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Classical nonlocality in conducting nanostructures has been shown to dramatically alter the linear
optical response, by placing a fundamental limit on the maximum field enhancement that can be
achieved. This limit directly extends to all nonlinear processes, which depend on field amplitudes.
A numerical study of third-harmonic generation in metal film-coupled nanowires reveals that for
sub-nanometer vacuum gaps the nonlocality may boost the effective nonlinearity by five orders of
magnitude as the field penetrates deeper inside the metal than that predicted assuming a purely
local electronic response. We also study the impact of a nonlinear dielectric placed in the gap region.
In this case the effect of nonlocality could be masked by the third harmonic signal generated by
the spacer. By etching the dielectric underneath the nanowire however it is possible to muffle such
contribution. Calculations are performed for both silver and gold nanowire.

PACS numbers: 0000000

I. INTRODUCTION

Large optical nonlinearities are critical to photonic
technologies. The exploitation of nonlinear processes at
low power levels, and in highly integrated formats, re-
quires materials with large nonlinear susceptibilities in
configurations that offer efficient nonlinear conversion.
Metals have long been recognized as compelling candi-
dates for nonlinear materials, as they possess nonlin-
ear susceptibilities that are orders of magnitude larger
than dielectric materials, and support surface plasmon
modes that allow the light to become strongly confined
and enhanced in deeply sub-wavelength volumes. As
a result, a major research effort has been targeted to-
ward metal-dielectric composites1,2, including metallo-
dielectric stacks3–5, metamaterial composites6–10, struc-
tured films11,12 and surfaces13–15. While the absorption
inherent to metals is generally considered to be detri-
mental for linear applications, it is far less critical for
nonlinear optical applications because conversion rates
are expected to be smaller than a fraction of a percent.

Although metals possess large nonlinearities, their high
reflectivity has hindered their adoption as nonlinear op-
tical materials. Even though metals may generally be
opaque and highly reflective, metal nanostructures with
features much smaller than the incident wavelength can
interact strongly with light. For example, recent works
on structured metallic absorbers have shown that re-
flectivity and other optical characteristics can be mod-
ified substantially. Structured nanoparticles, such as
crosses, disks, or rods, deposited on a dielectric spacer
atop a metal substrate can introduce an effective mag-
netic response that can impedance-match the surface to
the vacuum, thus minimizing reflections and maximizing
absorption16–18.

In most key optical applications of metals, the

nanoscale gaps between coupled metallic nanostructures
are critical, with smaller gaps increasing local field en-
hancement and confinement. As gap size decreases to
sub-nanometer scales, two basic issues must be dealt
with: i) the conventional local description of the elec-
tronic response of strongly coupled metal nanoparticles
breaks down, as the the dielectric constant of the metal
acquires a wave-vector dependence; and ii) induced quan-
tum currents turn the vacuum into a conductor as a re-
sult of quantum tunneling. In linear systems, the effect of
classical nonlocality in gold-based film-coupled nanopar-
ticles can limit the achievable field enhancement19. The
influence of quantum mechanical effects, in which elec-
tron tunneling reduces field enhancement in the gap re-
gion, has been investigated both theoretically20–22 and
experimentally23–25. In the extreme coupling regime, all
of the models of electron response that extend beyond the
local response tend to reduce the expected field enhance-
ments, suggesting that nonlinear processes may also be
significantly affected.

In this article we theoretically investigate a configura-
tion where the inclusion of nonlocal effects can dramat-
ically alter the effective nonlinear polarizability of the
metal by several orders of magnitude. This occurs be-
cause surface charges begin to permeate the volume im-
mediately beneath the surface of the metal, thus allowing
the fields to access the large, intrinsic third-order nonlin-
earity typical of metals. Although this process would
affect the overall nonlinear properties of metals, we show
that it is possible to enhance the alteration due to the
nonlocal free-electron response by employing structures
with very small gap region sandwiched between metal
layers. In particular we consider metal wire arrays pos-
sessing a rectangular cross-section spaced by a metal film
via a nanometric dielectric layer. Such structures can
be fabricated using atomic layer lithography techniques.



