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Abstract 

 Optically-detected paramagnetic centers in wide-bandgap semiconductors are emerging 

as a promising platform for nanoscale metrology at room temperature. Of particular interest are 

applications where the center is used as a probe to interrogate other spins that cannot be observed 

directly. Using the nitrogen-vacancy center in diamond as a model system, we propose a strategy 

to determining the spatial coordinates of weakly coupled nuclear spins. The central idea is to 

label the target nucleus with a spin polarization that depends on its spatial location, which is 

subsequently revealed by making this polarization flow back to the NV for readout. Using 

extensive analytical and numerical modeling, we show that the technique can attain high spatial 

resolution depending on the NV lifetime and target spin location. No external magnetic field 

gradient is required, which circumvents complications resulting from changes in the direction of 

the applied magnetic field, and considerably simplifies the required instrumentation. Extensions 

of the present technique may be adapted to pinpoint the locations of other paramagnetic centers 

in the NV vicinity or to yield information on dynamical processes in molecules on the diamond 

surface.  
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 Nuclear magnetic resonance (NMR) excels in its ability to probe non-destructively the 

structure and dynamics of molecular moieties without the need for long-range order, but the low 

detection sensitivity inherent to inductive detection limits this technique to ensemble 

measurements. Magnetic resonance force microscopy (MRFM) was introduced two decades ago 

precisely to circumvent this problem1. The idea was to leverage on the extreme sensitivity and 

magnetic field gradients of MRFM probes to discriminate between signals from individual 

nuclear sites in a molecule so as to image its structure with atomic resolution. Despite enormous 

progress2, however, this latter goal has proven exceedingly difficult, mainly due to the minute 

ratio between the spin and thermal energies, even at the lowest temperatures possible today.  

A more recent route to nanoscale magnetic resonance builds on the properties of select 

paramagnetic centers in solid-state matrices. At the core of this form of sensing is a singular 

combination of transition rules and decay rates between electronic states, responsible for the up-

conversion of spin-flip-induced energy differences into, e.g., changes in the center’s 

fluorescence. Case systems presently under intense study are the di-vacancy and silicon-vacancy 

centers in SiC3-5 , rare-earth ions in garnets6 ,7 , substitutional phosphorous8 and bismuth9 in 

silicon, and the nitrogen-vacancy (NV) center in diamond10. Common to these systems is the 

ability to individually initialize, manipulate, and readout the paramagnetic center spin via a 

combination of microwave (mw) and optical (or electrical) pulses, often under ambient 

conditions. These unique features are being presently exploited to probe other spins in the 

paramagnetic center vicinity that cannot be directly initialized or interrogated. For example, 

nitrogen-vacancy (NV) centers engineered near the diamond surface have been used to detect 

small ensembles of protons from organic films or fluids in contact with the crystal surface11,12. 

Subsequent experiments13 have demonstrated the detection of other spin species including 19F, 
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and 31P, with more recent studies reporting the observation of individual 1H and 29Si spins14,15. In 

this light, schemes designed to determine the spatial location of individual nuclear (or electronic) 

spins with atomic resolution gain particular interest as they are likely to become a key ingredient 

in, e.g., the characterization of the structure and dynamics of individual molecules adsorbed onto 

the center’s solid-state host. 

Here we introduce an imaging protocol that builds on the hyperfine-induced gradient to 

selectively mediate the transfer and retrieval of spin polarization between the paramagnetic 

center and neighboring nuclei. In many ways, our approach follows the principles of radar 

technology where a probe ‘signal’—in the form of spin polarization—scouts the vicinity in 

search for a ‘target’. In our scheme, the location of the target—i.e., a nuclear spin—is determined 

as the ‘reflected’ polarization travels back to the source. The target’s spatial coordinates are 

reconstructed from the angle where the reflection took place and the round trip time, here 

encoded in the pulse phases and duration of our magnetic resonance sequence. Both the range 

and spatial resolution depend on the coherence lifetime of the paramagnetic center, which varies 

from one spin system to another. For concreteness, we consider the particular case of an NV 

center interacting with distant (i.e., 0.5 nm or more) nuclear spins. We find that the spatial 

resolution—itself a complex function of the nuclear spin location and NV lifetimes—is sufficient 

to image small NV/13C clusters without the need for external magnetic field gradients and is 

limited by the NV spin coherence lifetime. Since the applied magnetic field remains unchanged, 

our approach circumvents complications arising from NV level mixing and can be extended to 

high field (where changing the relative sample orientation is often impractical). Therefore, these 

ideas complement recent experimental work where the coordinates of individual proton spins 
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from molecules on the diamond surface are determined by systematically altering the field 

direction in the presence of dynamical decoupling14.   

