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We analyze classical dimer models on the square and triangular lattice using a tensor network
representation of the dimers. The correlation functions are numerically calculated using the recently
developed “Tensor renormalization group” (TRG) technique. The partition function for the dimer
problem can be calculated exactly by the Pfaffian method which is used here as a platform for
comparing the numerical results. TRG turns out to be a powerful tool for describing gapped
systems with exponentially decaying correlations very efficiently due to its fast convergence. This is
the case for the dimer model on the triangular lattice. However, the convergence becomes very slow
and unstable in case of the square lattice where the model has algebraically decaying correlations.
We highlight these aspects with numerical simulations and critically appraise the robustness of TRG
approach by contrasting the results for small and large system sizes against the exact calculations.
Furthermore, we benchmark our TRG results with classical Monte Carlo (MC) method.

I. INTRODUCTION

The problem of covering a planar graph with dimers
subject to certain hard-core constraints, has attracted
considerable attention in various solvable forms in the
field of statistical mechanics as well as other branches
of physics1. In one of the seminal papers on statisti-
cal physics, Fisher first pointed out that the frustrated
Ising model on planar lattices can be mapped to classi-
cal dimer model on the dual lattices2 corresponding to
the same degenerate ground state manifold. The zero-
temperature frustrated Ising-spin model on the triangu-
lar lattice, for example, can be translated to the dimer
model on the dual honeycomb lattice where the dimers
essentially represent the frustrated honeycomb links. An
important step towards solving this kind of problem and
calculating the correlations of relevant observables in the
classical problem was the introduction of the Pfaffian
techniques2,3, which turned out to be very useful for the
simplest dimer problem on square lattice where a critical
phase can be realized with algebraic dimer correlation4.

The problem was further complexified by incorporat-
ing the classical dimer-dimer interactions in the model
which could energetically favour parallel dimer order-
ing in a plaquette5. The important finding of the
study was to observe a temperature driven phase tran-
sition of Kosterlitz-Thouless type which crucially sepa-
rates the high-temperature liquid phase (with algebraic
correlations like before) and the low-temperature dimer-
crystalline phase with parallel dimer ordering.

However, at the very low-temperature regime, quan-
tum fluctuations become relevant in the model and play
an important role to characterize different other phases
which might emerge in the low-temperature phase dia-
gram. The effective Hamiltonian describing the quan-
tum model, as introduced by Rokhsar and Kivelson6 for
a square lattice, comprises of two mutually competing el-
ements serving as the potential and the kinetic term with

amplitude V and J respectively and reads as follows,

Heff = −J
∑
p

(
| 〉 〈 |+ h.c.

)
+ V

∑
p

(
| 〉 〈 |+ | 〉 〈 |

)
.

(1)

where the sum over p is performed over all square pla-
quettes. Note that the classical interacting problem only
contains the diagonal term (V ) of the above Hamiltonian
and neglects the quantum fluctuations (J) while both the
terms are crucial in the low-temperature limit. Similar
Hamiltonian exists for the triangular lattice dimer model
also though the phase diagram is distinct from the square
lattice in several aspects7. However, as a common feature
to both of them, there exists a point at V = J , known as
Rokhsar-Kivelson (RK) point, where the model is exactly
solvable. On a torus, there exists topological degeneracy
of the zero energy ground state in the thermodynamic
limit and the corresponding wave function takes the form
of an equal weight superposition of all possible configura-
tions in a given topological sector. All the correlations, at
this special point, can be computed classically since the
particular form of the ground state wavefunction maps
the quantum model to an infinite temperature classical
dimer model with equal weightage to all configurations
which serves as the platform of all the numerical calcu-
lations presented in this paper.