2

Chen et al. have shown that by using atomic layer de-
position it is possible to fabricate nanometer-size gaps
in metal films that extends several millimeters26. These
techniques have been used to show third harmonic gen-
eration enhancement from gold wires coupled to a gold
film27. Other authors25,28 have been investigating simi-
lar structures, such as film-coupled circular nanowires28

and spheres25. These structures however usually possess
a plasmonic resonance around the center of the visible
spectrum, making it impossible to resonate at the funda-
mental wavelength.

In order to show how nonlocality can affect third-
harmonic generation (THG), we employ a simple model
in which we separate the contribution of the free-electron
polarization, which will be consider nonlocal, from the
one due to the inner, bounded electrons. In particular,
the latter will be responsible for the nonlinear contribu-
tion. The model will be outlined in Section II. In section
III we will show the effect of considering a nonlocal con-
tribution in the free-electron response rather than a sim-
ple local response, showing the this will drastically alter
the THG for vacuum gap structures. This oversimplified
situation will be extended in section IV by taking into
account a more realistic geometrical implementation. In
particular we will show the impact of different nobel met-
als and the impact of a THG contribution rising from
the dielectric spacer layer. A possible experiment will
be suggested in other to experimentally demonstrate our
findings. Conclusions will be drawn in the last section.

II. CLASSICAL MODEL

The complexity of the metal optical response can be
described by treating separately the different polariza-
tion contributions29. Free electrons are able to move
around the entire volume, while bound electrons are tied
up around their equilibrium position, creating thus two
effective polarization surfaces. Let us indicate the thick-
ness of the free-electron shell as δ as depicted in Fig. 1
Quantum calculations based on the jellium model, in
which the ionic lattice is described by a uniform posi-
tive background charge density, suggest that the effec-
tive location of the free-electron surface may be assumed
in correspondence of the center of mass of the induced
charge density30,31. The position of this effective surface
depends on the work function of the specific metal and
it is usually displaced a good fraction of one angstrom
with respect to the jellium edge21. While for metals that
are well described by the jellium model, like for exam-
ple sodium, the screening charges are located at approx-
imately at 1 Å outside the jellium edge (i.e. δ '1Å), for
silver and gold, experimental data32–34 seems to suggest
that the effect of inner electrons is to push the reach of
5-s (free) electron peak density inside the jellium edge21.
This would correspond in our model to an overlap of the
free and bound electron surfaces (δ ' 0). Note that we
neglect the typical exponential decay of the electron den-
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FIG. 1. Effective polarization surfaces. Free-electrons ex-
tend over the polarizability volume associated to the bound
electrons. The difference can be intuitively associated to the
extension of the s-electron orbitals.

sity outside the effective surfaces and consider instead a
hard wall -like boundary.

The process of third-harmonic generation (THG) can
be described by means of the nonlinear wave equation.
For an electric field E oscillating at the angular frequency
ω we have:

∇×∇×E− ω2

c2
E = ω2µ0P, (1)

where c is the speed of light in free-space and µ0 is the
magnetic permeably. In Eq. (1), we explicitly write the
polarization P of the medium as a source term. The
vector P is subdivided into three contributions: i) free
electron response Pf , ii) bound electron response Pb and
iii) nonlinear response PNL:

P = Pf + Pb + PNL. (2)

The free-electron portion is treated using the hydro-
dynamic model, an extension of the Drude model that
accounts for the effect of the electron pressure35. In par-
ticular, the free-electron pressure gives rise to the nonlo-
cal portion of the polarization, and may be determined
from the equation:

−β2∇ (∇ ·Pf)−
(
ω2 + iωγ

)
Pf = ω2

pε0E, (3)

where ωp and γ are the plasma frequency and the collision
rate, respectively, which also appear in the conventional
Drude formula. The parameter β is approximately the
speed of sound in the Fermi-degenerate plasma of con-
duction electrons, that is β2 = 1

3v
2
F
35.

