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The ν = 5/2 fractional quantum Hall effect is a system of intense experimental and theoretical
interest as its ground state may host non-abelian excitations, but the exact nature of the ground
state is still undetermined. We present the results of an exact diagonalization study of an electron
system in the disk configuration including the effects of Landau level (LL) mixing and the finite
thickness of the quantum well confining the electrons. The degeneracy between the two leading
candidates for the ground state, the Pfaffian and anti-Pfaffian, is broken by interactions with a
neutralizing background, in addition to the inclusion of two- and three-body interactions via LL
mixing. As a result of the neutralizing background in the disc configuration, there is a phase
transition from the anti-Pfaffian to the Pfaffian as LL mixing is turned on, in stark contrast to what
is observed in a spherical geometry. This behavior is in agreement with existing experiment, showing
the appearence of the Pfaffian state at strong LL mixing before the system enters a compressible
phase. The inclusion of LL mixing leads to an increased charge e/4 quasihole size. LL mixing
interactions are also shown to overcome the effects of edge reconstruction. Due to finite thickness
effects, these properties are enhanced dramatically. We also find that only the Pfaffian and anti-
Pfaffian states continue to possess energy gaps at finite width, while gaps for compressible stripe
states close, which is in agreement with available experimental data.

I. INTRODUCTION

The ν = 5/2 fractional quantum Hall effect (FQHE)1,2

is a unique state as it is the only even-denominator FQHE
state observed. As a result of the even denominator frac-
tional filling, it cannot be modeled using the Laughlin3 or
the non-interacting composite fermion4 pictures, which
have successfully described the odd denominator states
in the lowest Landau level. This has led to the state being
considered a paired state of composite fermions5 which
naturally led to the Moore-Read Pfaffian trial state6–8.
Since the Pfaffian is not particle-hole symmetric, we must
also consider the particle-hole conjugate state, the anti-
Pfaffian9,10 as a trial ground state.

These states in particular attract the most theoretical
and experimental interest as they may host non-abelian
quasihole excitations6,11–14. With such excitations, these
states may be used to perform topologically protected
quantum computing15,16. In order to be able to take ad-
vantage of this topological protection, it is necessary to
determine which trial ground state is realized in experi-
ment. This, in turn, requires including particle-hole sym-
metry breaking terms into theoretical models, lifting the
degeneracy between the Pfaffian and the anti-Pfaffian.

There is evidence that this symmetry is spontaneously
broken17, but there are effects in the system, which
break the particle-hole symmetry of the Hamiltonian,
such as Landau level (LL) mixing. LL mixing breaks
this symmetry through effective three-body potentials
which have been calculated using a diagrammatic ex-
pansion of the Coulomb interaction18–22. In addition
to offering particle-hole symmetry breaking, the inclu-
sion of the three-body terms brings the model systems
closer to the ideal three-body Hamiltonian, for which the
Pfaffian is the state with the lowest energy and angular

momentum7,8. Many recent exact diagonalization stud-
ies in the half-filled first excited LL spherical geometry
have included such LL mixing terms23–26, and a den-
sity matrix renormalization group study on the cylinder
includes LL mixing by allowing occupation of the sec-
ond excited LL and lowest LL neighboring the half-filled
first excited LL27. The most recent exact diagonalization
study in a spherical geometry in Ref. 26 additionally in-
cludes finite thickness of the quantum well, which has
previously been noted to improve overlaps with the Pfaf-
fian state28–30.

These studies have been somewhat contradictory in
their findings. The exact diagonalization study con-
ducted in Ref. 26 shows that the Pfaffian state is fa-
vored at lower LL mixing strength and may transition
into the anti-Pfaffian state as the LL mixing is turned
on. The infinite density matrix renormalization calcula-
tion in Ref. 27, however, favors the anti-Pfaffian in the
weak LL mixing limit.