Both the classical (interacting and non-interacting)
and the quantum model have been extensively studied us-
ing several numerical techniques such as classical Monte
Carlo (MC)5,8, quantum Monte Carlo7,9 etc.. Besides
these traditional methods, a whole new series of simu-
lation algorithms proliferated in last few years aiming
at the efficient representation of many-particle quantum
states based on the ideas motivated mostly from the sub-
jects of quantum chemistry and quantum information
theory10. The family contains members such as projected
entangled-pair states (PEPS)11, tree tensor state12, and
multiscale renormalization ansatz13,14, all based on rep-
resenting the fundamental degrees of freedom by tensors
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defined on the lattice. For one-dimensional quantum sys-
tems in the thermodynamic limit, the ground state wave
function extracted from the density matrix renormaliza-
tion group (DMRG) can be exactly expressed as matrix-
product states (MPS)15. In the process of generalizing
the concept of MPS one step further, the tensor prod-
uct representations was introduced and successfully ap-
plied to simulate some of the classical lattice models and
computing the partition function along with other phys-
ical quantities in presence of local interactions16,17. In
Ref.16, the authors proposed a real space renormalization
of the tensors, coined as tensor renormalization group
(TRG), much in the spirit of block spin scheme used in
the coarse graining of usual renormalization group (RG)
approach and estimated some of the critical exponents of
the square lattice Ising model with good accuracy. Later
a higher level of the accuracy for measuring different
physical quantities of the classical tensor-network mod-
els (as well as tensor-network ground states of the quan-
tum systems) in a systematic and efficient algorithm was
achieved by proposing a second renormalization group
(SRG) method18.

In this work, we follow the TRG scheme to investi-
gate some properties of the infinite temperature classical
dimer model numerically and compare the results with
conventional Monte Carlo (MC) techniques. The rele-
vant observable we choose to analyze the model is the
dimer-dimer correlation function on a square lattice and
a triangular lattice, being representative of the respective
bipartite and non-bipartite class. In the former case, the
correlation function falls off algebraically since the sys-
tem becomes critical (at high temperatures), while in the
later case, it develops a finite correlation length implying
the existence of a liquid phase. Our results show that for
short range dimer correlations, tensor network represen-
tation performs very well with great accuracy even at low
cut-off on the bond dimension. However, for the critical
phase, such as dimer model on square lattice, the TRG
method is not very efficient due to rapid loss of entangle-
ment related to the truncation of the bond dimension.

The paper is organized as follows. We start by briefly
reviewing the Pfaffian techniques used for exact calcula-
tions of the dimer correlations on square and triangular
lattices in Sec. II. In Sec. III, we present the numerical
methods in two parts: in the first part, we demonstrate
the implementation of the classical Monte Carlo method
and in the second part, representing the weight of a con-
figuration in terms of tensor network, we show how to
obtain the correlation functions using TRG. In Sec. IV,
we evaluate the dimer-dimer correlation by MC and TRG
algorithm. Discussing the behaviors of the correlation
function on both the lattices we compare the numerical
outcomes with the exact results obtained by the Pfaffian
technique. We conclude in Sec. V by giving a short sum-
mary on the applicability of TRG approach for studying
gapped models and commenting on its performance par-
ticularly for the critical systems.

II. REVIEW OF PFAFFIAN METHOD

In order to compute the partition function of the clas-
sical dimer model, Kasteleyn3 introduced the Pfaffian
technique which we illustrate in the following subsections
for the case of triangular lattice dimer model. From an-
other perspective, Samuel19 later pointed out an elegant
relation between the classical dimer model and the free
Grassmannian lattice field theory by explicitly represent-
ing the dimer generating function in terms of fermonic
path integrals.

The idea behind the implementation of the Pfaffian
method essentially addresses two important aspects of
the problem, i) exact computation of the partition func-
tion Z in terms of the Grassmann fields and ii) calcu-
lation of the correlation functions (e.g. dimer-dimer) in
the form of Green functions. We divide this section in
two parts accordingly.
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FIG. 1. The square lattice with diagonal bonds and a two-site
(black and red circles) unit cell. Also shown are the directions
of the Kasteleyn arrows which satisfy the clockwise odd rule
described in the text.

A. Partition function

The partition function of the problem counts the
number of dimer coverings on the given planar
lattice2,3,8,20–22. In order to construct the Pfaffian, we
need to create an antisymmetric matrix M , called Kaste-
leyn matrix, and the partition function can be conve-
niently expressed as a linear combination of the Pfaf-
fians of four different Kasteleyn matrices M(a,b) where
a, b = 0(1) implies periodic (anti-periodic) boundary con-
ditions along the horizontal and vertical directions. The
elements of the matrix M are defined to satisfy Kaste-
leyn’s clockwise-odd rule: the number of arrows pointing
in the clockwise direction around the faces is always odd.
A matrix element Mij is nonzero only if sites i and j are
connected by a bond. If Mij = 1, the arrow points from
i to j and if Mij = −1, the arrow points from j to i. The
number of dimer coverings ( or equivalently the partition
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function Z) is given by Z = |Pf [M ]|, where Pf [M ] is the
Pfaffian of matrix M where: Pf [M ] = (det[M ])1/2. The
determinant can be calculated by using Fourier transfor-
mation of a fermionic path integral. A fermion on site i
is associated with a Grassmann variable ψi, and the ac-
tion can be defined as S =

∑
i<jMijψiψj . The partition

function for this action reads as

Z =

∫
[Dψ] exp(S). (2)

As described in Ref.8 a triangular lattice can be viewed
as square lattice if the diagonal bonds are included with
fugacity t = 1. The unit cell, in this case, has to contain
two sites, and in the present context it is chosen to be
doubled in the vertical direction as shown in Fig.1.