To more formally introduce our imaging scheme, we start by considering the individual 

NV-13C spin pair highlighted in Fig. 1a. Here we take a reference frame centered at the NV—a 

system with spin number ܵ = 1—and use the spherical coordinates ሺݎ, ,ߠ ߮ሻ  to indicate the 

location of the 13C nucleus—featuring a spin number ܫ = 1 2⁄ . We assume that the NV and z-

axis are parallel and co-linear with an externally applied magnetic field ܤ . The system 

Hamiltonian is then given by                                         ܪ = Δܵ௭ଶ െ ܵ௭ܤௌߛ െ ௭ܫܤூߛ   ௭ܫ௭ܵצ௭ܣ   ఝ ,                        ሺ1ሻܫ௭ୄܵ௭ܣ

where, as usual, we have truncated non-secular contributions, Δ = 2π ൈ 2.87 GHz denotes the 

NV zero-field splitting, γௌ (γூ) is the NV (13C) gyromagnetic ratio, ܵ௭ and ܫ௭ are the z-projections 

of the NV and 13C spin operators, and ܫఝ ؠ ௫ܫ cos ߮  ௬ܫ sin ߮, with ߮ denoting the nuclear spin 

azimuthal angle (Fig. 1a). For a distant carbon, the NV-13C coupling is dipolar in nature and the 

hyperfine constants take the form ܣ௭צ = ݇ ሺ3ܿݏଶߠ െ 1ሻ ⁄ଷݎ  and ܣ௭ୄ = ߠ݊݅ݏ ߠݏܿ 3݇ ⁄ଷݎ  where ݇ ؠ ߛேߛߤ ሺ4ߨሻ⁄  .ߨ is the vacuum permeability, and  is Planck’s constant divided by 2ߤ ,

In a typical magnetic resonance experiment, microwave (mw) pulses induce transitions between 

two selected states of the NV ground state triplet thus rendering the NV a two-level system with 

characteristic frequency ߱ௌ . The system evolution can thus be described via the simplified 

Hamiltonian                                                     כܪ = ௭ܫ௭ܵצ௭ܣ   ఝ݁ఠ௧ூ  ,                                  ሺ2ሻܫ௭ୄܵ௭݁ିఠ௧ூܣ

where the star denotes a transformation to the doubly rotating frame at the NV and 13C Larmor 

frequencies, and we have ignored rapidly fluctuating terms (see Section S1 of the Supplementary 

Material). Unless otherwise noted, we will assume that the hyperfine coupling is weak compared 
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to the nuclear Zeeman field, i.e., ܣ௭צ, ௭ୄܣ ا ߱ூ ؠ ܤூߛ . Note that the comparatively strong 

hyperfine coupling with the nitrogen host can be ignored, because the nitrogen nuclear spin does 

not significantly evolve during the typical time interval of an NV protocol (~1 ms or less). 

Further, the nitrogen nuclear spin can be initialized if so required, as demonstrated recently16 (see 

also Section S1 in the Supplementary Material).  

 To scout for nuclear spin targets we make use of the INEPT-like17 polarization transfer 

protocol in Fig. 1b comprising a train of mw pulses on the NV spin (a ‘CPMG train’) followed 

by an interval of free evolution and a radio-frequency pulse resonant with the 13C frequency (see 

below). For reasons that will be apparent shortly, we assume that all mw pulses induce 

transitions between the ݉ௌ = േ1 states, possible via the use of composite pulses18 or multi-

frequency excitation19.  Throughout the protocol, both the duration of the train and the free 

evolution interval—respectively denoted as ݐଵ, ݐଶ—are systematically increased; in the case of ݐଵ , the increments are in units of ߬ —coincident with half the 13C Larmor period—and 

accompanied by the addition of a new π-pulse at each step. To best appreciate the combined 

effect of the pulse sequence we first note that over a unit ߬ 2⁄ ߬—ߨ—߬ —ߨ— 2⁄  of the CPMG 

train the effective system evolution can be calculated from the average Hamiltonian20  