In order to further examine the problem and possi-
bly resolve the discrepancy, we present the results of an
exact diagonalization study on the disk. Our model sys-
tem includes interactions with a neutralizing background
which provides additional particle-hole symmetry break-
ing. From this model, we produce a phase diagram of
the first excited LL by varying LL mixing strength and
varying the distance between the two-dimensional elec-
tron gas (2DEG) and the neutralizing background. This
shows a transition from the anti-Pfaffian to the Pfaffian
as LL mixing is turned on, the opposite of the transition
found in Ref. 26, where the Pfaffian transitions into the
anti-Pfaffian as the LL mixing is turned on. We then
explore the quasihole excitations of the system. Our re-
sults show that the inlcusion of LL mixing leads to a
larger quasihole, as proposed in Ref. 34. Furthermore,
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FIG. 1. Our system consists of a 2DEG of width w separated
from a disk of neutralizing background charge by a distance
d in a perpendicular magnetic field B.

we find that the finite thickness of the system leads to an
increase in the quasihole size as well. Finally we use over-
laps integrals to find the edge states of the system and
examine their behavior as LL mixing and finite thickness
is included. The LL mixing is seen to prevent the effects
of edge reconstruction35 from occurring while the finite
thickness is seen to generally improve the edge states.

Our paper is organized as follows. In Sec. II we
describe our model and discuss particle-hole symmetry
breaking. The phase diagram of the system and the tran-
sition from the anti-Pfaffian to the Pfaffian is discussed
in Sec. III. The quasihole excitations of the system are
described in Sec. IV, and the edge states are discussed
in Sec. V We conclude with a discussion of the results in
Sec. VI.

II. MODEL

We are interested in a system consisting of a 2DEG
confined by a disk of neutralizing charge subjected to a
perpendicular magnetic field, as illustrated in Fig. 1. As
we are including LL mixing through the perturbative ex-
pansion of the Coulomb interaction, we can vary both the
distance to the neutralizing background and the strength
of the LL mixing terms. By varying both of these param-
eters, we can produce a phase diagram of the system as
a function of LL mixing and the strength of the neutral-
izing background. Furthermore, we include finite thick-
ness effects into our system, which we do for an infinite
rectangular well potential. In the following, we choose
to express all lengths in units of the magnetic length
`B =

√
ch̄/eB and energies in units of the Coulomb en-

ergy e2/ε`B .
Due to the disk geometry of our system we work in

the symmetric gauge. The single particle eigenstates, in
cylindrical coordinates, then take the form

ψn,m(r, θ, z) =

√
n!

2π(m+ n)!

(
r√
2

)m
eimθe

−r2

4

×Lmn
(
r2

2

)√
1

w
sin

πz

w
(1)

when we restrict the system to the lowest lying subband.
The angular momentum of the single electron state is
then given by m, n is the LL index, and w is the width of
the rectangular potential well confining the 2DEG. In the
limit of w → 0, we have

√
1/w sinπz/w → 1, recovering

the results for a strictly two-dimensional system.
We include the single particle interactions with the disk

by using the potentials

Um(d,w) =
−N
πR2

d

∫ Rd

0

∫ 2π

0

RdRdφ〈1,m|(r2 +R2

−2rR cos(θ − φ) + (z − d)2)−1/2|1,m〉(2)

where Rd is the radius of the disk, N is the number of
particles, and ψn,m(r, θ, z) = 〈r, θ, z|n,m〉. By choosing
an appropriate Rd, we can control the filling factor of
our disk31,32 and so we fix Rd such that we have a con-
stant filling factor of 1/2 for the partially filled LL. This
background interaction term is the only contribution to
the single particle Hamiltonian as the kinetic energy of
the system is quantized by the B field. Thus, the single
particle term takes the form

H1(d,w) =
∑

m

Um(d,w)a†mam (3)

where the a
(†)
m annihilate (create) an electron in the first

excited LL with angular momentum m. By introducing
an energy cost for the electrons to occupy the edge of
the system, this potential contributes to breaking the
particle-hole symmetry32.