The portion of the polarization due to the bound elec-
trons is considered in the limit of the local-response ap-
proximation and it could be described as a multipole
Lorentz oscillator:

Pb = ε0

−∑
j

ω2
p,j

ω2 − ω2
0,j + iωγj

E, (4)

where j is an index labeling the individual d-band to
sp-band electron transitions occurring at ω0,j . The
nonlinear contribution is a third-order function of the
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FIG. 2. The film-coupled nanowire system. (a) Schematic
of the geometry with array of nanowires coupled to a metal
film via a small gap. (b) Cross-section of the electric field
distribution from finite-element simulations, displaying the
fundamental cavity mode for the local case. (c) Same as in
(b) but for the nonlocal case. (d) Linear reflectance of the
film-coupled nanowire geometry with g = 1 nm, l = 100 nm,
and Λ = 200 nm). The refractive index of the substrate is
n = 1.45. The red vertical lines indicate the wavelength cor-
responding to the fundamental mode, while the green ones
refer to the third harmonic.

electric fields. For an isotropic material there is only
one independent element of the susceptibility tensor
χijkl(3ω;ω, ω, ω) = 1

3χ
(3)(δijδkl + δikδjl + δilδkj) so that

the nonlinear polarization can be taken as36:

PNL = ε0χ
(3) (E ·E)E (5)

We numerically solve the system of Eqs. (1)-(5) in
the undepleted pump approximation, using the finite-
element method implemented in the commercially avail-
able software Comsol Multiphysics37. Since the equa-
tion for the free-electron polarization is nonlocal, an ad-
ditional set of boundary conditions is needed beyond the
well-known tangential field continuity condition. The
additional boundary conditions should be applied with
some care as bound electrons are assumed to give a lo-
cal contribution to the polarization vector. Following
Ref. 38, we impose that Pf · n̂ = 0 at the surface, where
n̂ is the unit vector normal to the surface.

We define the THG efficiency in air as the ratio be-
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FIG. 3. THG efficiency spectra for the film-coupled nanowire
geometry in the case of nonlocal free-electron response (solid
line) and local response (dashed line) with δ = 0. The inset
shows the electric field amplitude along a line going through
the gap in the vicinity of the wire’s edge for the nonlocal case.
The material parameters used for Ag are: β = 1.26×106 m/s,
ωp = 1.4029 × 1016 s−1, γ = 3.0076 × 1013 s−1; the permit-
tivity associated with the bound electrons was calculated as
the difference between empirical data39 and the free-electron
contribution.

tween the third harmonic generated intensity, I(3ω), over
the incident intensity at the fundamental wavelength,
I0(ω) :

η =
I(3ω)

I0(ω)
. (6)

For simplicity in the rest of the article we will assume
an incident intensity of I0(ω) = 50 MW/cm2 and a
χ(3) = 1.0 × 10−18 m2/V2,36 if not otherwise specified.
Our model has been tested for the simple case of THG
from a bare metal film. To obtain a non-zero normal
component with respect to the film surface, which allows
the fields to access the nonlocal effects, we varied the
incidence angle of the pumping field and compared our
results to those obtained in the case of the local-response
approximation. In absence of nanostructured features
the two models completely overlap.

III. THE EFFECT OF NONLOCAL RESPONSE

Let us consider the geometry depicted in Fig. 2a, which
consists of an array of infinitely long metallic nanowires
with rectangular cross-sections of width l and height 30
nm, and period Λ, separated by a distance g from a
metallic film of thickness 30 nm. For simplicity here we
assume the surrounding dielectric to be air. A more re-
alistic structure would require a dielectric spacer layer to
separate the wires from the metal substrate40. The case
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of a dielectric nonlinear spacer is reported in Section IV.
Each metal nanowire supports a strong resonance whose
electric field mode is localized within the cavity formed
between the bottom surface of the nanowire and the un-
derlying metal film18,41, as shown in Figs. 2b and 2c.
The reflectivity of the patterned surface can reach values
close to zero in correspondence with the peak resonance
at normal incidence, as shown in Fig. 2c. In this situation
the electric field is squeezed into the gap between the film
and the nanowire and locally enhanced in excess of two
orders of magnitude with respect to the amplitude of the
incident radiation. Figure 3 shows the THG efficiencies
for the structure depicted in Fig. 2a, where the metal is
assumed to be silver (Ag). The cases in which nonlocal
free-electron (NLFE) response and local free-electron re-
sponse (LFE) is assumed are reported in solid and dashed
line respectively. The difference in THG between the lo-
cal and nonlocal models is enormous. We predict that by
including the nonlocal response this geometry will foster
an enhancement of THG of more than five orders of mag-
nitude with respect to the local description.