כଵܪ                 ൎ න ሻఛݐሺכܪ ଶ⁄
 ݐ݀ െ න ሻଷఛݐሺכܪ ଶ⁄

ఛ ଶ⁄ ݐ݀  න ሻଶఛݐሺכܪ
ଷఛ ଶ⁄ ݐ݀ = ߨ2  ఝ  .                     ሺ3ሻܫ௭ୄܵ௭ܣ

independent of ܣ௭צ (see Section S1 of the Supplementary Material). The alternating sign in the 

sum above results from the cumulative effect of the π-pulses, here inverting the populations 

between the ݉ௌ = േ1 states and consequently mapping ܵ௭ into െܵ௭ each time. Conversely, the 

effective Hamiltonian governing the ݐଶ interval is given by  

כଶܪ                                                      ൎ න ሻ௧మݐሺכܪ ݐ݀ =  ௭  ,                                                   ሺ4ሻܫ௭ܵצ௭ܣ
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independent of ܣ௭ୄ. Note that the stronger interaction of the NV spin with the host nitrogen 

nucleus can be ignored altogether when microwave pulses are sufficiently broadband (the typical 

condition in practice); alternatively this interaction can be effectively cancelled by conveniently 

prepolarizing the 14N spin (see Section S1 of the Supplementary Material).      

 We now calculate the system evolution, which, for simplicity, we restrict to the case 

where ݐଵ  and ݐଶ  take the (optimum) values ݐଵ௧ ؠ ଶߨ ሺ4ܣ௭ୄሻ⁄ , and ݐଶ௧ = ߨ ሺ2ܣ௭צሻ⁄  (see 

Section S2 of the Supplementary Material for a full derivation). Starting from a state where the 

NV is in ݉ௌ = 1 and the nuclear spin is unpolarized, the system density matrix ߩሺݐሻ before and 

after application of the CPMG train takes the form   

ݐሺߩ                                = 0ሻ = 14 ሺ1 െ ܲ  ܵ௭ሻ ՜ ଵ௧൯ݐ൫ߩ = 14 ൫1 െ ܲ      ఝ൯  ,            ሺ5ሻܫ௭ܵߙ2
where ܲ denotes the projection operator into ݉ௌ = 0 and ߙ ؠ  ௭ୄሻ. The last term in theܣሺ݊݃ݏ

expression for ߩ൫ݐଵ௧൯ corresponds to an antiphase nuclear spin coherence, i.e., a nuclear spin 

precession whose sign is conditioned on the orientation of the NV polarization. Importantly, the 

phase ߮ of this coherence depends on the nuclear spin azimuthal coordinate, which, as we show 

below, will help us pinpoint the 13C location. To complete the polarization transfer, the system is 

allowed to evolve for a time ݐଶ௧ before applying an rf π/2-pulse. For the simpler case where ߶ = ߮    with ݉ integer, the net result is the transformation ߨ݉

ଵ௧൯ݐ൫ߩ                                                    ՜ ଶ௧൯ݐ൫ߩ = 14 ሺ1 െ ܲሻሺ1    ௭ሻ  ,                        ሺ6ሻܫߜ2
where we define ߜ ؠ ݊݃ݏ ቀܣ௭ܣצ௭ୄܿݏሺ߮ െ ߶ሻቁ. The expression for ߩ൫ݐଶ௧൯ corresponds to a 

state where the NV is equally likely to point up or down (i.e., a depolarized state in the ݉ௌ = േ1 

subspace) and the nuclear spin is polarized to ݉ூ =  1 2⁄  or ݉ூ = െ 1 2⁄  depending on the sign 

of ߜ.  
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 A numerical calculation of the nuclear spin response for an arbitrary number of pulses or 

duration of the free evolution interval is presented in Fig. 2a for the particular case of a !3C spin 

in a ~30 mT field (߱ூ ⁄ߨ2 = 320 kHz) with spatial coordinates ݎ = 0.9 nm, ߠ = 70.5°, and ߮ = 0 (corresponding to ܣ௭ୄ ⁄ߨ2 = 26 kHz and ܣ௭צ ⁄ߨ2 = െ19 kHz). Complete nuclear spin 

polarization of alternating sign is only attained at multiples of ݐଵ௧ and ݐଶ௧, each of which reacts 

independently to a change of ܣ௭ୄ or ܣ௭צ (see right panels in Fig. 2a). The latter is more clearly 

shown in Fig. 2b where we plot the calculated temporal coordinates of the first peak transfer (in 

this example resulting in negative nuclear spin polarization) as we systematically vary either 

dipolar coupling constant. The analytical model agrees well with the numerical calculation in the 

(valid) regime where the nuclear Larmor frequency is sufficiently large (at least five times 

greater than the coupling). We also confirm the 2 ⁄ߨ  scaling of ܣ௭ୄ anticipated in Eq. (3) using 

average Hamiltonian theory.  