A unit cell is associated with the position vector Ri
with an index α = 1, 2 locating the two sites within the
unit cell. The fugacities u, v, and t are assigned to each of
the vertical, horizontal, and diagonal bonds respectively.
The two fermions in the unit cell at Ri are denoted as
ψα,Ri with α = 1, 2. The action in terms of the Grass-
mann variables ψ can be written as

S =
1

2

∑
Ri,α

∑
Rj ,β

Mαβ
RiRj

ψα,Riψβ,Rj (3)

with Mαβ
RiRj

= −Mβα
RjRi

. Periodic boundary enforces the

condition: Mαβ
RiRj

= Mαβ(Ri −Rj), and the elements of

matrix M multiplied by proper weight are given by

M12(0) = M21(ŷ) = iu (4)

M11(x̂) = M22(x̂) = v

M21(x̂+ ŷ) = −M12(x̂) = it.

Fourier transforming the Grassmann variables by the
relation

ψ̃α,~k =
∑
Ri

ei
~k·Riψα,Ri

, (5)

the partition function is expressed as Z =∫
[Dψ] exp(S) = Pf [M ] with

S =
1

2

∑
~k,α,β

ψ̃α,~kM̃
α,β
~k

ψ̃β,−~k (6)

where M̃~k is a 2× 2 matrix:

M̃~k =

(
2iv sin kx g(~k)

g∗(~k) 2iv sin kx

)
(7)

with g(~k) = i[u− teikx−ue−iky− te−i(kx+ky)] and g(~k) =

−g∗(−~k).
It is straightforward to calculate the partition function

which follows from Z2 = det[M ] where

det[M ] =
∏
~k

det M̃~k, (8)

and det M̃~k = −4v2 sin2 kx − 4u2 sin2(ky/2) −
4t2 cos2(kx + ky/2).

Subject to the periodic boundary conditions, the Pfaf-
fians are the square root of the determinants specified by
the Kasteleyn matrices of lattice edges with, or without,
the reversal of arrows on edges connecting two opposite
boundaries. A closer inspection of the Kasteleyn matrices
M(a, b) with proper boundary conditions reveals that the
boundary Kasteleyn matrices will depend on the bound-
ary conditions with phase factors along the horizontal
and vertical direction. The number of total dimer cov-
erings with periodic boundary conditions is, thus, given
by

Z =
1

2
(− Pf [M(0, 0)] + Pf [M(0, 1)] (9)

+ Pf [M(1, 0)] + Pf [M(1, 1)]).

where the parameter κ is decided by the parity of the
dimer configurations (for details refer to3). The mag-

nitude of the wave vectors ~k depends on the bound-
ary conditions a and b of lattice Lx × Ly, such as
kx = 2π(lx + a/2)/Lx and ky = 2π(ly + b/2)/Ly where
lx = 0, 1, . . . , Lx − 1 and ly = 0, 1, . . . , Ly − 1.

B. Green function

Following Ref.8, it is convenient to express the correla-
tion functions in terms of the two-point Green function
of the Grassmann variables,

Gij ≡ 〈ψiψj〉 =
1

Z

∫
[Dψ]ψiψj exp(S) (10)

For any dimer covering of the lattice, the bond is either
occupied by a dimer or not, so the number of dimers on
each bond can only take the value 0 or 1. Because the
unit cell at most contains only one dimer, the probability
of finding a dimer on a bond oriented along ŷ in a unit
cell at Ri is given by

P(Ri) = |〈ψ1,Ri
ψ2,Ri

〉|, (11)

which is averaged over all positions on the lattice. In
a similar way, the dimer-dimer correlation function can
also be expressed in terms of the Grassmann variables,