The interaction terms can then be classified into two
parts, the two-body interactions and the three-body in-
teractions. The two-body Hamiltonian is given by

H2(κ,w) =
1

2

∑

k,l,m

V kl,m(w)a†m+ka
†
l−kalam

+κ
∑

i<j

∑

M

V
(2)
M (w)PM(i,j). (4)

where κ = e2/ε`Bh̄ωB is a parameter characteriz-

ing the strength of LL mixing, V
(2)
M are the Haldane

pseudopotentials36 for the second order two-body correc-
tions as described in Ref. 20, and PM(i,j) project the state

of electrons i and j onto the relative angular momentum
state37 with relative angular momentum M . The remain-
ing term describes the lowest order Coulomb correction
and is given by

V kl,m(w) =

〈
1,m+ k; 1, l − k

∣∣∣∣
1

r12

∣∣∣∣1,m; 1, l

〉
. (5)

The three-body term is then given by

H3(κ,w) = κ
∑

i<j<k

V
(3)
M (w)PMi,j,k (6)

where V
(3)
M are the three-body Haldane pseudopotentials

and PMi,j,k is a three-body projection operator similar to
the one described for the two-body term.
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FIG. 2. (a) The phase diagram of 10 electrons in 18 states
with w = 0`B as the distance to the neutralizing disk d and
the LL mixing strength κ are varied. (b) The phase diagram
for varying d and κ with w = 1`B . The potential Pfaffian
region is highlighted in green for both diagrams while the
anti-Pfaffian is highlighted in red. The inclusion of the effect
of the finite well thickness expands both of these regions.

Combining these three terms, we then have

H(κ, d, w) = H1(d,w) +H2(κ,w) +H3(κ,w). (7)

This Hamiltonian describes our system and gives us three
parameters which can be varied: the distance to the neu-
tralizing background, d, the width of the quantum well,
w, and the LL mixing strength, κ.

III. PHASE DIAGRAM

We diagonalize Eq. (7) by breaking up the Hilbert
space into subspaces of fixed angular momentum which
are diagonalized individually as the rotational invariance
causes these subspaces to decouple from each other32.
The lowest energy state of each subspace is then found
and we consider the state with the lowest global energy
to be the ground state at that d, w, and κ. We use the
total angular momentum of the Pfaffian, N(2N − 3)/2
where N is the number of electrons, and of the anti-
Pfaffian, S(S−1)/2−(S−N)[2(S−N)−3]/2 where S is
the number of available states, to identify regions where
these states may be realized. Performing this process for
multiple values of d, w and κ, we are able to produce a
phase diagram of the system.

The results of this procedure are shown in Fig.2 for
10 electrons in 18 states with w = 0`B and w = 1`B .
The noticeable effect of the LL mixing is that all of the
observed states arise at larger d than in the absence of
mixing. Thus, the LL mixing strength and the confine-
ment by the neutralizing disk, due to the generally at-
tractive nature of the LL mixing terms, balances with
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FIG. 3. (a) The overlap integral with the MR Pfaffian at
various d. It is apparent that the overlap increases with in-
creasing d and κ until a critical separation, at which point
the overlap begins to decrease. (b) The overlap integral with
the anti-Pfaffian at various d. The overlap is seen to sharply
increase with increasing κ and d.

the Coulomb repulsion. As d increases, the confinement
of the 2DEG by the neutralizing background weakens and
the Coulomb interaction pushes the 2DEG towards the
edge, while the LL mixing interaction can pull the elec-
trons back to the center as it is increased. Thus, from
the model, larger d correspond to larger κ.

Due to the small size of our system, we characterize
it by a neutralizing disk of radius ∼ 6`B . Therefore we
do not exceed d = 1.5`B in order to maintain a charge
distribution similar to experiment, as in previous sim-
ulations of the FQHE on the disk32. Realistic experi-
mental separations are significantly larger, being closer
to ∼ 10`B . As larger d leads to weaker confinement by
the neutralizing background, the corresponding κ must
be increased to compensate and realize the same state as
we observe at lower d. Thus, we expect larger values of κ
in experimental settings due to the larger characteristic
d. Therefore, both d and κ are vital for the realization of
the non-abelian states in experimentally relevant ranges
of disk separations and LL mixing strength.