In order to exclude any impact of the periodicity, we
appropriately chose a period Λ < λ/2 for the entire spec-
tral region of interest. In this way we avoid higher order
scattering, as well as the coupling between grating and
plasmic resonances. Each of the resonances in the lin-
ear spectra of Fig. 2d corresponds in fact to a higher
order gap-plasmon mode18. The spectra also show that
the quality factor of each resonance does not sensibly
change introducing the nonlocality. Moreover, the rel-
ative position of between fundamental resonance (red
lines) and the third-harmonic resonance (green lines) do
not change. In both local and nonlocal cases, the third-
harmonic resonance falls in between two resonances: no
enhancement can be then attributed to phase-matching
improvement. Although, in general, the presence of a
nonlocal response has a negative impact on field enhance-
ment, in this specific case the nonlocality improves the
local field enhancement as it can be seen form Figs. 2b
and 2c. This is due to the fact that nonlocality is af-
fecting the coupling with the incident radiation and in
turn compensating for the reduction of field enhance-
ment. This is reflected on the slightly deeper fundamen-
tal resonance for the nonlocal case ( Fig. 2d ). Such dif-
ference, however, cannot explain the difference observed
in the THG efficiencies. In fact, the field enhancement
difference in this case would be responsible for only a
factor of (|Enl

max|/|Eloc
max|)6 = (170/150)6 ' 2, far smaller

than the 105 observed in Fig. 3.

Within the framework of the model adopted, the ori-
gin of this striking contrast in THG efficiencies can be
associated with the behavior of the conduction electrons,
which exhibit different screening properties at the sub-
nanometer scale. The inset of Fig. 3 shows the elec-
tric field amplitude on the cross-section along the gap.
Although outside the metal region the electric field en-
hancement is reduced when the nonlocal response is
taken into account, the charges are smeared just beneath
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FIG. 4. THG efficiency as a function of the thickness δ of
the free-electron-only shell. Calculations were performed as-
suming g = 1 nm, l = 100 nm, and Λ = 200 nm). The THG
efficiency peak was plotted in each case. The insets show the
induced charge density distribution along a line thorough the
gap and in the vicinity of the wire’s edge.

the metal surfaces, allowing the fields to partially pene-
trate, reaching portions of the bound and core electrons
responsible for the intrinsic third-order nonlinearity.

Given the surface nature of the phenomenon explored,
the hydrodynamic model may not be completely ade-
quate to give an accurate description of the atomic quan-
tum realm. In particular, we have assumed so far that
free-electrons are confined inside the exact same bound-
aries (δ = 0) that delimit the bound electron region. Cal-
culations of THG as a function of the thickness δ of the
free-electron shell, as shown in Fig. 4, display a dramatic
drop in generation efficiency as δ is increased by a frac-
tion of an angstrom, Fig. 4. The insets show the induced
charge density distribution in the vicinity of the metal
surface. The scale on which the drop in the THG ef-
ficiency occurs may constitute a serious concern to the
applicability of the present model, however, we remark
that this surface layer does not necessarily have a direct
physical counterpart, and it is instead an effective layer
associated to the complex interaction between many dif-
ferent electron orbitals.

IV. SILVER, GOLD, AND THE SPACER
CONTRIBUTION

The metal linear nonlocal response seems to have a
huge impact on the amount of third-harmonic signal gen-
erated. It is interesting then to explore the case in which
the metal dielectric function is changed. To do so we
simply consider the structure to be made of a different
material, for example gold (Au). Linear properties of Au
are described using the parameters of Ref. 42. Figure 5
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FIG. 5. THG efficiency spectra for the film-coupled nanowire
geometry depicted in the inset for nonlocal free-electron re-
sponse (solid line) and local response (dashed line) with δ = 0.
The material parameters used for Au were taken from Ref. 42
with β = 1.26 × 106 m/s.

shows the THG efficiencies in the case of Au wires cou-
pled to a Au film as depicted in the inset. As in the Ag
case (Fig. 3) there is still a difference in the THG effi-
ciencies calculated in the NLFE and LFE cases. However,
this time the difference is much more contained. This is
due to gold interband transitions that increase absorp-
tion about the third harmonic frequency. The excess of
THG is re-absorbed by the material itself, generating a
reduced effect compared to that obtained for Ag. Since
the metal dielectric function seems to be very important,
in what follow we will constantly report the two cases of
silver and gold.