D(r) = 〈ψ1,Riψ2,Riψ1,Rjψ2,Rj 〉, (12)

where we consider a case of Rj = Ri + rx̂.
A Wick decomposition would cast the above form into

products of Green functions. With the definition in
Eq.(10), it becomes

D(r) =〈ψ1,Riψ2,Ri〉〈ψ1,Rjψ2,Rj 〉
−〈ψ1,Riψ1,Rj 〉〈ψ2,Riψ2,Rj 〉
+〈ψ1,Ri

ψ2,Rj
〉〈ψ2,Ri

ψ1,Rj
〉. (13)
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The Green function elements can also be read from the
matrix M using

Gij ≡ 〈ψiψj〉 = (M−1)ji = −(M−1)ij , (14)

By using Eq.(5), the Green function can be written
in the Fourier basis as GRi,α;Rj ,β = 〈ψα,Ri

ψβ,Rj
〉 =∑

~ki, ~kj
e−i(

~kiRi+ ~kjRj)〈ψ̃Ri, ~ki
ψ̃Rj , ~kj

〉 where we know

〈ψ̃Ri, ~ki
ψ̃Rj , ~kj

〉 = δ ~kj ,−~ki(M̃
−1)α,β~ki

from Eq.(6). Finally,

the two-point function can be represented in terms of

g(~k) and ∆(~k) in the momentum space, namely,

〈ψ̃1,~kψ̃1,−~k〉 = 〈ψ̃2,~kψ̃2,−~k〉 =
2i sin(kx)

∆(~k)

〈ψ̃1,~kψ̃2,−~k〉 = −g
∗(~k)

∆(~k)

〈ψ̃2,~kψ̃1,−~k〉 = − g(~k)

∆(~k)
(15)

By doing a further Fourier transform, we can determine
the real space Green function,

〈ψα,Ri
ψβ,Rj

〉 =

∫
d~ke−i

~k·(Ri−Rj)〈ψ̃α,~kψ̃β,−~k〉 (16)

=

∫ 2π

0

dkx

∫ 2π

0

dkye
−i~k·(Ri−Rj)〈ψ̃α,~kψ̃β,−~k〉

(17)

With a setting u = v = 1, the fugacity t = 0 gives us
the square lattice and t = 1 reproduces the triangular
lattice. Below we list some values of the dimer-dimer
correlation function which are extracted by numerically
integrating the above functions.

r D(r)t=0 D(r)t=1

1 0.12505080 0.0466891518

2 0.05780328 0.0268276742

3 0.07535259 0.0281878353

4 0.06192191 0.0277736735

5 0.06695547 0.0277821043

6 0.06235789 0.0277783224

7 0.06465416 0.0277778197

8 0.06242982 0.0277777879

9 0.06375758 0.0277777821

TABLE I. The dimer-dimer correlation function for square
lattice (t=0) and for triangular lattice (t=1).

III. NUMERICAL METHODS

Since we are interested in studying the dimer models
numerically, we deploy two different simulation schemes,

FIG. 2. (a) Dimer covering on square lattice. The arrow de-
notes the first move taken in Monte Carlo. (b) Two defects,
joined by the string, are created at the sites having no dimer
and two dimers. (c) The defects move further apart. (d) The
final configuration achieved as consequence of the successive
moves becomes a valid dimer configuration when the two de-
fects merge. The arrows indicate successive dimer moves.

TRG and classical MC, for comparing the results for clus-
ters of different sizes on triangular and square lattice.
As pointed out before, the standard MC algorithms have
been very useful in simulating many of the classical prob-
lems by stochastically sampling the configurations based
on Markov chain process23. We first present a brief ac-
count on implementing the MC algorithm for dimer mod-
els, then the same for the TRG construction. The details
of the lattices are not very important for MC at the level
of building the moves obeying two necessary conditions:
detailed balance and ergodicity. The algorithm is knows
as “long-loop worm algorithm” which is known to satisfy
both the conditions even for large system sizes23.