This balancing is highlighted in Fig 3a where we see
that the overlap with the Pfaffian, which occupies the
M = 85 region in Fig. 2, increases with increasing d and
κ up to some dc ' 0.5`B when w = 1`B and dc ' 1.2`b
for w = 0`B . This dc is a finite size effect arising from
the distance between the disk and the 2DEG in combi-
nation with the finite thickness becoming comparable to
the radius of the disk. From Fig. 3a, we can also see



4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5

0 0.2 0.4 0.6 0.8 1

d
(`

B
)

κ

Unuseable

0 0.2 0.4 0.6 0.8 1

κ

(a)

M
=

6
3

M
=

5
2

M
=

4
4

M
=

3
6

M
=

28
(b)

M
=

6
3

M
=

6
0

M
=

5
2

M
=

4
4

M
=

3
6

M
=

28
FIG. 4. (a) The phase diagram for 8 electrons in 14 states
with w = 0`B as d and κ are varied. (b) The phase diagram
for 8 electron in 14 states with w = 1`B . We note that in the
8-electron case, the anti-Pfaffian state does not appear and
that the size of the collapsed region and the Pfaffian regions
decrease in size when we move to 10 particles.

that the overlap with the Pfaffian at fixed d decreases
with increasing κ, as was observed in Ref. 26.

The anti-Pfaffian, the M = 101 region in Fig. 2, fa-
vors a smoother edge (large d) and strong magnetic fields
(small κ). Thus, the anti-Pfaffian prefers weaker con-
finement than the Pfaffian state. This is the opposite
of observations in Ref. 26 where the Pfaffian appears
at κ < κc (w) and transitions to the anti-Pfaffian when
κ > κc (w) . The reversal of this behavior we observe here
is a result of the interaction with the neutralizing back-
ground as the overlap with the anti-Pfaffian increases
sharply with increasing κ, as shown in Fig. 3b. As
the neutralizing background plays an important role in
experimental settings, we believe that the transition ob-
served experimentally in Ref. 38 is of the type we observe
here.

Another noticeable feature is the M = 45 collapsed
state. This region represents the collapse of the 2DEG
to the center of the disk where the state is supported only
by degeneracy pressure. This is a result of LL mixing and
the neutralizing disk potential overcoming Coulomb re-
pulsion entirely. Comparing our 10 electron calculations
to calculations with the 8 electrons, shown Fig. 4, we see
that this state is pushed to higher κ by the introduction
of new compressible stripe states as the particle number
increases.

We may also compare the Pfaffian and anti-Pfaffian
regions of the 8 and 10 particle results. Doing so, we
see that the anti-Pfaffian does not stabilize. This is at-
tributed to finite size (small number of particles) effects.
The limited system size prevents the anti-Pfaffian from
stabilizing due to the limited number of states available
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FIG. 5. The 100 lowest energy levels of 10 particles in 18
states for d = 1.2`B with w = 0`B (left) and w = 1`B l (right).
The individual graphs relate to different U for the Gaussian
tip potential of Eq. (8) with σ ' 4: (a),(b) No Gaussian
tip potential, (c) U = 0.01e2/ε`B , (d) U = 0.05e2/ε`B , (e)
U = 0.02e2/ε`B , (f) U = 0.1e2/ε`B . The locations of the
phase transitions are highlighted by the vertical black bars
and the κ range of the U = 0 M = 85 phase is bordered by
blue in all plots.

at the edge. The Pfaffian region, on the other hand,
shrinks as more compressible states appear in the 10 elec-
tron case. This, however does not mean that the Pfaffian
state vanishes in the thermodynamic limit, because the
strength of the overlap integral increases with increasing
particle number, so that the Pfaffian region does not ap-
pear to destabilize with increasing particle number and
many of its features are enhanced.

These key points distinguish our results for the 2D
phase diagram from what is expected from Ref. 32.
When the finite thickness of the well is introduced, the
potentially incompressible states appear much stronger
than in the 2D case, as is expected28–30, with the incom-
pressible states occurring at much lower d than in the
2D case. However, several features of both cases do not
differ that dramatically, particularly the presence of the
M = 101 region and the M = 85 region separated by
a series of compressible stripe states, with the M = 85
region having a strong overlap with the Pfaffian through-
out.

