond to the three diagrams in
Fig. 2. They read

Λ
(1,2,σσ′)
λ′λ,β (k+, iεn + iωm,k−, iεn) = −kBT

∑
k′,εn′

∑
µ,µ′,σ′′

×W (1,2,σσ′′)
λλ′µµ′ (k′,k, iεn′ − iεn)G

(σ′′)
µ′ (k′+, iεn′ + iωm)

×G(σ′′)
µ (k′−, iεn′)Λ

(σ′′σ′)
µ′µ,β (k′+, iεn′ + iωm,k

′
−, iεn′) ,

(15)

and

Λ
(3,σσ′)
λ′λ,β (k+, iεn + iωm,k−, iεn) = −kBT

∑
k′,εn′

×
∑

µ,µ′,σ′′

W
(3,σσ′′)
λλ′µµ′ (k′,k, iεn′ + iεn + iωm)

×G(σ′′)
µ′ (k′+, iεn′ + iωm)G(σ′′)

µ (k′−, iεn′)

×Λ
(σ′′σ′)
µ′µ,β (k′+, iεn′ + iωm,k

′
−, iεn′) . (16)

Here we define

W
(1,σσ′′)
λλ′µµ′ (k′,k, iωm) = δσσ′′W (k − k′, iωm)

×Dλ′µ′(k+,k
′
+)Dµλ(k′−,k−) , (17)
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and

W
(2,σσ′′)
λλ′µµ′ (k′,k, iεn′ − iεn) = NvkBT

∑
q′,ωm′

×
∑
λ′′,µ′′

W (q′, iωm′)W (q′ − q, iωm′ − iωm)

×Dλ′λ′′(k+,k+ − q′)Dλ′′λ(k+ − q′,k−)

×Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+)

×G(σ)
λ′′ (k+ − q′, iεn + iωm − iωm′)

×G(σ′′)
µ′′ (k′+ − q′, iεn′ + iωm − iωm′) , (18)

and finally

W
(3,σσ′′)
λλ′µµ′ (k′,k, iεn′ + iεn + iωm) = NvkBT

∑
q′,ωm′

×
∑
λ′′,µ′′

W (q′, iωm′)W (q′ − q, iωm′ − iωm)

×Dλλ′′(k−,k− + q′)Dλ′′λ′(k− + q′,k+)

×Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+)

×G(σ)
λ′′ (k− + q′, iεn + iωm′)

×G(σ′′)
µ′′ (k′+ − q′, iεn′ + iωm − iωm′) . (19)

In what follows we start from the evaluation of the self-
energy corrections, and of the quasiparticle lifetime at the
Fermi surface, and we then proceed to the calculation of
the vertex correction.

A. The quasiparticle decay rate

In this section we calculate the quasiparticle lifetime
τqp
ee at the Fermi energy, defined as

1

τqp
ee

= 2

∫ ∞
−∞

dε
∂nF(ε)

∂ε
=m

[
Σ

(σ)
+ (k, ε+)

]∣∣∣
k=kF

,(20)

where the self-energy was defined in Eq. (11), and ε+ ≡
ε + i0+. We focus on the imaginary part of the self-
energy, which controls the charge and spin relaxation
times, and we disregard its real part, which is responsi-
ble for the renormalization of the Drude weights. In the
spirit of Landau theory of normal Fermi liquid, we take
care of this approximation of the diagrammatic calcula-
tion by replacing a posteriori the non-interacting Drude
weights with their interacting values. A microscopic cal-
culation of the charge Drude weight to the first order in
the strength of electron-electron interactions was given
in Refs. 17. As shown in App. A, at low temperature
(kBT � εF) Eq. (20) becomes

1

τ ee
qp

=
(kBT )2

3π

∫ 2kF(1−T̄ /2)

kFT̄

dq q|W (q, T̄ εF)|2

× =mχnn(q, T̄ εF)

T̄ εF
A(q,−T̄ εF) ,

(21)

FIG. 3: A pictorial representation of double particle-hole
excitations that contribute, to lowest order in the strength
of e-e interactions, to the quasiparticle decay rate calculated
in Sect. II A. Note that, since all the states involved in the
scattering process live at the Fermi surface, the conservation
of momentum constrains the initial states k and k′′− q to be
diametrically opposed. The same happens to the final states
k − q and k′′.

where the integration limits are due to =mχnn(q, T̄ εF),
which for small T̄ is finite only in the interval kFT̄ < q <
2kF(1− T̄ /2). Here T̄ = ζkBT/εF, ζ = π/

√
5, and

A(q, ω) = − π

vF

∫ 2π

0

dϕqδ(|k − q| − k − ω/vF)

× 1 + cos(ϕk−q + ϕk)

2

∣∣∣∣∣
k=kF

= −4π

v2
F

kF − ω/vF√
4k2

Fq
2 − (q2 − ω2/v2

F + 2kFω/vF)2

×
(

1− q2 − ω2/v2
F

4kF(kF − ω/vF)

)
× Θ

(
1−

∣∣∣∣q2 − ω2/v2
F + 2kFω/vF

2kFq

∣∣∣∣) . (22)

Eq. (21) describes, as shown in Fig. 3, the decay (scat-
tering) of a quasiparticle of momentum k to a state of
momentum k − q through the creation of an electron-
hole pair of total momentum q obtained by exciting a
particle of momentum k′′ − q to a state of momentum
k′′. Such a process is encoded in the density-density re-
sponse function28–32 =mχnn(q, T̄ εF) and is depicted in
Fig. 3. Notice that, since all the initial and final states
are on the Fermi surface, the conservation of momentum
implies that k and k′′ − q (and thus k − q and k′′) are
diametrically opposite. This fact will be used in what
follows to simplify the expressions of the transport times
(see App E).

Numerical results obtained from Eq. (21) are shown
in Fig. 4. In passing, we recall that the GW quasiparti-
cle lifetime is also calculated in Refs. 33,34. Contrary to
Eq. (21), the expressions given in Ref. 33 do not contain
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FIG. 4: (Color online) Panel a) the quasiparticle lifetime of
massless Dirac fermions τqpee , as defined in Eq. (21), in units of
picoseconds and plotted as a function of the density n in units
of 1012 cm−2 for three values of the dimensionless coupling
constant αee. In this plot we fixed the temperature T =
300 K. Panel b) same as in panel a) but shown as a function
of temperature (in units of K) for a fixed excess carrier density
n = 1012 cm−2.

any low-temperature approximation (see App. A for more
details). In Figs. 5-6 we show a comparison between the
quasiparticle lifetime calculated from Eq. (21) and the
“exact” one computed in Ref. 33. Note that the agree-
ment is very good in the chosen range of temperatures
and densities.

B. The vertex function and the Bethe-Salpeter
equation

In this section we summarize the complicated calcula-
tion of the vertex correction to the charge and spin con-
ductivities. The details of the derivation can be found in
Apps. B and C.

The first step of the calculation is to analytically con-
tinue Eq. (9) to real frequencies. We indeed recall that
the charge and spin conductivities are determined, ac-
cording to Eqs. (7) and (8), by the ω → 0 limit of the
retarded spin-resolved current-current response function
calculated at q = 0. We stress that the analytical con-
tinuation iωm → ω + i0+ must be performed before the
small-frequency limit.

After the analytical continuation to real frequen-
cies35, the current-current response function of Eq. (9)
contains products of advanced-advanced (schemati-
cally GAGA), retarded-retarded (GRGR) and advanced-
retarded (GAGR) Green’s function. The first two contri-
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FIG. 5: A comparison between the quasiparticle lifetime
calculated from Eq. (21) and the one computed in Ref. 33. In
this figure the temperature is kept fixed at T = 300 K and the
quasiparticle lifetime is plotted in units of ps as a function of
the density (in units of 1012 cm−2). Panel a)-c) refer to the
three values of the coupling constant αee = 0.5, αee = 0.9,
and αee = 2.2, respectively.

butions, GAGA and GRGR, have poles on the same side
of the complex plane. In the limit εFτ

qp
ee � 1 we can

neglect them35 and retain only the “mixed” term GAGR.
After some simple algebra, shown in detail in App. B,
Eq. (9) becomes

χ
j
(σ)
α j

(σ′)
β

(q, ω) = −Nv

∑
k,λ,λ′

∫
dε

2πi

[
nF(ε+ ω)− nF(ε)

]
× G

(A,σ)
λ (k−, ε)Λ

(0,σ)
λλ′,α(k−,k+)G

(R,σ′)
λ′ (k+, ε+ ω)

× Λ
(σσ′)
λ′λ,β(k+, ε+ + ω,k−, ε−) . (23)

We stress that Eq. (23) has been obtained by transform-
ing the sum over the Matsubara frequencies in an integral
over the branch cuts of the integrand, and by analyti-
cally continuing iωm → ω + i0+. Moreover, we retained
only the terms that contained the product of an advanced
and a retarded Green’s function, and therefore the two
energy arguments of the dressed vertex belong to oppo-
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FIG. 6: A comparison between the quasiparticle lifetime
calculated from Eq. (21) and the one computed in Ref. 33. In
this figure the density is kept fixed at n = 1012 cm−2 and the
quasiparticle lifetime is plotted in units of ps as a function
of the temperature (measured in K). Panel a)-c) refer to the
three values of the coupling constant αee = 0.5, αee = 0.9,
and αee = 2.2, respectively.

site halves of the complex plane. In the Bethe-Salpeter
equation for the dressed vertex we set iεn → ε− and
iεn + iωm → ε+ + ω. The calculation is quite lengthy,
and is performed in App. C. Here we report only the final
form of the self-consistent Bethe-Salpeter Eq. (14), i.e.