A. Classical MC algorithm for dimer models

On a square lattice of extent L, the total number of
dimers is L2/2 which corresponds to a filling fraction of
1/4 (because the number of links is 2L2). We choose
an arbitrary dimer configuration satisfying the hard-core
constraint (no two dimers can meet at a site) to start the
Markov process. In the first move, a dimer is randomly
chosen and flipped to one of its six empty neighboring
bonds as shown in Fig.2(a). This generates two defects
(we call them head and tail of the worm for demonstra-
tion) one at a site with no dimer attached (tail) and
the other at the site with two touching dimers (head)
(Fig.2(b)). In the next step (Fig.2(c)) we move that
dimer attached to the head which was present prior to
the new dimer flipping in such that the defected head
(with two dimers) always hops to a new site (we dis-
dain the moves where it stays back even if the dimer flips
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to one of the empty bonds emanating from the head it-
self, e.g. if in Fig.2(b) the dimer on the horizontal bond
attached to the head, denoted by the arrow, flips verti-
cally). This way we continue the successive moves until
the defects meet each other and coincide in the very last
move. This happens when one dimer always comes to fill
one of the links attached to the fully emptied site gener-
ating a new valid configuration (Fig.2(d)). The detailed
balance is clearly satisfied as we always move to a new
configuration (say, µ) from an old one (say, ν) with a
finite probability Pν→µ where Pν→µ ∝ 1

N ·
1
6 · (

1
3 )l−1 in a

system of N dimers, hence all the states can be reached
in finite time. Note that l is the total number of moves
to connect two configurations µ and ν. In order to calcu-
late the dimer-dimer correlations efficiently we construct
a correlation matrix and average over all possible dimer
locations along both the directions in a given configura-
tion keeping the distance fixed. The final correlation is
then averaged over ∼ 1010 configurations in lattices up
to L = 128.

Similarly, on a triangular lattice of size L× L, the av-
erage dimer density corresponds to filling fraction of 1/6.
The entire procedure carries over mutatis − mutandis
except, Pν→µ ∝ 1

N ·
1
4 · (

1
2 )l−1 and the correlation is cal-

culated along the horizontal direction with parallel dimer
ordering only.

B. Tensor network renormalization

Tensor network renormalization technique is based on
real space regrouping of tensors defined on the sites of
the underlying lattice. Assigning numbers (0 or 1) to
the indices of the tensors, in practice, specifies the con-
figuration with a certain weight and contributes to the
partition sum Z by that fraction. The correlation func-
tions can be extracted numerically by relating to Z which
is computed by successive tensor contractions.

1. Tensor network

0

0 0

0

0

1

(b)

1

0

0

0

(d)(a) (c)

Ti
j
k

m l
n

T

FIG. 3. (a) and (c) Tensor network representation for 2D
lattices. Example of a dimer state (of a site) represented by
tensor network on triangular lattice (b) and square lattice (d).

Configurations of the edges around each site in a valid
dimer configuration can be formally described in ten-

sor network representation Tijkl... with virtual indices
i, j, k, l, ... = {0, 1} on the triangular and square lattice
as shown in Fig.3(a-b) and (c-d) respectively. The sta-
tistical weight for a given configuration can de measured
as

W (i, j, k · · · ) = TijklmnTiopgrs · · · , (18)

where the virtual bond includes “0” and “1”. The virtual
index “0”(“1”) indicates absence(presence) of a dimer
along the edge. For a local tensor, for example, Tijklmn
on the triangular lattice, the hard-core constraint

Tijklmn =

{
1 if (i+ j + k + l +m+ n) = 1;

0 otherwise,
(19)

can be used to ensure each vertex to be connected to
one dimer only. The partition function is the sum of the
weights of all possible configurations:

Z =
∑

i,j,k,l···

W (i, j, k, l · · · ) = tTr(TijklmnTiopgrs · · · ),

(20)

where “tTr” means the tensor trace that all indices on
connected links in the tensor network are summed over.

(a)

(b)

T

Sa

Sb Sc

Ta

FIG. 4. (a): Decomposing the tensor T into Sa, Sb, Sc, and
Ta. (b): Combining the three tensors in a dashed triangle
Sa,Sb, and Sc to form a new tensor Tb. The triangular lat-
tice, thus, deforms into a hexagonal lattice with Ta (white)
and Tb (black) tensors on the respective sublattices. Further
grouping of the two tensors in every basis of the hexagonal
lattice generates a new square lattice network of rank-4 ten-
sors.