While in the calculations above mw pulses selectively act on the ݉ௌ = േ1 states, it is 

also possible to induce full nuclear polarization using a single quantum NV transition (i.e., ݉ௌ = 0 ՞ ݉ௌ = േ1 ), as we numerically demonstrate in Fig. 2c. However, rather than 

oscillating between states of positive and negative polarization, the nuclear spin polarizes or not 

depending on the chosen timing.  Optimal transfer times comparable to those in Fig. 2a can be 

attained by increasing the dipolar coupling constants indicating that the down-scaling noted 

above is more pronounced for a single quantum transition. Further, both ݐଵ௧  and ݐଶ௧  are 

influenced by a change in either coupling constants (central and right panels in Fig. 2c) pointing 

to a more complicated relationship between the sequence timing and the strength of the dipolar 

interaction. The latter can be understood by noting that a single-quantum π-pulse is insufficient 
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to change the sign of ܵ௭ meaning that contributions of the form ܵܣ௭ܫ௭ in Eq. (2) are not averaged 

out during the CPMG train.  

We noted above that the nuclear/electron antiphase coherence generated by the CPMG 

train depends on the nuclear spin azimuthal angle ߮ (see Eq. (5)). The latter has a direct impact 

on the resulting nuclear polarization, shown in Fig. 3a as we rotate the carbon location about the 

z-axis: For given evolution intervals ݐଵ ଶݐ , , the nuclear polarization exhibits a sinusoidal 

dependence on ߮ whose amplitude ranges from the maximum possible (e.g., at the first peak 

transfer, red curve) to zero (e.g., at a nodal point, black curve). We interpret this behavior as a 

manifestation of the broken axial symmetry in the system Hamiltonian (Eqs. (1) and (2)), which, 

in turn, stems from the large difference between the electron and nuclear resonance frequencies. 

Fast manipulation of the paramagnetic center synchronic with ߱ூ during the CPMG train creates 

a resonant time-dependent field at the nuclear site, which leads to the appearance of nuclear spin 

(anti-phase) coherence. Since this field depends on the carbon azimuthal angle, it imprints the 

resulting nuclear spin coherence with a ߮-dependent phase. Consequently, conversion to nuclear 

polarization requires control of ߶—the rf phase in the laboratory frame—easily attained in 

practice, e.g., by direct rf pulse synthesis. As we show below, this ability will prove key to 

identifying the spatial location of the nuclear spin.  

 Besides the rf phase, the interpulse separation in the CPMG train is another parameter 

worth commenting on. For the NV-13C geometry considered above, Fig. 3b shows the 

dependence of the nuclear polarization ூܲ on ߬ and ݐଶ for CPMG trains with different number ݊ 

of π-pulses. For ߱ூ߬ ⁄ߨ2 = 0.5 and ߶ = 0 (left panels), we find that the transfer efficiency is 

optimum at ݊ = 10 and vanishes as ݊ ՜ 20, in agreement with the results of Fig. 2a. However, 

nuclear polarization does build up as ߬ departs from half the 13C Larmor period. This effect is 
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more pronounced for larger values of ݊ indicating that spin transfer to more weakly coupled 

nuclei is increasingly susceptible to imperfections in the timing of the CPMG train. This 

tendency is replicated in the case ߶ = 90 (right panels), where the spin transfer is prevented only 

if ߬ precisely coincides with ߨ ߱ூ⁄ .   

To determine the nuclear spin coordinates we use a composite sequence where the 

protocol in Fig. 1 — designed to transfer spin polarization from the electron spin S to the nuclear 

spin I — is followed by NV re-initialization and nuclear spin polarization retrieval. The latter can 

be implemented in various ways, for example, by running the transfer protocol in reverse (Fig. 

4a, see also Fig. S1 of the Supporting Material). By systematically increasing the polarization 

exchange intervals ݐଵ and ݐଶ and the rf phase ߶ one gathers a 3D data set that reflects on the 

efficiency of the transfer and hence on the coordinates of the target nuclear spin (Fig. 4b). 