Λ
(σσ′)
λ′λ,β(k+, ε+ + ω,k−, ε−) = δσσ′Λ

(0,σ)
λ′λ,β(k+,k−)

+
∑

i=1,...,3

Λ
(i,σσ′)
λ′λ,β (k+, ε+ + ω,k−, ε−) . (24)

Also in the derivation of Eq. (24) we retained only mixed
terms of the form GAGR. In spite of this approxima-
tion, our calculation yields a closed set of self-consistent

equations. The terms {Λ(i,σσ′)
λ′λ,β (k+, ε+ + ω,k−, ε−), i =

1, . . . , 3} on the last line of Eq. (24) read

Λ
(1,σσ′)
λ′λ,β (k+, ε+ + ω,k−, ε−) = 4Nv

∑
k′,q′,σ′′

∑
µ,µ′

∑
λ′′,µ′′

×
∫

dε′

2πi

∫
dω′

2πi
|W (k − k′, ε′ − ε)|2

×
[
nF(ε′) + nB(ε′ − ε)

][
nF(ω′ + ε′)− nF(ω′ + ε)

]
×=m

[
G

(R,σ′′)
λ′′ (q′ − k, ω′ + ε)

]
×=m

[
G

(R,σ′′)
µ′′ (q′ − k′, ω′ + ε′)

]
×Dλ′µ′(k+,k

′
+)Dµλ(k′−,k−)

×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k)

×G(R,σ)
µ′ (k′+, ε

′ + ω)G(A,σ)
µ (k′−, ε

′)

×Λ
(σσ′)
µ′µ,β(k′+, ε

′
+ + ω,k′−, ε

′
−) , (25)

and

Λ
(2,σσ′)
λ′λ,β (k+, ε+ + ω,k−, ε−) = 4Nv

∑
k′,q′,σ′′

∑
µ,µ′

∑
λ′′,µ′′

×
∫

dε′

2πi

∫
dω′

2πi
W (q′, ω′+)W (q′, ω′− − ω)

×
[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ω′ − ε− ω)− nF(ω′ − ε′ − ω)

]
×=m

[
G

(R,σ)
λ′′ (k+ − q′, ε+ ω − ω′)

]
×=m

[
G

(R,σ′′)
µ′′ (k′+ − q′, ε′ + ω − ω′)

]
×Dλ′λ′′(k+,k+ − q′)Dλ′′λ(k+ − q′,k−)

×Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+)

×G(R,σ′′)
µ′ (k′+, ε

′ + ω)G(A,σ′′)
µ (k′−, ε

′)

×Λ
(σ′′σ′)
µ′µ,β (k′+, ε

′
+ + ω,k′−, ε

′
−) , (26)

and finally

Λ
(3,σσ′)
λ′λ,β (k+, ε+ + ω,k−, ε−) = −4Nv

∑
k′,q′,σ′′

∑
µ,µ′

∑
λ′′,µ′′

×
∫

dε′

2πi

∫
dω′

2πi
W (q′, ω′+)W (q′, ω′− − ω)

×
[
nF(ε′) + nB(ε′ + ε)

][
nF(ω′ + ε)− nF(ω′ − ε′ − ω)

]
×=m

[
G

(R,σ)
λ′′ (k− + q′, ε+ ω′)

]
×=m

[
G

(R,σ′′)
µ′′ (k′+ − q′, ε′ + ω − ω′)

]
×Dλλ′′(k−,k− + q′)Dλ′′λ′(k− + q′,k+)

×Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+)

×G(R,σ′′)
µ′ (k′+, ε

′ + ω)G(A,σ′′)
µ (k′−, ε

′)

×Λ
(σ′′σ′)
µ′µ,β (k′+, ε+ + ω,k′−, ε

′
−) . (27)

Equations (23)-(27), together with the inverse quasipar-
ticle lifetime defined in Eq. (21), constitute a closed
set of equations that can be used to determine the re-
tarded spin-resolved current-current response function in
the limit vFq � ω, (τqp

ee )−1 � εF. This calculation is
performed in the next section.



8

III. THE CHARGE AND SPIN
CONDUCTIVITIES OF GRAPHENE IN THE

FERMI-LIQUID REGIME

In this section we present the derivation of the charge
and spin conductivities of graphene. We start from
Eqs. (23)-(27), where we set q = 0 and we take the limit
ω → 0. To O(ω) Eq. (23) becomes

χ
j
(σ)
α j

(σ′)
β

(q = 0, ω) = ωNv

∑
k,λ,λ′

∫
dε

2πi

(
−∂nF(ε)

∂ε

)
× G

(A,σ)
λ (k, ε)Λ

(0,σ)
λλ′,α(k,k)G

(R,σ)
λ′ (k, ε+ ω)

× Λ
(σσ′)
λ′λ,β(k, ε+ + ω,k, ε−) . (28)

The limit ω → 0 is understood in this equation. We
observe that the function −∂nF(ε)/∂ε is peaked around
ε = 0 and tends to a δ-function in the low-temperature
limit εFτ

qp
ee � 1. We thus evaluate all the other functions

on the right-hand side of Eq. (28) at ε = 0, with the

exception of Λ
(σσ′)
λ′λ,β(k, ε+,k, ε−), which requires further

care. As it will become clear in what follows, the latter
contains Fermi and Bose factors which depend on ε and
that combine with ∂nF(ε)/∂ε in Eq. (28) to yield the
correct transport times. Missing this step would lead
to a non-cancellation between the self-energy and vertex
corrections in the charge channel. In the limit ω → 0 we
also approximate

G
(A,σ)
λ (k, 0)G

(R,σ)
λ′ (k, ω) ' − 2iδλλ′

ω + i/τqp
ee
=m

[
G

(R,σ)
λ (k, 0)

]
.

(29)
In so doing we neglect the incoherent part of the
Green’s function, i.e., the part of G that is not in-
cluded in the quasiparticle-pole approximation. Herein
lies our Fermi liquid approximation. At low temper-

ature, =m
[
G

(R)
λ (k, 0)

]
is a Lorentzian strongly peaked

around εk,λ = εF and with a width proportional to the
quasiparticle decay rate. This implies that k ∼ kF and
λ = λ′ = +. For εFτ

qp
ee � 1 the transport is domi-

nated by states that lie in a thin shell of thickness ' kBT
around the Fermi energy15.

At the same level of approximation, the dressed vertex
function satisfies the following Bethe-Salpeter equation
(see also App. D):

Λ
(σσ′)
++,β(k, ω+,k, 0−) = δσσ′Λ

(0,σ)
++,β(k,k)− 4iNv(kBT )2

3(ω + i/τqp
ee )

×
∑

k′,q′,σ′′

|W (q′, 0)|2=m
[
G

(R,σ′′)
+ (k′, 0)

]
×=m

[
G

(R,σ)
+ (k − q′, 0)

]
=m

[
G

(R,σ′′)
+ (q′ − k′, 0)

]
×D++(k,k − q′)D++(k − q′,k)D++(k′,k′ − q′)

×D++(k′ − q′,k′)
[
Λ

(σσ′)
++,β(k − q′, ω+,k − q′, 0−)

+Λ
(σ′′σ′)
++,β (k′, ω+,k′, 0−)

−Λ
(σ′′σ′)
++,β (k′ − q′, ω+,k′ − q′, 0−)

]
. (30)

Here the limits k = kF and ω → 0 are understood. To
arrive at Eq. (30) we have used the fact that in the low-
temperature limit the momenta k′, k − q′ and k′ − q′

are all pinned at the Fermi surface, i.e. |k′| = |k −
q′| = |k′ − q′| = |k| = kF, and that the corresponding
quasiparticles live in the conduction band (recall that
the system is n-doped). As shown in App. D, we have
carried out the integrations over energy arguments by
noting that the solution of Eq. (30) must eventually be
introduced into Eq. (28). After the integration, the sum
on the right-hand-side of Eq. (30) acquired the factor 4/3,
and some of the functions inside it were evaluated at an
energy equal to ε̄ [defined in Eq. (A14)], rather than at 0.
This second effect has been ignored in writing Eq. (30).
Indeed, keeping track of the small difference between ε̄
and 0 was crucial to get a finite quasiparticle lifetime
τqp
ee . However, as we show in what follows, the charge

transport time is always infinite while the spin transport
time is always finite, no matter what the value of ε̄ is.
Therefore, in both cases no error is produced by replacing
ε̄ ' 0 in the calculation of the transport times, at least
to the leading order in the low-temperature expansion.
Note that Eq. (30) is a closed self-consistent equation
for the dressed vertex with all momentum- and energy-
arguments pinned at the Fermi surface.

We now solve Eq. (30) with standard methods35. We
first reduce it to an algebraic equation with the following
Ansatz:

Λ
(σσ′)
++,β(k, ω+,k, 0−) = γσσ′(ω)Λ

(0,σ′)
++,β (k,k) , (31)

and we then solve it for γσσ′(ω). Note that at the Fermi

surface Λ
(0,σ′)
++,β (k,k) = vFk̂β . A further simplification

comes from the fact that the Green’s functions on the
right-hand side of Eq. (30) are independent of spin. We
suppress their spin dependence in what follows.