2. Renormalization algorithm

In two-dimensional system, it is, however, difficult to
calculate the tensor trace (tTr) since all indices on the
connected links in the network need to be summed over.
This imposes the hurdles of an exponentially hard cal-
culation. Several approximation schemes have been pro-
posed as solutions in this context such as iPEPS algo-
rithm, the corner transfer matrix method (CTMRG)24,
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and tensor renormalization approach16,25 which tackle
this problem essentially by scaling the computational ef-
fort down to the polynomial level of calculating the tensor
trace. In this paper, we use the tensor renormalization
approach which is akin to the real space renormaliza-
tion in the way that at each step, the RG is structured
by merging sites (by contracting respective tensors) and
truncating the bond dimension according to the relevance
of the eigenvalues in the Schmidt decomposition of the
old tensors. We resort to this technique for calculating
the partition sum and describe the steps, for example, on
a triangular lattice starting with the original local tensor
T . In the process, we first split it into four parts, Sa,
Sb, Sc and Ta with several singular value decompositions
as shown in Fig 4(a), which, in turn, changes the lattice
structure after the first step. The second step is to build
a new rank-three tensor denoted by Tb (see Fig. 4(b)) as
follows:

Tb(αβγ) =
∑
ijk

Sa(ijα) × Sb(jkβ) × Sc(kiγ). (21)

The third step is to merge two sites to form a new rank-4
tensor shown in Fig. 4(b). The triangular lattice tensor
network is now mapped to a square model where applying
TRG is known to be simple and straightforward26. Each
step of TRG reduces the number of sites by half. Even-
tually, the entire network collapses to only a few sites
and the double tensor trace appearing in the partition
function Z can be calculated easily.

In the following, we briefly discuss how to calculate the
dimer dimer correlation function in this tensor network.
We assume the distance between two dimers to be r =
|Ri −Rj | and use the dimer counting operator d(Ri) for
a given link Ri. The correlation functions 〈d(Ri)d(Rj)〉
can be represented as a tensor trace with four impurity
tensors living on the sites i, i + 1 and j, j + 1 as shown
in Fig. 5 (a) and uniform tensors T on every other sites.
After the first step of TRG, we decompose these tensors
and form the new rank-3 tensors as prescribed before
which leads to a new network on a honeycomb lattice
where the number of the impurity tensors ( red dots in
Fig. 5 (b)) increases to 14. By blocking every two tensors
in one, we arrive at a square lattice network comprising
of the new rank-4 tensors with the impurity tensors being
10 in number. In the process of further coarse-graining,
the lattice structure remains intact with the same number
of impurity tensors as shown in Fig. 5 (c)-(e), however

the distance renormalizes by a factor of 1/
√

2 in every
step. Finally, we end up with a tensor network of the
size we expect, and obtain the correlation function by
performing the tensor trace on it.

IV. RESULTS

The relevant quantity of our interest is the dimer-dimer
correlation which appears very useful in characterizing

.......

.......

.......

(a)

(b)

(c)

(d)

.......

.......

(e)

i

i+1

j

j+1

FIG. 5. Schematic of the tensor renormalization for cal-
culating dimer-dimer correlation function at a distance r.
(a)(c)(d)(e):The black dots represent the impurity tensors and
white dots represent the uniform tensors. (b): The red dots
represent the impurity tensors while white (black) dots rep-
resent the uniform tensors on respective sublattices.

different phases of the classical dimer models on bipar-
tite and non-bipartite lattices. The connected correlation
function is expressed as,

C(r) = 〈d(Ri)d(Rj)〉 − 〈d(Ri)〉〈d(Rj), 〉. (22)

where r = |Ri − Rj | and d(Ri) counts 1 if a dimer is
present on the link Ri in a given configuration otherwise
0. Here the notation 〈· · · 〉 denotes the statistical average
over all the configurations. In the asymptotic limit of
large r, the correlation converges to the square of the
average dimer concentration 〈d(Ri)〉 which is 1/4 and
1/6 on the square and triangular lattice respectively.

In the MC simulation the above function is calculated
for different clusters of size up to 128×128 for both the
lattices. The distance |Ri −Rj | is chosen along a partic-
ular direction (one of the lattice vectors of the triangu-
lar lattice) and the final correlation function is averaged
over all such directions and all possible orientations of
the dimers. The results are in well agreement with the
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(a)

FIG. 6. (Up): The dimer-dimer correlation on the trian-
gular lattice as a function of the distance r = |Ri − Rj |.
The plot shows data for an 128 × 128 cluster as extracted
from Green function, TRG method, and MC method. In the
tensor network representation the bond dimension has been
truncated at χc = 20. (Down):The same function is plotted
for a 128 × 128 square lattice cluster using Green function,
MC method and TRG method with χc = 20, 48, 64. That the
cut-off is kept very high for required accuracy is attributed to
the critical nature of the model on square lattice.