Fourier transforming along ݐଵ and ݐଶ produces a set of extrema in the 3D space spanned by ܣ௭ܣ ,צ௭ୄ  and ߮  (Fig. 4c), which can then be converted into real-space coordinates. The result is 

presented in Fig 4d for the example case of Figs. 2 and 3 (single spin with coordinates ሺݎ =0.9 nm,  0°=߮  ,70.5°=ߠ). Besides the ‘real’ nuclear site (dashed line in Fig. 4d), we identify an 

accompanying set of ‘ghost’ images, as expected in the case of a symmetric transfer/retrieval 

protocol (where the NV signal is insensitive to the absolute signs of ܣ௭ܣ ,צ௭ୄ and ߶, Section S2.2 

of the Supplementary Material); two possible sites result from each sign ambiguity, thus leading 

to a total of eight possible locations. For future reference, we also note the crescent shape of the 

isolevel surfaces, and the correspondingly poor azimuthal resolution.  

All ambiguities on the true location of the nuclear site can be removed by breaking the 

symmetry between the transfer and retrieval segments of the protocol—a mirror image of each 

other in Fig. 4. For illustration purposes, Fig. 5a introduces an alternate retrieval sequence where 
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the cyclic application of inversion pulses makes the effective Hamiltonian equal to כଵܪ  =
ଶగ  ଶ. Unlike the result in Figs. 4c and 4d, it canݐ̃ ଵ andݐ̃ ,ఝ during both evolution intervalsܫ௭ୄܵ௭ܣ

be shown that the accompanying NV signal has an overall sign that depends on ߙ ؠ  ,௭ୄሽܣሼ݊݃ݏ

and ߚ ؠ ሽצ௭ܣ ሼ݊݃ݏ  but not on ߛ ؠ ߶ሼcosሺ݊݃ݏ െ ߶ሻሽ . Other combinations are possible with 

complementary pulse protocols, which allows one to independently determine ߚ ,ߙ, and ߛ (and 

correspondingly the ‘true’ nuclear site). The result is presented in Fig. 5b for the more complex 

case of multiple 13C spins weakly coupled to an NV (Section S2 of the Supplementary Material).  

An important practical consideration in the application of this technique is the limit 

spatial resolution, in general, a complex function of various parameters. The most relevant factor 

is the NV coherence lifetime ଶܶே, of immediate impact on the duration of the NV response and 

thus on the broadening of the resulting ‘peaks’ in the 3D spectrum. An example is presented in 

Fig. 5c, where we compare the ‘images’ of the same 13C cluster for three different NV lifetimes 

(150 µs, 75 µs, and 38 µs). In all cases we have ignored NV spin-lattice relaxation (>1 ms in 

moderately pure diamond) and broadening originating from nuclear spin decoherence or nuclear 

spin-lattice relaxation (with time scales of ~10 ms, and 1 s or greater, respectively). Shorter ଶܶே 

selectively impact the radial and polar resolution while the azimuthal resolution remains 

unchanged (see below). In particular, for ଶܶே~100 µs and ܣ௭צ,  0.1~ݎ௭ୄ~30 kHz, we find Δܣ

nm and Δ4~ߠ deg. We warn, however, that these estimates serve only as a crude reference: For a 

fixed NV lifetime, the spatial resolution decreases as the hyperfine coupling weakens, simply 

because a longer interaction time is required to exchange polarization with the target nuclear 

spin. For example, additional calculations (not shown here for brevity) indicate that the volume 

enclosed by the isolevel surface in Fig. 5b quadruples when increasing the nuclear distance ݎ by 
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a factor ~1.8, from 0.9 nm to 1.6 nm. Naturally, similar effects are observed as the polar angle 

approaches ߠ = 0° or ߠ = 54. 7°, respectively the nodes of ܣ௭ୄ and  ܣ௭צ.  

Further work will be needed to circumvent some present limitations, including the 

extended crescent shape—and correspondingly moderate resolution—along the azimuthal angle ߮  (Fig. 4d). This coordinate differs from the other two in that it is defined by the phase 

selectivity of the nuclear spin projection pulses throughout the polarization exchange ( ௌܲ cosଶሺ߮ן െ ߶ሻ, Section S2.2 of the Supplementary Material). Higher azimuthal selectivity may be 

attained, for instance, via the use of composite rf π/2-pulses more sensitive to the nuclear spin 

phase.  