Let us first consider the Bethe-Salpeter Eq. (30) in
the charge channel. To obtain the dressed charge vertex,
after having introduced the Ansatz (31) into Eq. (30), we
sum over the spin index σ. After some algebra we obtain

[
γ+σ′(ω) + γ−σ′(ω)

]
Λ

(0,σ′)
++,β (k,k) = Λ

(0,σ′)
++,β (k,k)

− 8iNv(kBT )2

3(ω + i/τqp
ee )

[
γ+σ′(ω) + γ−σ′(ω)

] ∑
k′,q′

|W (q′, 0)|2

×=m
[
G

(R)
+ (k′, 0)

]
=m

[
G

(R)
+ (k − q′, 0)

]
×=m

[
G

(R)
+ (q′ − k′, 0)

]
D++(k,k − q′)

×D++(k − q′,k)D++(k′,k′ − q′)D++(k′ − q′,k′)

×
[
Λ

(0,σ′)
++,β (k − q′,k − q′) + Λ

(0,σ′)
++,β (k′,k′)

−Λ
(0,σ′)
++,β (k′ − q′,k′ − q′)

]
. (32)

The term in square brackets on the last line of Eq. (32)
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can be manipulated to give

Λ̃σ′(k,k
′, q′) ≡ Λ

(0,σ′)
++,β (k − q′,k − q′) + Λ

(0,σ′)
++,β (k′,k′)

− Λ
(0,σ′)
++,β (k′ − q′,k′ − q′)

=
kβ − q′β
kF

+
k′β
kF

+
k′β − q′β
kF

= Λ
(0,σ′)
++,β (k,k) , (33)

where we used that |k′| = |k− q′| = |k′− q′| = |k| = kF.
Let us now consider Eq. (30) in the spin channel. In this
case we first multiply by σ and then we sum over the spin
index σ. We get[

γ+σ′(ω)− γ−σ′(ω)
]
Λ

(0,σ′)
++,β (k,k) = σ′Λ

(0,σ′)
++,β (k,k)

− 8iNv(kBT )2

3(ω + i/τqp
ee )

[
γ+σ′(ω)− γ−σ′(ω)

] ∑
k′,q′

|W (q′, 0)|2

×=m
[
G

(R)
+ (k′, 0)

]
=m

[
G

(R)
+ (k − q′, 0)

]
×=m

[
G

(R)
+ (q′ − k′, 0)

]
D++(k,k − q′)

×D++(k − q′,k)D++(k′,k′ − q′)D++(k′ − q′,k′)

×Λ
(0,σ′)
++,β (k − q′,k − q′) . (34)

Eq. (32) and (34) control the vertex renormalization in
the charge and spin channels, respectively. Note that the
former depends only on the variable γ+σ′(ω) + γ−σ′(ω),
while the latter depends only on γ+σ′(ω)− γ−σ′(ω), and
that they are thus independent of each other. The spin
and charge channels are thus decoupled in an unpolarized
system.

We are now in the position to solve Eqs. (32)-(34). We

project them along the direction of Λ
(0,σ′)
++,β (k,k) = vFk̂β

and, after some straightforward algebraic manipulations,
we find

γ+σ′(ω) + γ−σ′(ω) =
ω + i/τqp

ee

ω + iη
, (35)

and

γ+σ′(ω)− γ−σ′(ω) = σ′
ω + i/τqp

ee

ω + i/τ
(s)
tr

. (36)

We recall that the quasiparticle lifetime at the Fermi sur-
face, τqp

ee , is defined in Eq. (21) and it is explicitly calcu-
lated in Fig. 4. In Eq. (36) we defined

1

τ
(s)
tr

= −8

3
Nv(kBT )2

∑
k′,q′

|W (q′, 0)|2=m
[
G

(R)
+ (k − q′, 0)

]
× =m

[
G

(R)
+ (k′, 0)

]
=m

[
G

(R)
+ (q′ − k′, 0)

]
× D++(k,k − q′)D++(k − q′,k)

× D++(k′,k′ − q′)D++(k′ − q′,k′)

×
[
1− cos(ϕk − ϕk−q′)

]
. (37)

The calculation of Eq. (37) is performed in App. E. Nu-

merical results for τ
(s)
tr are shown in Fig. 7. Note that
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FIG. 7: (Color online) Panel a) the spin transport time

of massless Dirac fermions τ
(s)
tr , as defined in Eq. (37), in

units of picoseconds and plotted as a function of the density
n in units of 1012 cm−2 for three values of the dimensionless
coupling constant αee. In this plot we fixed the temperature
T = 300 K. Panel b) same as in panel a) but shown as
a function of temperature (in units of K) for a fixed excess
carrier density n = 1012 cm−2.

the matrix element on the last line of Eq. (37) exactly
cancels the logarithmically diverging contribution from
small-momentum transfer processes, which are known to
dominate the quasiparticle decay rate33. Therefore the

spin transport time scales as τ
(s)
tr ∼ T−2, in the limit

of low temperature, without logarithmic-in-temperature
corrections.

We substitute Eqs. (31), with γσσ′(ω) defined in
Eqs. (35) and (36), back into the definition of the spin-
resolved current-current response function of Eq. (28).
From this we then compute the charge and spin con-
ductivities, according to the definitions given in Eqs. (7)
and (8). After some lengthy but straightforward algebra
we get (we restore ~ in the following expressions)

σ
(c)
αβ(ω) = Nv

e2

~
∑

k,λ,λ′

∫
dε

2π

(
−∂nF(ε)

∂ε

)
G

(A)
λ (k, ε)

× Λ
(0)
λ,λ′,α(k,k)G

(R)
λ′ (k, ε+ ω)Λ

(0)
λ′λ,β(k,k)

×
∑

σ,σ′=±
γσσ′(ω)

= δαβ
e2D(0)

c

−iω + η
. (38)

In Eq. (38) we defined the non-interacting charge Drude

weight D(0)
c = NvεF/(2π~2). Note that in this equation

the quasiparticle lifetime disappears as a consequence of
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a cancellation that occurs between the product of the two
Green’s functions, approximated as in Eq. (29), and the
vertex correction (35).

Equation (38) shows that the real part of the DC
charge conductivity of interacting graphene is infinite.
Moreover, the weight of the low-frequency Drude peak
coincides with the non-interacting one. As discussed in
Sect. II A, our theory does not capture the renormaliza-
tion of the Drude weight due to electron-electron inter-
actions6,17,18, since we have neglected the contribution of
the real part of the one-body self-energy. Such contribu-
tion can be taken into account by replacing

D(0)
c → Dc ≡

Nv

2π~2
(1 + F s

1)v?FkF . (39)

Note that electron-electron interactions affect the Drude
weight in a two-fold way. On one hand the bare Fermi ve-
locity is replaced by its interacting counterpart v?F, which
embeds the self-energy corrections at the single-particle
level. On the other hand, electron-electron interactions
provide also “vertex corrections” to two-body properties.
In the case of the charge conductivity these are encoded
in the Landau parameter15 F s

1 . Both the self-energy and
vertex corrections to the charge Drude weight have been
calculated to the first order in the strength of electron-
electron interactions in Ref. 17.

Our calculations show that doped graphene at low tem-
perature behaves as an effectively Galilean-invariant sys-
tem. Indeed, if graphene is doped and the tempera-
ture is sufficiently low, the velocity and momentum of
the current-carrying states, i.e. the quasiparticles at the
Fermi surface, are linearly related via the Fermi wavevec-
tor kF. This in turn implies that the current carried by
such states is proportional to their total momentum. As
in a parabolic-band electron gas, electron-electron inter-
actions conserve the total momentum and are thus in-
efficient in relaxing the current carried by quasiparticles
at the Fermi surface. We emphasize that this conclusion
is reached for doped graphene. As the doping level de-
creases at a given temperature the momentum-velocity
relation can no longer be linearized and the behavior of
the conductivities must be reconsidered. This is in all
likelihood the reason why pristine (undoped) graphene
exhibits a finite charge conductivity, as opposed to the
infinite conductivity discussed here.

Following steps analogous to those taken in the deriva-
tion of Eq. (38), we get the spin conductivity

σ
(s)
αβ(ω) = Nv~

∑
k,λ,λ′

∫
dε

2π

(
−∂nF(ε)

∂ε

)
G

(A)
λ (k, ε)

× Λ
(0,α)
λ,λ′ (k,k)G

(R)
λ′ (k, ε)Λ

(0,β)
λ′λ (k,k)

×
∑

σ,σ′=±
σσ′γσσ′(kF)

= δαβ
~2D(0)

s

−iω + 1/τ
(s)
tr

. (40)

Where the non-interacting spin-Drude weight D(0)
s coin-

cides with D(0)
c . Again, our result misses the renormal-

ization of the spin-Drude weight, which is calculated in
Ref. 19 for a parabolic-band electron gas and in App. F
for graphene and reads

Ds ≡
1 + F a

1

1 + F s
1

Dc . (41)

As it happens in a 2DEG, this renormalization is ex-
pected to be small also in graphene, for typical carrier
densities and in a broad range of values of the coupling
constant αee. The finiteness of the relaxation rate is thus
by far the largest effect of electron-electron interactions
on the spin transport in graphene. The spin conduc-
tivity becomes finite when particle-particle interactions
are turned on, even in a perfectly clean and infinite sys-
tem, and scales as ∼ T−2 in the DC limit (ω → 0).
Finally, we can calculate the spin-drag transresistivity22

ρ↑↓ in the limit kBT � εF, according to the defini-

tion ρ↑↓ = −
[
τ

(s)
tr Ds/e

2]−1. Neglecting the Fermi-liquid
renormalization of the Drude weight, For kBT/εF = 0.1
and for a coupling constant αee = 2.2 we get |ρ↑↓| ∼ 54 Ω.
As a comparison22, in a 2DEG with rs = αee and same
ratio kBT/εF, |ρ↑↓| ∼ 200 Ω.