In order to examine the phase transitions, we take a
cut across the phase diagram at fixed d = 1.2`B and per-
form a higher resolution sweep of the LL mixing strength
as shown in Fig. 5a,b. A striking difference between the
pure 2D case, when w = 0, and the finite width confine-
ment, w = 1`B , immediately becomes apparent as we
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look at the energy gaps. In the system with w = 0`B , all
ground states develop an energy gap, as we move away
from the phase transition. For w = 1`B , the energy gaps
for the stripe phases have closed and only the candidate
incompressible states continue to possess an energy gap.
In the M = 101 region, we take this and the rapid in-
crease of the overlap integral as κ and d increase shown
in Fig. 3b as an indication of this region belonging to the
same class as the anti-Pfaffian.

The results in Fig. 5 also show that the energy gaps
of the incompressible states close linearly with κ. This
behavior has also been identified experimentally in Ref.
33, where several samples were studied at different LL
mixing strength. Additionally, the experimental results
favored the MR Pfaffian in the strong LL mixing case,
in agreement with our phase diagram. The experiment
also indicates less sensitivity to d than we observe, but
relatively stronger sensitivity to d is a finite size effect
because the range of d we explore is on the same scale as
the size of our model system, while the d in the experi-
mental setup is significantly smaller than the system size
studied experimentally.

IV. QUASIHOLES

With the phase diagram established, we now explore
the effects of introducing a quasihole at the center of the
system. Such a quasihole excitation can be introduced
by depopulating the center of the disk with the potential

ĤU = U
∑

m

exp
−m2

2σ2
a†mam, (8)

which is equivalent to applying a repulsive Gaussian tip
to the center of the disk. U is the strength and σ is
the width of the potential, which correlates with the size
of the quasihole. The results are shown for Fig. 5c-f,
alternating between w = 0`B and w = 1`B .

As we increase the strength of the tip potential, for
w = 0`B , the M = 85 phase begins to be displaced by the
neighboring M = 90 phase associated with the formation
of a charge e/4 quasihole39. In previous work in the disk
configuration, with no account of LL mixing, such quasi-
hole states were introduced using a tip potential with a
size σ ' 3, but in order to introduce a quasihole excita-
tion here, with LL mixing present, we must increase the
size of the Gaussian tip to σ ' 4, which is in agreement
with Ref. 34. For w = 1`B , we are no longer able to
introduce a single quasihole excitation, but we may in-
troduce a pair of quasiholes at much stronger strengths.
This may be an indication of pairing in the ground state
as the two-quasihole state does not change the boundary
conditions and leaves the edge structure unchanged.

In order to understand the increase in size of the charge
e/4 quasihole, we consider the classical effects of intro-
ducing LL mixing. Adiabatically turning on LL mixing
by increasing κ, is formally equivalent to decreasing the
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FIG. 6. The same as in Fig. 5, but only results for w = 1`B
are shown with a Gaussian tip potential with σ ' 4.5 and
(a) U = 0, (b) U = 0.01e2/ε`B , (c) U = 0.02e2/ε`B . The
increased tip size creates and expands a phase with anM = 90
ground state with a charge e/4 quasihole isolated at the center
of the disk.

magnetic field. Then a small amount of negative charge
is transported from the center of the disk to the edge by
this process and the equilibrium state of the same angu-
lar momentum M has more charge located on the edge.
As the charge e/4 quasiholes are effectively a center of
rotation, a similar effect should occur, increasing the size
of the region of depleted charge. Thus, the inclusion of
LL mixing leads to an increase in quasihole size.

When introducing finite thickness effects, the confin-
ing potential generated by the neutralizing background is
weakened. As a result, stronger LL mixing is required to
overcome the Coulomb repulsion and realize the M = 85
Pfaffian state. Since this is then an even smaller mag-
netic field than in the w = 0`B case, more charge will
be located on the edge of the disk when we include finite
thickness. Similarly, introducing a quasihole should push
more charge away from the center of rotation. Therefore,
the charge e/4 quasiholes should be larger when we in-
clude finite thickness effects. Thus, when σ in Eq. (8) is
increased, we expect that a single quasihole excitation in
the w = 1`B system will be produced as U is increased.