The ideas underlying the technique presented herein can be extended in several 

complementary directions. First, we emphasize that spins other than the NV can be envisioned as 

the source of nuclear spin polarization. Besides the various paramagnetic centers mentioned 

above, one possibility is the use of ‘dark’ electronic spins such as the P1 center in diamond 

(formed by a substitutional nitrogen), already shown to polarize by contact with the NV21. 

Alternatively, one can envision the use of paramagnetic labels (e.g., nitroxyls) to mediate the 

interaction between the NV and nuclear spins in outer molecules, as demonstrated recently14. 

Along these lines, we mention that our technique could be conceivably adapted to determine the 

spatial positions of electronic rather than nuclear spins. Such strategy would be helpful in 

pinpointing the positions of key sites within molecules tethered to the diamond surface 22 .  

Further, since the polarization transfer efficiency depends on the exact spatial coordinates of the 

target (electronic or nuclear) spin, introducing a variable time interval between polarization 

transfer and retrieval could be exploited to monitor various dynamical processes. Examples are 

slow molecular folding processes activated externally either by chemical or optical means.  
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Purely as a polarization transfer strategy, our approach could serve as a route to 

dynamically polarize organic systems adsorbed on the diamond surface23. In particular, because 

the pulse timing can be controlled with nanosecond precision (much shorter than the 

microsecond nuclear Larmor period at moderate magnetic fields), the time jitter is expected to be 

low, thus ensuring high spin transfer efficiency. The latter may prove an advantage when 

compared to, e.g., the Hartman-Hahn scheme24, where amplitude fluctuations of the rf field 

reduce the probability of a flip-flop, especially for weakly coupled nuclei. The flipside, however, 

is the greater sensitivity to inter-nuclear spin interactions, which, in the present protocol, must 

remain smaller than the coupling to the NV. While this is typically the case within the diamond 

crystal (where 13C spins are dilute), the opposite limit applies to nuclei on the diamond surface 

(such as 1H spins in adsorbed molecules). This complication could be somewhat mitigated, e.g., 

via the combined use of inter-nuclear dynamical decoupling sequences.  