IV. SUMMARY AND CONCLUSIONS

In this paper we have calculated two fundamental
transport properties of doped graphene, the charge and
spin conductivities, in the “hydrodynamic” regime of
the electron liquid36 — see Eqs. (38) and (40). In this
regime the rate of electron-electron collisions is extremely
high, and the other scattering mechanisms, like electron-
phonon or electron-impurity interactions, are negligi-
ble37,38. Electron-electron collisions bring the system to
a state of local quasi-equilibrium, which is described by
a set of smoothly varying (in space and time) functions,
i.e. the density, the velocity field and the local tem-
perature39. Such intriguing regime is rarely relevant in
solids36, since momentum-non-conserving processes dom-
inate the charge transport. Very low temperatures and
clean samples are needed to expose it in experiments.

Graphene stands out, among known materials, as
the ultimate hydrodynamic material. Ultra-high-quality
samples of graphene deposited on hexagonal Boron Ni-
tride, which can be produced by standard techniques, are
indeed virtually free of long- and short-range impurities
and of charge inhomogeneities.14 This, combined with the
linear band dispersion and the lattice stiffness,40 yields a
fairly large temperature window in which the hydrody-
namic regime can be realized. Indeed, due to the high lat-
tice stiffness, scattering with in-plane acoustic phonons
becomes relevant only at temperatures of the order of the
room temperature41.

Our calculations show that, while the spin conductivity
is finite and limited by electron-electron interactions, the
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homogeneous charge conductivity is infinite as for an in-
teracting 2DEG. The latter result stems from the fact
that, at low temperature, doped graphene behaves as
an effectively Galilean-invariant system, and paves the
way to the description of charge transport in graphene
in terms of Navier-Stokes equations. The relaxation of
inhomogeneous current distributions is controlled by the
viscosities of the electron liquid in graphene, which will
be given in a forthcoming publication.

As the doping level decreases and graphene approaches
the undoped regime, the momentum-velocity relation can
no longer be linearized. Thus, not only the Drude weight
gets renormalized, but also the charge transport time be-
comes finite because of electron-electron interactions42.
This in turn implies that, in this regime, the evolution of
the charge current is described by a “generalized” set of
Navier-Stokes equations which contain also a relaxation
term for the charge current. To describe the transport
in the undoped regime, the author of Ref. 43 introduce
the equations of motion of three macroscopic currents,
i.e. the charge, energy and “quasiparticle-imbalance”
currents43. In the doped regime the three currents coin-
cide43 and the relaxation rate of the charge current due to
electron-electron interactions vanishes. Thus, the trans-
port can be described by taking into account only the
charge current, whose evolution is described by the stan-
dard Navier-Stokes equation of Galilean invariant sys-
tems.
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Appendix A: The calculation of the quasiparticle
lifetime

Before deriving the quasiparticle lifetime, let us recall
Eqs. (11)-(13) which define the GW self-energy. They
read

Σ
(σ)
λ (k, iεn) = −kBT

∑
k′,λ′

∑
εn′

W (k′ − k, iεn′ − iεn)

× G
(σ)
λ′ (k′, iεn′)Dλλ′(k,k′)Dλ′λ(k′,k) ,

(A1)

and

W (q, iΩm) =
vq

1− vqχnn(q, iΩm)
, (A2)

and finally

χnn(q, iωm) = NvkBT
∑

q′,εn,σ′

∑
λ′′,µ′′

G
(σ′)
λ′′ (q′, iεn)

× G
(σ′)
µ′′ (q′ + q, iεn + iωm)

× Dλ′′µ′′(q′, q′ + q)Dµ′′λ′′(q′ + q, q′) .

(A3)

We first consider Eq. (A1), and we analytically con-
tinue it to real frequencies. We thus define fΣ(iεn′ −
iεn, iεn′) such that

Σ(σ)(k, iεn) ≡ −kBT
∑
εn′

fΣ(iεn′ − iεn, iεn′)

=

∮
C

dz

2πi
nF(z)fΣ(z − iεn, z) . (A4)

The contour C in the complex plane encircles all the poles

of the Fermi function nF(z) =
[

exp(βz) + 1
]−1

, and
leaves outside the branch cuts of fΣ(z−iεn, z), which are
parallel to the real axis and pass through z = 0, iεn. De-
forming the contour of integration to encircle the branch
cuts of fΣ(z − iεn, z), and taking the limit iεn → ε+ iη
we obtain the retarded self-energy15

Σ(σ)(k, ε+) =

∫ ∞
−∞

dε′

2πi

{[
nF(ε′) + nB(ε′ − ε)

]
×
[
fΣ(ε′− − ε, ε′+)− fΣ(ε′+ − ε, ε′+)

]
+ nF(ε′)

[
fΣ(ε′− − ε, ε′−)− fΣ(ε′+ − ε, ε′+)

]}
.

(A5)

Here ε± = ε± iη. The term in the last line of Eq. (A5) is
purely real, since it is multiplied by the imaginary unit.
We thus get

1

τqp
ee

= −2

∫ ∞
−∞

dε

∫ ∞
−∞

dε′

π

∂nF(ε)

∂ε

[
nF(ε′) + nB(ε′ − ε)

]
×

∑
k′,λ,λ′

=mG(σ)(k′, ε′+)=mW (k − k′, ε′+ − ε)

× Dλλ′(k,k′)Dλ′λ(k′,k) . (A6)

Here we understand that |k| = kF. The imaginary part
of the screened interaction reads

=mW (q, ω+) = |W (q, ω+)|2=mχnn(q, ω+) . (A7)

The analytical continuation of χnn(q, iωm) defined in
Eq. (A3) can be performed in analogy with that of the
self-energy. We thus define

χnn(q, iωm) = kBT
∑
εn

fχ(iεn + iωm, iεn)

= −
∮
C′

dz

2πi
nF(z)fχ(z + iωm, z) .(A8)

Also the contour C′ encircles only the poles of the
Fermi function and leaves outside the branch cuts of
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fχ(z + iωn, z), which are parallel to the real axis and
pass through z = 0,−iωm. Deforming the contour of in-
tegration to encircle the branch cuts of fχ(z + iωn, z),
and taking the limit iωm → ω + iη we get

χnn(q, ω+) = −
∫ ∞
−∞

dε′′

2πi

{[
nF(ε′′ + ω)− nF(ε′′)

]
×
[
f(ε′′+ + ω, ε′′−)− f(ε′′− + ω, ε′′−)

]
+ nF(ε′′)

[
f(ε′′+ + ω, ε′′+)− f(ε′′− + ω, ε′′−)

]}
.

(A9)

Again the last term gives no contribution to the imagi-
nary part, which becomes

=mχnn(q, ω+) = −Nv

∑
q′,σ′,
λ′′,µ′′

∫
dε′′

π

[
nF(ε′′)− nF(ε′′ + ω)

]
× =mG(σ′)

λ′′ (q′, ε′′+)=mG(σ′)
µ′′ (q′ + q, ε′′+ + ω)

× Dλ′′µ′′(q′, q′ + q)Dµ′′λ′′(q′ + q, q′) .

(A10)

We put Eq. (A10) into Eq. (A7) and then back into
Eq. (A6), and we get

1

τqp
ee

= 2Nv

∑
k′,q′,σ′

∑
λ,λ′,
λ′′,µ′′

∫ ∞
−∞

dε

∫ ∞
−∞

dε′

π

∫ ∞
−∞

dε′′

π

∂nF(ε)

∂ε

×
[
nF(ε′) + nB(ε′ − ε)

][
nF(ε′′ + ε)− nF(ε′′ + ε′)

]
× |W (k − k′, ε′+)|2=mG(σ)(k′, ε′+)=mG(σ′)

λ′′ (q′ − k, ε′′+ + ε)

× =mG(σ′)
µ′′ (q′ − k′, ε′′ + ε′+)Dλλ′(k,k′)Dλ′λ(k′,k)

× Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k) . (A11)

We now use the fact that

N =
∂nF(ε)

∂ε

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ε′′ + ε)− nF(ε′′ + ε′)

]
=

∂nB(ε′′)

∂ε′′
[
nF(ε+ ε′′)− nF(ε)

]
×
[
nF(ε′ + ε′′)− nF(ε′)

]
→ ε′′2

∂nB(ε′′)

∂ε′′
∂nF(ε)

∂ε

∂nF(ε′)

∂ε′
. (A12)

In evaluating an integral of the form

I =

∫ ∞
−∞

dε′′
∂nB(ε′′)

∂ε′′
ε′′2f(ε′′) , (A13)

where f(ε′′) is some smooth function of its argu-
ment, we exploit the fact that the weighting function
ε′′2∂nB(ε′′)/∂ε′′ is strongly peaked at ε′′ = 0 and its
width scales with k2

BT
2/εF. This does not mean, how-

ever, that one can simply replace f(ε′′) by f(0). Such

a crude approximation would introduce a spurious diver-
gence in the quasiparticle decay rate, because it spoils the
subtle cancellation between two infinities which occur (i)
in the phase space of the collinear scattering44,45 and (ii)
in the screening of e-e interactions. Both divergences are
connected to the linear-in-momentum energy dispersion
of massless Dirac fermions. The cancellation occurs as
long as the argument of the function f(ε) is finite. To
take this into account we approximate∫ ∞
−∞

dε′′
∂nB(ε′′)

∂ε′′
ε′′2f(ε′′) = −2π2(kBT )2

3
f(ε̄) +O(T 4) ,

(A14)
where ε̄ can be estimated as

ε̄ =
1

2

√
− 3

2π2(kBT )2

∫ +∞

−∞
dε ε4

∂nB(ε)

∂ε
= T̄ εF . (A15)

Here we have defined T̄ = ζkBT/εF and ζ = π/
√

5.
The factor −3/[2π2(kBT )2] normalizes the weight of the
function ε2∂nB(ε)/∂ε to one. We have thus taken ε̄ to
be half of the variance of the distribution ε2∂nB(ε)/∂ε.
Eq. (A14) shows the crucial approximation that distin-
guishes our results for the quasiparticle lifetime from
those of Ref. 33. There the authors, although starting
from the same GW approximation for the self-energy and
deriving an expression equivalent to Eq. (A11), did not
approximate the final result according to Eq. (A14). The
latter allows us to reduce the number of numerical inte-
grations to be performed. With this approximation we
finally get the quasiparticle lifetime at the Fermi surface:

1

τqp
ee

= −4

3
Nv(kBT )2

∑
k′,q′,σ′

|W (k − k′, ε̄+)|2

× =mG(σ)
+ (k′, ε̄+)=mG(σ′)

+ (q′ − k, 0+)

× =mG(σ′)
+ (q′ − k′, ε̄+)D++(k,k′)D++(k′,k)

× D++(q′ − k, q′ − k′)D++(q′ − k′, q′ − k) .