Green function (GF) calculations and indicative for a fi-
nite correlation length ∼ one lattice spacing in case of
the triangular lattice (Fig. 6 (a) ) dimer model. The er-
ror bars are very tiny since the averaging is performed
over large number of statistical ensembles. On the other
hand, the dimer-dimer correlation on the square lattice
is visibly algebraic of the known form of |C(r)| ∼ r−2 for
large r as displayed in the lower panel of Fig. 6 (b).

Compared to the MC results, TRG also shows similar
functional form of the correlator for the dimer model on
the triangular lattice. The TRG results (Fig. 6 (a)) are
consistent even at large system sizes (up to 128×128) and
achievable at the cost of reasonable cut-off χc. However,
we picked up the horizontal direction as a reference along

(a)
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FIG. 7. (Up): The dimer concentration as a function of the
cut-off for different lattice sizes on the triangular lattice. The
red dotted line indicates the average value of 1/6. (Down):
Shown is the above quantity for the square lattice. The av-
erage value in this case is 1/4. Note the deviations from the
dashed line for larger systems. The convergence for them re-
quires larger cut-off which grows with the system size.

which r is measured in this case (see Fig. 5) while coarse-
graining the tensor networks. The correlation function
depends only on the magnitude of r and not on the di-
rection along which r is measured or the orientations of
the dimers whose correlation is being measured. In our
case, the required convergence is obtained for χc = 20
which certifies TRG as an extremely useful machinery
for studying gapped systems. However, for the square
lattice dimer model, TRG turns out not so effective on
account of large deviations from the exact results and MC
while keeping the parameters (system size and χc) same
as the triangular lattice. Even if we crank up the cut-off
to χc = 48, unstable values appear in the correlation at
large distances. The situation, of course, improves fur-
ther if we push the computational effort towards a higher
cut-off of χc = 64, but not at the level comparable with
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MC results. As it turns out, the convergence demands
unusually high cut-off on χc for such large system sizes
costing a huge amount of computational resources.

In order to provide a critical assessment about the per-
formance of TRG for simulating dimer models on differ-
ent lattices, we calculate, for example, another quantity
called average dimer concentration 〈d(Ri)〉 as a function
of χc. From the results of TRG method shown in Fig.7
(a), we observe that 〈d(Ri)〉 rapidly converges to 1/6 for
the dimer model on the triangular lattice as the cut-off
χc is gradually increased. This is evidently not the case
for the dimer model on the square lattice (Fig.7 (b)).
Even for small system sizes, the required stability in the
numerical data requires cut-off like χc ∼ 30. If we go to
larger system sizes, more and more relevant information
has to be stored in a pertinent basis since the conver-
gence is attained at a much larger values of χc. The
failure can be attributed to the fact that we truncate the
sum over indices as in Eq. 21 at a threshold much below
the required one, so the entanglement dies off gradually.

V. CONCLUSION

In this paper, classical dimer models on square and tri-
angular lattice are studied numerically by using MC and
TRG techniques. We revisit the Pfaffian construction
which provides an analytic way to tackle the statistical
problem by computing the partition sum exactly. Fol-
lowing the Green function formulation, one can obtain
the expression for the dimer-dimer correlation function
which displays very different behavior on the square and
the triangular lattice hinting at a critical and liquid phase

respectively. We present the detailed structure of the
simulations adopted here, particularly focusing on TRG,
and trace the functional behavior of the dimer-dimer cor-
relator numerically. Our study conclusively establishes
that TRG can serve as a very efficient and elegant plat-
form to compute physical quantities of a gapped system
such as dimer model on the non-bipartite lattices. How-
ever, the performance and accuracy fall off significantly
while capturing the physics of a critical phase i.e. dimer
model on the square lattice. The convergence requires
large critical bond dimension χc for the tensor contrac-
tion if we want to take care of the consistency of the basis
for large system sizes. Entanglement in the network in
this case diminishes very rapidly which raises the cut-off
very high for storing the necessary information even at
the minimal level and makes the simulation run beyond
the capacity of our present resources. From the present
work on the dimer models, it can be envisaged that TRG
should be very useful for investigating classical loop gases
on non-bipartite lattices e.g. fully packed loop model on
the triangular lattice which has not been attempted so
far. The other computational methods such as SRG sup-
posedly improve the accuracy of the numerical results for
the gapped systems but the issue of their applicability to
solve the critical models is still a topic of debate.
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