The results for σ ' 4.5 and w = 1`B are shown in
Fig. 6. Turning on U with this larger Gaussian tip, we
can see that a new phase appears between the M = 95
and M = 85 Pfaffian state. The increase of 5 units of
angular momentum is the angular momentum associated
with a single quasihole excitation and we see that the
M = 90 state displaces the M = 85 Pfaffian state as U
is increased, just like what we see in the w = 0`B case.
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Therefore, we see that both finite thickness effects and
Landau level mixing leads to a larger quasihole size.

V. EDGE STATES

We now focus on the edge states of the M = 85 Pfaffian
region. A signature of the Pfaffian state is the presence
of two edge modes, a neutral Bose mode, which carries
the quasiparticle charge around the edge, and a neutral
Fermi mode, which arises from pair-breaking excitations
and carries the quasiparticle statistics40. For the phase
diagrams in Fig. 2, we use a smaller set of basis states in
order to limit the effects of edge reconstruction and limit
the influence of the edge states31,32. At present, however,
we wish to emphasize the edge characteristics and so we
increase the size of our single particle state space from 18
states to 22 states in the 10 particle case. This has the
additional effect of driving the Pfaffian state to higher
LL mixing strengths as the smaller state space acted as
an artificial confining potential.

In order to determine the edge states, we calculate
the overlap integrals between these states and the zero
energy expansions and pair-breaking excitations of the
ideal three-body Hamiltonian7,8,40. For the single parti-
cle Bose modes and the Fermi modes, the overlap inte-
grals are shown in Table I for the results in Fig. 7(b).
For edge excitations that are a combination of Bose and

∆M |〈ψM |ψedge〉|2

0 0.36

1B 0.33

2B 0.18

2F 0.31

3B 0.12

3F 0.36

4B 0.14

4F 0.23

4F 0.2

TABLE I. The overlaps of the edge states at various ∆M
consisting of either a single Bose mode or two Fermi edge
modes for w = 1`B , d = 1.2`B and κ = 0.4. The Bose modes
at a given angular momentum are indicated by mB and the
Fermi modes by mF . For the first Bose mode and the Fermi
modes, we see that the overlap integral is close to that of the
ground state with the Pfaffian (indicated by ∆M = 0), but
falling as we look at higher ∆M .

Fermi modes, the overlap integrals are weaker and we
rely upon the energies and the overlap integrals to deter-
mine these states. We find similar overlap integrals for
the other energy spectra shown in Fig. 7.

We first look at the case where d = 1.2`B , κ = 0.3
and w = 0`B in Fig. 7a. In the spectrum, we identify
two clear branches of edge modes: an upper and a lower
branch. The lower branch represents the purely Fermi
edge modes, which are largely separated from the bulk,
though there is still some mixing at ∆M = 2. The upper
branch is well mixed with the bulk and consists of the
Bose edge modes and the mixed edge modes. Recent
results suggest that as we are looking at d > 0.5`B , we
should see edge reconstruction35. Instead, we find that
LL mixing has overcome edge reconstruction and kept the
system in the M = 85 region. This is further illustrated
in the w = 1`B case which we describe below.

For the w = 1`B system, we examine κ = 0.4 in Fig.
7b. At this κ, the state has undergone edge reconstruc-
tion and some of the Fermi edge modes lie below the
M = 85 state. As we increase LL mixing and look at
the κ = 0.5 case, we see that the edge reconstruction
is overcome by the effects of LL mixing and M = 85
is recovered as the ground state. Thus our choice of a
truncated state space has reduced the κ at which the in-
compressible states occur. Additionally, we see that the
Fermi branch is even more well separated from the bulk
states than in the system with w = 0`B .