(A16)

Shifting k′ → k − q′′ and q′ → k − k′′ we get

1

τqp
ee

= −4

3
Nv(kBT )2

∑
k′′,q′′,σ′

|W (q′′, ε̄+)|2

× =mG(σ)
+ (k − q′′, ε̄+)=mG(σ′)

+ (k′′ − q′′, ε̄+)

× =mG(σ′)
+ (k′′, 0+)D++(k,k − q′′)D++(k − q′′,k)

× D++(k′′,k′′ − q′′)D++(k′′ − q′′,k′′) ,

(A17)

which can be recasted into the following Fermi-golden-
rule form

1

τ ee
qp

=
4π

3
(kBT )2

∑
q

|W (q, ε̄)|2=mχnn(q, ε̄)

ε̄

× =m
[
G

(R,σ)
+ (k − q,−ε̄)

]1 + cos(ϕk−q − ϕk)

2
.

(A18)
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Note that in these equation we do not sum over the spin
index σ. Since the system is spin-unpolarized the life-
times at the Fermi surface of the two spin populations
coincide.

Appendix B: Analytical continuation of the response
function

To analytically continue iωm → ω + iη in Eq. (9) we
define the function f(iε, iε+ iω) such that

χ
j
(σ)
α j

(σ′)
β

(q, iωm) ≡ kBT
∑
εn

f(iεn, iεn + iωm)

= −
∮

dz

2πi
nF(z)f(z, z + iωm) ,

(B1)

where we suppress for brevity all its momentum depen-
dence. The contour of integration in Eq. (B1) is chosen
in such a way as to encircle all the poles of nF(z) and
to exclude all the branch cuts of f(z, z + iωm), which
occur for =m(z) = 0 and =m(z + iωm) = 0. We trans-
form the contour-integration in an integration over the
branch cuts and we then perform the analytical continu-
ation iωm → ω + iη. We get

χ
j
(σ)
α j

(σ′)
β

(q, ω) = −
∫

dε

2πi

{[
nF(ε+ ω)− nF(ε)

]
×
[
f(ε−, ε+ + ω)− f(ε−, ε− + ω)

]
+ nF(ε)

[
f(ε+, ε+ + ω)− f(ε−, ε− + ω)

]}
. (B2)

Here ε± = ε ± iη. After the analytical continua-

tion, G
(σ)
λ (k, ε+) = G

(R,σ)
λ (k, ε) and G

(σ)
λ (k, ε−) =

G
(A,σ)
λ (k, ε). Here G

(A,σ)
λ (k, ε) [G

(R,σ)
λ (k, ε)] represents

the advanced [retarded] Green’s function.
Note that the square brackets in the last line of

Eq. (B2) contain a purely imaginary quantity, which
(being divided by the imaginary unit) gives a purely
real contribution to χ

j
(σ)
α j

(σ′)
β

(q, ω). Note also that

f(ε−, ε+ + ω) contains the product of a retarded and an
advanced Green’s function, whereas in f(ε−, ε−+ω) and
f(ε+, ε+ +ω) both Green’s functions are either advanced
or retarded. The last two functions [f(ε−, ε− + ω) and
f(ε+, ε+ + ω)] have all the poles on the same side of the
complex plane. Note however that, as usual35, we can
exploit this property only performing the integral over
the band energies. We thus get that f(ε−, ε+ + ω) gives
the dominant contribution when εFτ

qp
ee � 1. Since we

are interested in the Fermi liquid regime, in what follows
we will retain only this term. Eq. (B2) thus becomes

χ
j
(σ)
α j

(σ′)
β

(q, ω) = −Nv

∑
k,λ,λ′

∫
dε

2πi

[
nF(ε+ ω)− nF(ε)

]
× G

(A,σ)
λ (k−, ε)Λ

(0,σ)
λλ′,α(k−,k+)G

(R,σ)
λ′ (k+, ε+ ω)

× Λ
(σσ′)
λ′λ,β(k+, ε+ + ω,k−, ε−) , (B3)

which coincides with Eq. (23).

Appendix C: Analytical continuation of the
Bethe-Salpeter equation

In this section we guide the reader through the long
and complicated calculation of the vertex correction
to the charge and spin conductivities. We analyti-

cally continue the three contributions Λ
(i,σσ′)
λ′λ,β (k+, iεn +

iωm,k−, iεn) (i = 1, . . . , 3), defined in Eqs. (15)-(19) to
real frequencies. In the Fermi-liquid regime we consider
only the dominant contribution to the dressed vertex,
to be used in combination with the product of the re-
tarded and advanced Green’s functions that appears in
Eq. (B3). From this we see that the analytic continua-

tion of Λ
(i,σσ′)
λ′λ,β (k+, iεn + iωm,k−, iεn) is done with the

prescriptions iωm → ω+, iεn → ε−, iεn + iωm → ε+ +ω.

1. Analytical continuation of Eq. (15)

We define the function g(iεn′ , iεn′ + iωm, iεn′ − iεn)
such that

Λ(1,2)(k+, iεn + iωm,k−, iεn)

≡ −kBT
∑
εn′

g(iεn′ , iεn′ + iωm, iεn′ − iεn)

=

∮
dz

2πi
nF(z)g(z, z + iωm, z − iεn) . (C1)

Here and in what follows we suppress for brevity all the
spin, band and spatial indices of the dressed vertex. As
usual, we transform the sum over the poles of nF(z) in
an integration over the branch cuts of g(z, z + iωm, z −
iεn). We then perform the analytic continuations with
the prescription iωm → ω+, iεn → ε−, iεn + iωm →
ε+ + ω. After some lengthy but straightforward algebra
we get

Λ(1,2)(k+, ε+ + ω,k−, ε−) =

∫
dε′

2πi

{
nF(ε′)

×
[
g(ε′+, ε

′
+ + ω, ε′+ − ε)− g(ε′−, ε

′
+ + ω, ε′+ − ε)

]
+ nF(ε′)

[
g(ε′− − ω, ε′+, ε′− − ε− ω)

− g(ε′− − ω, ε′−, ε′− − ε− ω)
]

− nB(ε′)
[
g(ε′− + ε, ε′+ + ε+ ω, ε′+)

− g(ε′− + ε, ε′+ + ε+ ω, ε′−)
]}

. (C2)

We now shift ε′ → ε′ + ω in the third and fourth lines of
Eq. (C2). We note that we can safely take the limit ω → 0
in nF(ε′ + ω). Note also that g(ε′+, ε

′
+ + ω, ε′+ − ε) and

g(ε′−−ω, ε′−, ε′−− ε−ω) have the poles on the same side
of the complex plane, and therefore can be neglected35

in the limit of εFτ
qp
ee � 1. Shifting ε′ → ε′+ ε in the last
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two lines of Eq. (C2) we readily obtain

Λ(1,2)(k+, ε+ + ω,k−, ε−) =
∑
k′,σ′′

∑
µ,µ′

∫
dε′

2πi

×
[
W

(1,2,σσ′′)
λλ′µµ′ (k′,k, ε′− − ε)−W

(1,2,σσ′′)
λλ′µµ′ (k′,k, ε′+ − ε)

]
×
[
nF(ε′) + nB(ε′ − ε)

]
G

(R,σ′′)
µ′ (k′+, ε

′ + ω)

×G(A,σ′′)
µ (k′−, ε

′)Λ
(σ′′σ′)
µ′µ,β (k′+, ε

′
+ + ω,k′−, ε

′
−) . (C3)

It remains to determine W
(1,2,σσ′′)
λλ′µµ′ (k′,k, ε′± − ε).