The authors acknowledge support from the National Science Foundation.  
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Fig. 1: Spatial encoding via spin polarization transfer.  (a) Schematics of an NV center and 
interacting nuclear spins. One intriguing possibility is the use of shallow NVs to locate spin-
labeled nuclei from molecules on the diamond surface.  denotes the double-rotating-frame 
Hamiltonian governing an individual NV-13C pair interacting via a weak hyperfine coupling.  (b) 
Double resonance pulse protocol. A magnetic field B is applied along z, coincident with the NV 
symmetry axis. The NV is initialized into  and all microwave pulses induce transitions 
between the  states.  denotes the NV-13C density matrix, here evaluated at different 
points of the pulse protocol, and , , is the effective time-independent Hamiltonian 
during each half of the pulse sequence. In each case, the top graph indicates the normalized 13C 
dipolar coupling as a function of the azimuthal and polar angles (respectively,  and  in (a)).   
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Fig. 2: Pulsed spin polarization transfer to 13C. (a) (Right) Numerically calculated 13C spin 
polarization after application of the pulse sequence in Fig. 1. The initial NV state is mS=1, the 
applied magnetic field is 30 mT, and the hyperfine coupling constants are  ܣ௭ୄ ⁄ߨ2 = 25.9 kHz, ܣ௭צ ⁄ߨ2 = െ18.3 kHz corresponding to spatial coordinates  ሺݎ = 0.9 nm, ߠ = 70.5°, ߮ = 0°ሻ. 
The insert represents the nuclear polarization as derived from average Hamiltonian theory (Eq. 
(S15) in Section S2 of the supplementary material). (Left) Numerically calculated 13C spin 
polarization assuming ܣ௭ୄ ⁄ߨ2 = 39.0 kHz, ܣ௭צ ⁄ߨ2 = െ18.3 kHz (top panel) and ܣ௭ୄ ⁄ߨ2 =25.9 kHz, ܣ௭צ ⁄ߨ2 = െ38.0 kHz (lower panel). (b) Optimum transfer times ݐଵ௧  and ݐଶ௧  (full 
and empty circles, respectively) as a function of ߱ூ ⁄צ௭ܣ  (right plot, ܣ௭ୄ ⁄ߨ2 = 25.9 kHz) and ߱ூ ⁄௭ୄܣ  (left plot, ܣ௭צ ⁄ߨ2 = െ18.3 kHz). The circled pair of dots corresponds to the main case 
in (a). Lines indicate the relations ݐଵ௧ = ଶߨ ሺ4ܣ௭ୄሻ⁄  and ݐଶ௧ = ߨ ሺ2ܣ௭צሻ⁄  serving as a guide to 
the eye. (c) Same as in (a) but for mw pulses acting on the NV ݉ௌ = 0 ՞ ݉ௌ = 1 transition. 
The 13C angular coordinates are the same but the distance to the NV is 0.7 nm corresponding to ܣ௭ୄ ⁄ߨ2 = 55  kHz, ܣ௭צ ⁄ߨ2 = െ39  kHz. In (a) through (c) the rf-phase is ߶ = 0 , and the 
separation between π-pulses is  ߬ = ߨ ߱ூ⁄ .   
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Fig. 3: The role of rf phase and mw timing. (a) Upper panels: Nuclear spin polarization ூܲ as a 
function of ݊, the number of π-pulses, and ݐଶ for a 13C spin with variable azimuthal coordinate ߮. 
The rf phase is ߶ = 0. A similar dependence is obtained for a fixed nuclear spin site as one 
changes the rf phase. Lower panel: ூܲ as a function of ߮ for ݊ = 10, ߱ூݐଶ ⁄ߨ2 = 4.2 (red curve), 
for ݊ = 6, ߱ூݐଶ ⁄ߨ2 = 2.1 (blue curve), and for ݊ = 19, ߱ூݐଶ ⁄ߨ2 = 8.2 (black curve). In all 
cases the rf phase is ߶ = 0. (b) Nuclear spin polarization as a function of the normalized inter-
pulse separation ߬ and free evolution interval ݐଶ for CPMG trains with ݊ π-pulses. Plots on the 
left (right) column correspond to rf phase ߶ = 0 (߶ = 90). In (a) and (b) the NV interacts with 
13C spin located at ሺݎ = 0.9 nm, ߠ = 70.5°, ߮ = 0°ሻ.  
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Fig. 4: Determining the nuclear spin position. (a) Schematics of the pulse sequence. 
Discontinued laser pulses indicate NV polarization into (or detection of) mS=+1. (b) NV response ௌܲ as a function of the polarization exchange intervals ݐଵ and ݐଶ and rf phase ߶ for a single 13C 
spins with coordinates ሺݎ = 0.9 nm, ߠ = 70.5°, ߮ = 0°ሻ. For clarity, only one maximum is 
shown but we assume a full data set whose decay is governed by the NV lifetime. (c) Isolevel 
plot of the 3D spectrum (magnitude mode) upon Fourier transform of the data set in (a) along the 
time dimensions ݐଵ  and ݐଶ . The corresponding 3D map with the 13C location (right) can be 
calculated via the transformation ሺܣ௭צ, ,௭ୄܣ ߶ሻ ՜ ሺݎ, ,ߠ ߮ሻ. Besides the ‘real’ position (labeled 
CA(1) in the 3D plots) there are seven ‘ghost’ images (CA(2)… CA(8)) arising from a sign ambiguity 
in each dimension. All surfaces in (c) and (d) correspond to 80% of the NV signal maximum; the 
NV coherence lifetime is 150 µs.  
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Fig. 5: Imaging a 13C cluster. (a) All ambiguities in the nuclear spin location can be removed 
with the aid of alternate polarization retrieval protocols. The schematics shows one such protocol 
where the NV signal is imprinted with the relative sign of the hyperfine coupling constants (see 
text and Section S2 of the supplementary material). (b) We determine the locations of three 13C 
spins (denoted as ܥ = ሺݎ = 0.90 nm, ߠ = 70.5°, ߮ = 0°ሻ ܥ , = ሺݎ = 1.03 nm, ߠ = 35.3°,  ߮=60°, and 1.03=ݎ=ܥܥ nm,  135°=߮  ,144.7°=ߠ) weakly coupled to an NV (represented by a 
central green dot). Using three complementary retrieval protocols (including that shown in (a)) 
we eliminate all ghost images. As in Fig. 4, the red surfaces correspond to isolevel plots of the 
transformed spectrum at 80% of the NV signal maximum. The NV coherence lifetime is 150 µs. 
(c-d) Same as in (b) but for NV coherence lifetimes of 75 µs and 38 µs, respectively. 

 
 
 
 