With the edge states identified, we calculate the sin-
gle mode energies. Comparing the results in Fig. 7d,e
for the w = 0`B and w = 1`B , respectively, we see that
the dispersion of the Fermi edge mode becomes signifi-
cantly more linear as finite thickness is introduced. From
this spectrum, we calculate the dispersion relation, which
gives the velocities and allows us to calculate the quasi-
particle coherence length41. We find Lφ ' 1.93µm and
Lφ ' 2.82µm for w = 0`B and w = 1`B respectively.
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These values are lower than previous results32, though
we examine a larger separation d. As larger separations
lead to a smoother edge potential, which lowers the co-
herence length, we expect to find even smaller coherence
lengths at experimentally relevant values.

VI. DISCUSSION

In conclusion, our simulations of the ν = 5/2 FQHE on
a disk of neutralizing charge in the presence of LL mix-
ing and inclusion of finite thickness effect by an infinite
rectangular well potential confining the 2DEG give three
primary results. First, we observe a possible phase tran-
sition from the anti-Pfaffian state to the Pfaffian state
as the interaction strength κ is increased. This depen-
dence on κ is the opposite of that obtained in systems
with spherical geometry26, and the difference arises from
the inclusion of interactions with the neutralizing back-
ground. At fixed separation d, κ acts to bend the phases
so that they occur at larger d than they originally appear,
and the incompressible regions expand as w is increased.
We also find that only the Moore-Read and anti-Pfaffian
states continue to possess energy gaps at finite well width,
while the gaps for the compressible stripe states close,
which is similar to experimental observations33. Second,
for the charge e/4 quasiholes, we found that the quasi-
hole size necessarily increases as a result of the decreas-
ing characteristic magnetic field strength for increasing
κ and also depends upon the strength of the confining
background potential. Additionally, the quasihole size
is also influenced by the well thickness as a result of
the weaker confinement offered by the neutralizing back-
ground. Third, the LL mixing is essential for the realiza-
tion of the Pfaffian state in the expanded state space, as

edge reconstruction destroys the signatures of the Pfaf-
fian state for relatively small d otherwise. The edge struc-
ture of the Pfaffian is drastically improved when both κ
and w increase.

From our results, we have evidence that various device
parameters may play a role in determining which incom-
pressible state is achieved in the sample. For example,
in our phase diagram, varying the separation between
the neutralizing background and the 2DEG can change
whether the Pfaffian or the anti-Pfaffian is realized at
fixed κ. When experimental results are considered, we be-
gin to see a case for various sample dependent parameters
controlling which incompressible ground state is realized.
As an example, we highlight the results of Ref. 42, which
shows a tunnel conductance consistent with the abelian
Halperin 331 state43, and those of Ref. 14, which show
a non-abelian signature under variation of flux through
the sample.

Our results in combination with these experimental
results lead us to conclude that there exist several in-
compressible states that may be realized in the ν = 5/2
FQHE. With advances in these studies, it should be pos-
sible to gain the ability to engineer samples which achieve
a specific ground state. As an example of this, it will be
of interest to explore a more complex treatment of sub-
level mixing where partial occupation of different sub-
levels could produce the two populations necessary for
the Halperin 331 state.
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B 84, 121305 (2011).

34 S. L. Sondhi and S. A. Kivelson, Phys. Rev. B 46, 13319
(1992).

35 Y. Zhang, Y.-H. Wu, J. A. Hutasoit, and J. K. Jain, Phys.
Rev. B 90, 165104 (2014).

36 F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
37 S. H. Simon, E. H. Rezayi, and N. R. Cooper, Phys. Rev.

B 75, 195306 (2007).
38 N. Samkharadze, L. N. Pfeiffer, K. W. West, and G. A.

Csathy, aRxiv:1302.1444 (unpublished).
39 C. Nayak and F. Wilczek, Nucl. Phys. B 479, 529 (1996).
40 M. Milovanovic and N. Read, Phys. Rev. B 53, 13559

(1996).
41 W. Bishara and C. Nayak, Phys. Rev. B 77, 165302 (2008).
42 X. Lin, C. Dillard, M. A. Kastner, L. N. Pfeiffer, and K.

W. West, Phys. Rev. B 85, 165321 (2012).
43 B. I. Halperin, Helv. Phys. Acta. 56, 75 (1983).