Eq. (C3) implies that we have to analytically continue
the functions W (1,2) with the prescription iεn′ → ε′− and
iεn′ + iωm → ε′+ + ω.

a. The analytical continuation of Eq. (17)

We now perform the analytical continuation of Eq. (17)
with the prescription iωm → ω+, iεn → ε−, iεn+ iωm →
ε+ + ω, iεn′ → ε′−, and iεn′ + iωm → ε′+ + ω. As
shown in Eq. (C3), we need to calculate the function

W
(1,σσ′′)
λλ′µµ′ (k,k′, ε′− − ε) − W

(1,σσ′′)
λλ′µµ′ (k,k′, ε′+ − ε), which

reads

W
(1,σσ′′)
λλ′µµ′ (k,k′, ε′− − ε)−W

(1,σσ′′)
λλ′µµ′ (k,k′, ε′+ − ε) = δσσ′′

×
[
W (k − k′, ε′− − ε)−W (k − k′, ε′+ − ε)

]
× Dλ′µ′(k+,k

′
+)Dµλ(k′−,k−)

= −2iδσσ′′=m
[
W (k − k′, ε′+ − ε)

]
× Dλ′µ′(k+,k

′
+)Dµλ(k′−,k−)

=−2iδσσ′′ |W (k − k′, ε′ − ε)|2=m
[
χ(0)
nn(k − k′, ε′+ − ε)

]
× Dλ′µ′(k+,k

′
+)Dµλ(k′−,k−) . (C4)

The imaginary part of the density-density response func-
tion was given in Eq. (A10). After some straightforward
manipulation, we get

=m
[
χnn(k − k′, ε′+ − ε)

]
= 2Nv

∑
q′,σ′′′

∑
λ′′,µ′′

∫
dω′

2π

×
[
nF(ω′ + ε′)− nF(ω′ + ε)

]
×=m

[
G

(R,σ′′′)
λ′′ (q′ − k, ω′ + ε)

]
×=m

[
G

(R,σ′′′)
µ′′ (q′ − k′, ω′ + ε′)

]
×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k) .(C5)

Putting Eq. (C5) into Eq. (C4) we finally find

W
(1,σσ′′)
λλ′µµ′ (k,k′, ε′− − ε)−W

(1,σσ′′)
λλ′µµ′ (k,k′, ε′+ − ε)

= 4Nvδσσ′′ |W (k − k′, ε′ − ε)|2
∑

q′,σ′′′

∑
λ′′,µ′′

×
∫
dω′

2πi

[
nF(ω′ + ε′)− nF(ω′ + ε)

]
×=m

[
G

(R,σ′′′)
λ′′ (q′ − k, ω′ + ε)

]
×=m

[
G

(R,σ′′′)
µ′′ (q′ − k′, ω′ + ε′)

]
×Dλ′µ′(k+,k

′
+)Dµλ(k′−,k−)

×Dλ′′µ′′(q′ − k, q′ − k′)Dµ′′λ′′(q′ − k′, q′ − k) .

(C6)

b. The analytical continuation of Eq. (18)

We now turn to the analytical continuation of Eq. (18)
with the prescription iωm → ω+, iεn → ε−, iεn+ iωm →
ε+ + ω, iεn′ → ε′−, and iεn′ + iωm → ε′+ + ω. This time
we define

W
(2,σσ′′)
λλ′µµ′ (k′,k, iεn′ − iεn) ≡

∮
dz

2πi
nB(z)

× w2(z, z − iωm, iεn + iωm − z, iεn′ + iωm − z) .
(C7)

Integrating over the branch cuts of w2(z, z − iωm, iεn +
iωm − z, iεn′ + iωm − z), and performing the analytical
continuations as stated before, we get

W
(2,σσ′′)
λλ′µµ′ (k′,k, ε′± − ε) =

∫
dω′

2πi

{
nB(ω′)

×
[
w2(ω′+, ω

′
− − ω, ε+ ω − ω′−, ε′ + ω − ω′−)

− w2(ω′−, ω
′
− − ω, ε+ ω − ω′−, ε′ + ω − ω′−)

]
+ nB(ω′)

[
w2(ω′+ + ω, ω′+, ε− ω′+, ε′ − ω′+)

− w2(ω′+ + ω, ω′−, ε− ω′+, ε′ − ω′+)
]

− nF(ω′)
[
w2(ω′+ + ε+ ω, ω′− + ε,−ω′+, ε′ − ε− ω′∓)

− w2(ω′+ + ε+ ω, ω′− + ε,−ω′−, ε′ − ε− ω′∓)
]

− nF(ω′)
[
w2(ω′+ + ε′ + ω, ω′− + ε′, ε− ε′ − ω′±,−ω′+)

− w2(ω′+ + ε′ + ω, ω′− + ε′, ε− ε′ − ω′±,−ω′−)
]}

.

(C8)

Note that the terms on the r.h.s. of Eq. (C8) proportional

to nB(ω′) are identical in both W
(2,σσ′′)
λλ′µµ′ (k′,k, ε′±−ε) and

thus vanish when the difference is taken. We thus neglect
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them in what follows. Eq. (C8) reduces to

W
(2,σσ′′)
λλ′µµ′ (k′,k, ε′± − ε) = −

∫
dω′

2πi

{
nF(ω′ − ε− ω)

×
[
w2(ω′+, ω

′
− − ω, ε+ ω − ω′+, ε′ + ω − ω′∓)

− w2(ω′+, ω
′
− − ω, ε+ ω − ω′−, ε′ + ω − ω′∓)

]
+ nF(ω′ − ε′ − ω)

×
[
w2(ω′++, ω′− − ω, ε+ ω − ω′±, ε′ + ω − ω′+)

− w2(ω′+, ω
′
− − ω, ε+ ω − ω′±, ε′ + ω − ω′−)

]}
.

(C9)

Finally,

W
(2,σσ′′)
λλ′µµ′ (ε′− − ε)−W

(2,σσ′′)
λλ′µµ′ (ε′+ − ε) =

∫
dω′

2πi

×
[
nF(ω′ − ε− ω)− nF(ω′ − ε′ − ω)

]
×
[
w2(ω′+, ω

′
− − ω, ε+ ω − ω′+, ε′ + ω − ω′−)

− w2(ω′+, ω
′
− − ω, ε+ ω − ω′−, ε′ + ω − ω′−)

− w2(ω′+, ω
′
− − ω, ε+ ω − ω′+, ε′ + ω − ω′+)

+ w2(ω′+, ω
′
− − ω, ε+ ω − ω′−, ε′ + ω − ω′+)

]
= 4Nv

∑
q′,λ′′,µ′′

∫
dω′

2πi
W (q′, ω′+)W (q′, ω′− − ω)

×
[
nF(ω′ − ε− ω)− nF(ω′ − ε′ − ω)

]
× =m

[
G

(R,σ)
λ′′ (k+ − q′, ε+ ω − ω′)

]
× =m

[
G

(R,σ′′)
µ′′ (k′+ − q′, ε′ + ω − ω′)

]
× Dλ′λ′′(k+,k+ − q′)Dλ′′λ(k+ − q′,k−)

× Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+) . (C10)

We can now take the limit vFq � ω � εF, and we get

W
(2,σσ′′)
λλ′µµ′ (ε′− − ε)−W

(2,σσ′′)
λλ′µµ′ (ε′+ − ε) = 4Nv

∑
q′,λ′′,µ′′

×
∫
dω′

2πi

∣∣W (q′, ω′)
∣∣2[nF(ω′ − ε)− nF(ω′ − ε′)

]
×=m

[
G

(R,σ)
λ′′ (k − q′, ε− ω′)

]
×=m

[
G

(R,σ′′)
µ′′ (k′ − q′, ε′ − ω′)

]
×Dλ′λ′′(k,k − q′)Dλ′′λ(k − q′,k)

×Dµµ′′(k′,k′ − q′)Dµ′′µ′(k′ − q′,k′) .

(C11)

2. Analytical continuation of Eq. (16)

We define h(iεn′ , iεn′+iωm, iεn′+iεn+iωm) such that

Λ(3)(k+, iεn + iωm,k−, iεn)

≡ −kBT
∑
εn′

h(iεn′ , iεn′ + iωm, iεn′ + iεn + iωm)

=

∮
dz

2πi
nF(z)h(z, z + iωm, z + iεn + iωm) .

(C12)

Here and in what follows we suppress for brevity all the
spin, band and spatial indices. To perform the analytical
continuation we first transform the sum over the poles of
nF(z) in an integration over the branch cuts of h(z, z +
iωm, z + iεn + iωm). We then analytically continue the
result, according to the prescription iωm → ω+, iεn →
ε−, iεn + iωm → ε+ + ω. After some lengthy algebra we
get

Λ(3)(k+, ε+ + ω,k−, ε−) =

∫
dε′

2πi

{
nF(ε′)

×
[
h(ε′+, ε

′
+ + ω, ε′+ + ε+ ω)

− h(ε′−, ε
′
+ + ω, ε′+ + ε+ ω)

]
+ nF(ε′)

[
h(ε′− − ω, ε′+, ε′− + ε)

− h(ε′− − ω, ε′−, ε′− + ε)
]

− nB(ε′)
[
h(ε′− − ε− ω, ε′+ − ε, ε′+)

− h(ε′− − ε− ω, ε′+ − ε, ε′−)
]}

. (C13)

We now shift ε′ → ε′ + ω in the third and fourth lines of
Eq. (C13), and we take the limit ω → 0 in nF(ε′+ω). We
note that h(ε′+, ε

′
++ω, ε′++ε+ω) and h(ε′−−ω, ε′−, ε′−+ε)

have the poles on the same side of the complex plane, and
can be neglected in the limit εFτ

qp
ee � 1. We then shift

ε′ → ε′ + ε + ω in the last two lines of Eq. (C13), and
we take the limit ω → 0 in nB(ε′ + ε + ω). After these
manipulations Eq. (C13) becomes

Λ(3)(k+, ε+ + ω,k−, ε−) =
∑
k′,σ′′

∑
µ,µ′

∫
dε′

2πi

×
[
W

(3,σσ′′)
λλ′µµ′ (k,k′, ε′− + ε)−W (3,σσ′′)

λλ′µµ′ (k,k′, ε′+ + ε)
]

×
[
nF(ε′) + nB(ε′ + ε)

]
G

(R,σ′′)
µ′ (k′+, ε

′ + ω)

×G(A,σ′′)
µ (k′−, ε

′)Λ
(σ′′σ′)
µ′µ,β (k′+, ε+ + ω,k′−, ε

′
−) . (C14)

It only remains to determine W
(3,σσ′′)
λλ′µµ′ (k′ − k, ε′± − ε),

defined in Eq. (19). Eq. (C14) implies that we have to
analytically continue the functions W (3) for iεn′ → ε′−
and iεn′ + iωm → ε′+ + ω.

a. The analytical continuation of Eq. (19)

We now turn to the analytical continuation of Eq. (19)
with the prescription iωm → ω+, iεn → ε−, iεn+ iωm →
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ε+ + ω, iεn′ → ε′−, and iεn′ + iωm → ε′+ + ω. We define

W
(3,σσ′′)
λλ′µµ′ (k′,k, iεn′ + iεn + iωm) ≡

∮
dz

2πi
nB(z)

× w3(z, z − iωm, iεn + z, iεn′ + iωm − z) . (C15)

Integrating over the branch cuts of w3(z, z − iωm, iεn +
z, iεn′ + iωm − z), and performing the analytical contin-
uations according to the prescriptions stated before, we
get

W
(3,σσ′′)
λλ′µµ′ (k′,k, ε′± + ε+ ω) =

∫
dω′

2πi

{
nB(ω′)

×
[
w3(ω′+, ω

′
− − ω, ω′− + ε, ε′ + ω − ω′−)

− w3(ω′−, ω
′
− − ω, ω′− + ε, ε′ + ω − ω′−)

]
+ nB(ω′)

[
w3(ω′+ + ω, ω′+, ω

′
+ + ε+ ω, ε′ − ω′+)

− w3(ω′+ + ω, ω′−, ω
′
+ + ε+ ω, ε′ − ω′+)

]
− nF(ω′)

×
[
w3(ω′+ − ε, ω′− − ε− ω, ω′+, ε′ + ε+ ω − ω′∓)

− w3(ω′+ − ε, ω′− − ε− ω, ω′−, ε′ + ε+ ω − ω′∓)
]

− nF(ω′)

×
[
w3(ω′+ + ε′ + ω, ω′− + ε′, ω′± + ε+ ε′ + ω,−ω′+)

− w3(ω′+ + ε′ + ω, ω′− + ε′, ω′± + ε+ ε′ + ω,−ω′−)
]}

.

(C16)

Note that the terms on the r.h.s. of Eq. (C16) propor-

tional to nB(ω′) are identical in both W
(3,σσ′′)
λλ′µµ′ (k′,k, ε′±−

ε) and thus vanish when the difference is taken. We thus
neglect these terms in what follows. Eq. (C16) reduces
to

W
(3,σσ′′)
λλ′µµ′ (k′,k, ε′± + ε+ ω) = −

∫
dω′

2πi

{
nF(ω′ + ε)

×
[
w3(ω′+, ω

′
− − ω, ω′+ + ε, ε′ + ω − ω′∓)

− w3(ω′+, ω
′
− − ω, ω′− + ε, ε′ + ω − ω′∓)

]
+nF(ω′ − ε′ − ω)

[
w3(ω′+, ω

′
− − ω, ω′± + ε, ε′ + ω − ω′+)

− w3(ω′+, ω
′
− − ω, ω′± + ε, ε′ + ω − ω′−)

]}
.

(C17)

Finally, substituting Eq. (19) into Eq. (C17) we get

W
(3,σσ′′)
λλ′µµ′ (ε′− + ε+ ω)−W (3,σσ′′)

λλ′µµ′ (ε′+ + ε+ ω) =

∫
dω′

2πi

×
[
nF(ω′ + ε)− nF(ω′ − ε′ − ω)

]
×
[
w3(ω′+, ω

′
− − ω, ω′+ + ε, ε′ + ω − ω′−)

− w3(ω′+, ω
′
−, ω

′
− + ε, ε′ + ω − ω′−)

− w3(ω′+, ω
′
− − ω, ω′+ + ε, ε′ + ω − ω′+)

+ w3(ω′+, ω
′
− − ω, ω′− + ε, ε′ + ω − ω′+)

]
= −4Nv

∑
q′

∑
λ′′,µ′′

∫
dω′

2πi
W (q′, ω′+)W (q′, ω′− − ω)

×
[
nF(ω′ + ε)− nF(ω′ − ε′ − ω)

]
× =m

[
G

(R,σ)
λ′′ (k− + q′, ε+ ω′)

]
× =m

[
G

(R,σ′′)
µ′′ (k′+ − q′, ε′ + ω − ω′)

]
× Dλλ′′(k−,k− + q′)Dλ′′λ′(k− + q′,k+)

× Dµµ′′(k′−,k′+ − q′)Dµ′′µ′(k′+ − q′,k′+) . (C18)

Taking the limit vFq � ω � εF, Eq. (C18) becomes

W
(3,σσ′′)
λλ′µµ′ (ε′− + ε)−W (3,σσ′′)

λλ′µµ′ (ε′+ + ε) = −4Nv

∑
q′,σ′′

×
∑
λ′′,µ′′

∫
dω′

2πi

∣∣W (q′, ω′)
∣∣2[nF(ω′ + ε)− nF(ω′ − ε′)

]
×=m

[
G

(R,σ)
λ′′ (k + q′, ε+ ω′)

]
×=m

[
G

(R,σ′′)
µ′′ (k′ − q′, ε′ − ω′)

]
×Dλλ′′(k,k + q′)Dλ′′λ′(k + q′,k)

×Dµµ′′(k′,k′ − q′)Dµ′′µ′(k′ − q′,k′) .

(C19)

Appendix D: The derivation of the Bethe-Salpeter
equation in the charge and spin channel

Using Eq. (29) in Eqs. (25)-(27) we get

Λ
(1,σσ′)
λλ,β (k, ε+ + ω,k, ε−) = − 8iNv

ω + i/τqp
ee

∑
k′,q′,σ′′

∑
µ,µ′′,λ′′

×
∫

dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ω′ + ε′)− nF(ω′ + ε)

]
|W (k − k′, ε′ − ε)|2

× =m
[
G

(R,σ′′)
λ′′ (q′ − k, ω′ + ε)

]
=m

[
G(R,σ)
µ (k′, ε′)

]
× =m

[
G

(R,σ′′)
µ′′ (q′ − k′, ω′ + ε′)

]
Dλµ(k,k′)

× Dµλ(k′,k)Dλ′′µ′′(q′ − k, q′ − k′)

× Dµ′′λ′′(q′ − k′, q′ − k)Λ
(σσ′)
µµ,β (k′, ε′+ + ω,k′, ε′−) ,

(D1)
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and

Λ
(2,σσ′)
λλ,β (k, ε+ + ω,k, ε−) = − 8iNv

ω + i/τqp
ee

∑
k′,q′,σ′′

∑
µ,λ′′,µ′′

×
∫

dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ω′ − ε)− nF(ω′ − ε′)

]
|W (q′, ω′)|2

× =m
[
G

(R,σ′′)
µ′′ (k′ − q′, ε′ − ω′)

]
=m

[
G(R,σ′′)
µ (k′, ε′)

]
× =m

[
G

(R,σ)
λ′′ (k − q′, ε− ω′)

]
Dλλ′′(k,k − q′)

× Dλ′′λ(k − q′,k)Dµµ′′(k′,k′ − q′)Dµ′′µ(k′ − q′,k′)

× Λ
(σ′′σ′)
µµ,β (k′, ε′+ + ω,k′, ε′−) , (D2)

and finally

Λ
(3,σσ′)
λλ,β (k, ε+ + ω,k, ε−) =

8iNv

ω + i/τqp
ee

∑
k′,q′,σ′′

∑
µ,λ′′,µ′′

×
∫

dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ + ε)

]
×
[
nF(ω′ + ε)− nF(ω′ − ε′)

]
|W (q′, ω′)|2

× =m
[
G

(R,σ)
λ′′ (k + q′, ω′ + ε)

]
=m

[
G(R,σ′′)
µ (k′, ε′)]

× =m
[
G

(R,σ′′)
µ′′ (k′ − q′, ε′ − ω′)

]
Dλλ′′(k,k + q′)

× Dλ′′λ(k + q′,k)Dµµ′′(k′,k′ − q′)Dµ′′µ(k′ − q′,k′)

× Λ
(σ′′σ′)
µµ,β (k′, ε′+ + ω,k′, ε′−) . (D3)

In these equation the limit ω → 0 is understood.
Eqs. (D1)-(D3) should be plugged into Eq. (24) and then
back into Eq. (B3) taken in the limit ω → 0. The latter
is given in Eq. (28), and can be further approximated as

χ
j
(σ)
α j

(σ′)
β

(q = 0, ω)→ −ω 2iNv

ω + iτqp
ee

∑
k

∫
dε

2πi

∂nF(ε)

∂ε

× =m
[
G

(R,σ)
+ (k, 0)

]
Λ

(0,σ)
++,α(k,k)Λ

(σσ′)
++,β(k, ε+ + ω,k, ε−) .

(D4)

To obtain this expression we used Eq. (29), together
with the fact that the derivative of the Fermi function
is peaked in ε = 0, and that =m

[
G

(R,σ)
λ (k, 0)

]
constrains

|k| = kF and λ = +. We now approximate Eqs. (D1)-
(D3) by noting that the combination of Fermi and Bose
functions constrains ε ∼ ε′ ∼ ω′ ∼ 0. We thus get

Λ
(1,σσ′)
++,β (k, ε+ + ω,k, ε−) = − 8iNv

ω + i/τqp
ee

∑
k′,q′,σ′′

×
∫

dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ω′ + ε′)− nF(ω′ + ε)

]
|W (q′, ε̄)|2

× =m
[
G

(R,σ)
+ (k − q′, 0)

]
=m

[
G

(R,σ′′)
+ (k′, ε̄)

]
× =m

[
G

(R,σ′′)
+ (q′ − k′, ε̄)

]
D++(k,k − q′)D++(k − q′,k)

× D++(k′,k′ − q′)D++(k′ − q′,k′)

× Λ
(σσ′)
++,β(k − q′, ω+,k − q′, 0−) ,

(D5)

and

Λ
(2,σσ′)
++,β (k, ε+ + ω,k, ε−) = − 8iNv

ω + i/τqp
ee

∑
k′,q′,σ′′

×
∫

dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ω′ + ε′)− nF(ω′ + ε)

]
|W (q′, ε̄)|2

× =m
[
G

(R,σ′′)
+ (k′ − q′, ε̄)

]
=m

[
G

(R,σ′′)
+ (k′, ε̄)

]
× =m

[
G

(R,σ)
+ (k − q′, 0)

]
D++(k,k − q′)

× D++(k − q′,k)D++(k′,k′ − q′)D++(k′ − q′,k′)

× Λ
(σ′′σ′)
++,β (k′, ω+,k′, 0−) , (D6)

and finally

Λ
(3,σσ′)
++,β (k, ε+ + ω,k, ε−) =

8iNv

ω + i/τqp
ee

∑
k′,q′,σ′′

×
∫

dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ω′ + ε′)− nF(ω′ + ε)

]
|W (q′, ε̄)|2

× =m
[
G

(R,σ)
+ (k − q′, 0)

]
=m

[
G

(R,σ′′)
+ (k′ − q′, ε̄)]

× =m
[
G

(R,σ′′)
+ (k′, ε̄)

]
D++(k,k − q′)

× D++(k − q′,k)D++(k′ − q′,k′)D++(k′,k′ − q′)

× Λ
(σ′′σ′)
++,β (k′ − q′, ω+,k′ − q′, 0−) . (D7)

We shifted k′ → k − q′ and q′ → k − k′ in Eq. (D5),
ω′ → −ω′ in Eq. (D6), and ε′ → −ε′, k′ → k′ − q′

and q′ → −q′ in Eq. (D7). Moreover, we used that
the imaginary parts of the Green’s functions constrain
their momentum argument to the Fermi surface and the
band indices to be all equal to “+”. Putting everything
together

3∑
i=1

Λ
(i,σσ′)
++,β (k, ω+,k, 0−) = − 8iNv

ω + i/τqp
ee

∑
k′,q′,σ′′

|W (q′, ε̄)|2

×
∫

dε′

2πi

∫
dω′

2πi

[
nF(ε′) + nB(ε′ − ε)

]
×
[
nF(ω′ + ε′)− nF(ω′ + ε)

]
=m

[
G

(R,σ′′)
+ (k′, ε̄)

]
× =m

[
G

(R,σ)
+ (k − q′, 0)

]
=m

[
G

(R,σ′′)
+ (q′ − k′, ε̄)

]
× D++(k,k − q′)D++(k − q′,k)

× D++(k′,k′ − q′)D++(k′ − q′,k′)

×
[
Λ

(σσ′)
++,β(k − q′, ω+,k − q′, 0−) + Λ

(σ′′σ′)
++,β (k′, ω+,k′, 0−)

− Λ
(σ′′σ′)
++,β (k′ − q′, ω+,k′ − q′, 0−)

]
. (D8)

Plugging Eq. (D8) back into Eq. (24), and perform-
ing the integration over ε with the weighting function
−∂nF(ε)/(∂ε), we immediately get the self-consistent
Bethe-Salpeter Eq. (30).
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Appendix E: The spin transport time

The spin transport time defined in Eq. (37), which we
recall here for completeness, reads

1

τ
(s)
tr

= −8

3
Nv(kBT )2

∑
k′,q′

|W (q′, 0)|2=m
[
G

(R)
+ (k − q′, 0)

]
× =m

[
G

(R)
+ (k′, 0)

]
=m

[
G

(R)
+ (q′ − k′, 0)

]
× D++(k,k − q′)D++(k − q′,k)

× D++(k′,k′ − q′)D++(k′ − q′,k′)

×
[
1− cos(ϕk − ϕk−q′)

]
. (E1)

In the low-temperature limit the three Green’s functions
on the right-hand side of Eq. (E1) can be approximated
by δ-functions, which constrain

cos(ϕk − ϕq′) =
q′

2kF

cos(ϕk′ − ϕq′) =
q′

2kF

. (E2)

and thus 1− cos(ϕk−ϕk−q′) = q′2/(2k2
F). The Coulomb

interaction forces us to disregard the solution of the three
δ-functions with q′ = 0.

Note that Eq. (E1) describes the simultaneous scatter-
ing of a particle from the state k to the state k−q′, both
at the Fermi surface, and the creation of a particle-hole
pair with total momentum q′. According to Fig. 3, the
angles between k and k−q′, and k′ and k′−q′, are identi-
cal. This implies that D++(k,k−q′) = D++(k′,k′−q′).
Moreover,

D++(k,k − q′)D++(k − q′,k) = 1−
(
q′

2kF

)2

. (E3)

Putting everything together we get

1

τ
(s)
tr

= −16

3
Nv(kBT )2

∑
k′,q′

|W (q′, 0)|2=m
[
G

(R)
+ (k − q′, 0)

]
× =m

[
G

(R)
+ (k′, 0)

]
=m

[
G

(R)
+ (q′ − k′, 0)

]
×

[
1−

(
q′

2kF

)2
]2(

q′

2kF

)2

. (E4)

Shifting ϕk′ → ϕk′ + ϕk and ϕq′ → ϕq′ + ϕk, we im-
mediately see that the three δ-functions are solved by
ϕq′ = ± arccos

[
q′/(2kF)

]
and ϕk′ = 0, 2ϕq′ . All these

solutions give identical contributions. Summing all of
them we finally get

1

τ
(s)
tr

=
Nv(kBT )2

3πv2
FεF

∫ 2kF

0

dq′ q′|W (q′, 0)|2

×

[
1−

(
q′

2kF

)2
]

=
2πNv

3

α2
ee(kBT )2

~εF

[
3(2Nvαee − 1)

+ 4(1− 3N2
vα

2
ee)arccoth(1 + 2Nvαee)

]
. (E5)

Here we used that for 0 < q′ < 2kF W (q′, 0) reduces to
the Thomas-Fermi interaction, with qTF = 2NvαeekF as
the screening wavevector. In the limit αee → 0 we get

1

τ
(s)
tr

→ −4πNv

3

(kBT )2

~εF
α2

ee ln(Nvαee) . (E6)

The logarithmic dependence on the coupling constant αee

is due to the Thomas-Fermi screening.

Appendix F: The spin velocity

We now show a brief derivation of the renormalization
of the spin Drude weight of Eq. (41), based on Landau
theory of normal Fermi liquids. The derivation closely
follows that of Ref. 19. The question we answer in this
appendix is: what is the spin current carried by a quasi-
particle? We thus consider a state in which a quasipar-
ticle with momentum p and spin up is added to the sys-
tem. The adiabatically turned-on electron-electron inter-
actions dress the quasiparticle and renormalize the spin
current it carries. We consider the expectation value of

the spin current operator ĵs = ĵ↑ − ĵ↓ on this state. In
analogy with the charge current, we know that the spin
current is proportional to the unit vector p̂. However,
the constant of proportionality, namely the spin velocity
vs, is to be determined. We define vs as

〈p, ↑ |ĵs|p, ↑〉 = vsp̂ . (F1)

where |p, ↑〉 denotes the full many-body state with the
extra quasiparticle with momentum p and spin up.

We now connect the phenomenological theory of Lan-
dau to the microscopic model. Since we are interested in
properties at the Fermi surface, we will consider in what
follows the following one band model of graphene

Ĥ =
∑
i

vFpi +
1

2

∑
j 6=i

V (ri − rj) , (F2)

where i and j label particles in conduction band. The
interaction with states in the valence band provides the
well-known logarithmic divergence16 of the renormalized
Fermi velocity v?F. We now imagine to perform the fol-
lowing unitary transformation

Û = exp

[
i
∑
i

τ̂zq · r̂i

]
, (F3)

on the Hamiltonian of Eq. (F2). In Eq. (F3) we intro-
duced the Pauli matrix τ̂z which acts on the spin degree of
freedom. Clearly the transformation Û commutes with
the interaction Hamiltonian, since it contains only the
position operator r̂i. To first order in q it induces the

change in energy ∆E = ĵs · q. For the state |p, ↑〉, with
the extra quasiparticle of momentum p and spin up we
thus get

∆E = vsp̂ · q . (F4)
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On the other hand, we may consider the variation of
energy due to the shift generated by the unitary trans-
formation of Eq. (F3) on the phenomenological energy
functional of Landau’s theory of normal Fermi liquids15.
Shifting the momentum of spin up (down) particles by q
(−q) we get

∆E = v?Fp̂ · q −
∑
p′,τ

fp↑,p′ττq ·∇p′n0,τ (p′)

= v?F(1 + F a
1 )p̂ · q , (F5)

where fpσ,p′τ is the Landau interaction function15 and
n0,τ (p′) is the equilibrium distribution function of quasi-
particles. Note that at, if p and p′ are both at the Fermi
surface fpσ,p′τ is a function only of the difference between
the angles of p and p′, i.e. fpσ,p′τ = fστ (ϕp−ϕp′). The

Landau parameters F `n, with ` = a, s, are defined as15

F `n =
kF

2πv?F

∫
dθ

2π

[
f↑↑(θ)± f↑↓(θ)

]
cos2(θ) , (F6)

where the plus (minus) sign in square brackets on the
right-hand side of Eq. (F6) holds for ` = s (` = a).

A direct comparison of Eq. (F4) with Eq. (F5) imme-
diately gives

vs = v?F(1 + F a
1 ) . (F7)

We obtain the renormalization of the spin Drude weight
by replacing vs in lieu of the bare Fermi velocity vF in its
non-interacting expression.
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