So far we assumed that the gap between the wires and
the film was filled by air. This assumption however may
not reflect the fabrication requirement, which in general
may require adding a dielectric spacing layer on top of
the metal film. In particular we consider that the spac-
ing material is Al2O3 similarly to the case of Ref. 27
where similar structures where fabricated using atomic
layer lithography. For simplicity we consider a disper-
sionless material with refractive index n = 1.6. We also
assume that the material posses an intrinsic χ(3) which
is taken three orders of magnitude smaller than that of

the metal, namely χ
(3)
Al2O3

= 1.0× 10−21 m2/V2.36

Although the presence of a dielectric spacer does not
alter the physics of the structure, the presence of a sec-
ondary nonlinear source may make it impossible to dis-
tinguish between the two models. In fact, even if the
Al2O3 possesses an intrinsic χ(3) much smaller than that
of the metal, its nonlinearity is more accessible for the
specific geometry considered. Figure 6 shows the THG
efficiency spectra for Ag and Au wires spaced by a uni-
form layer of Al2O3 in the case of NLFE and LFE. Using
either of the models the amount of third harmonic gen-
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FIG. 6. THG efficiency spectra for the film-coupled nanowire
geometry depicted in the insets for nonlocal free-electron re-
sponse (solid line) and local response (dashed line) in case
of Ag (a) and Au (b); the spacing layer was assumed to be
Al2O3 with refractive index n = 1.6 and third order suscepti-
bility χ(3) = 1.0× 10−21 m2/V2. Geometrical parameters are
shown in the insets in nanometers.

erated signal is comparable, which would make it hard in
an actual experiment to determine any contribution due
to the NLFE response27.

In order to reduce the contribution from the spacer one
may think to use simply a dielectric spacer with a even
smaller χ(3), however Al2O3 already possesses one of the
smallest nonlinear susceptibilities. To overcome this issue
then, one has to reduce the amount of dielectric material
in the region where the electric field is higher. By looking
at Fig. 2b, it is clear that one should preferentially remove
the dielectric near the corners of the base of the wires.
In principle this can be achieved by etching the Al2O3.
In Fig. 7 is shown the THG efficiency spectra for Ag and
Au wires spaced by a etched layer of Al2O3 in the case of
NLFE and LFE. In this case the difference between the
two models become again visible, for both Ag and Au.

The enhancement introduced by the nonlocal response
depends on how much the fields are squeezed near the
metal surface. A confirmation of this is the fact that for
a bare metal film there is no effect. In order to demon-
strate this dependance, we perform calculations of THG
as a function of the nanowire distance from the film. The
THG efficiencies η for both local and nonlocal cases re-
spectively, are calculated for several values of g and plot-
ted in Figs. 8a and 8b for Ag and Au respectively. How-
ever, one should be mindful of the fact that as g increases
the resonance blue-shifts, pushing the THG field into the
UV range. In the insets of Figs. 8a and 8b we plot the
linear absorption as a function of the parameters l and
g, keeping the wavelength of the pumping field constant
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FIG. 7. THG efficiency spectra for the etched geometry de-
picted in the insets for nonlocal free-electron response (solid
line) and local response (dashed line) in case of Ag (a) and
Au (b). Geometrical parameters are shown in the insets in
nanometers. The etching was taken equal to 35 nm.

and equal to λFF = 1.55µm. The red curve represents
the region where the absorption (reflectance) is a max-
imum (minimum) in the case of NLFE response. The
analogous curve was calculated for the local response ap-
proximation. For large gaps, the efficiencies are of the
same order of magnitude, meaning that the impact of
the nonlocality is negligible. However, the effect of the
nonlocal free-electron response becomes dominant as the
gap closes, generating an enhancement of the THG pro-
cess of about one order of magnitude over that obtained
from the local model.

V. CONCLUSION

The impact of nonlocal linear response on nonlinear
properties of metallic nanostructure could be the key to
enhance nonlinear optical processes at the nanoscale. We
have presented a detailed analysis of such an effect using a
rather simple model. Although the hydrodynamic model
used to describe the nonlocal response of free-electrons is
not entirely adequate to give a correct quantum descrip-
tion of the subatomic realm, its simplicity enables qual-
itative and quantitative predictions for systems where a
full-quantum approach is prohibitive. For example, in
physical systems, the geometrical dimensions may ex-
ceed several hundreds of nanometers, making the com-
putational domain for quantum calculations prohibitive.
Another promising approach could be the generalization
of the hydrodynamic model to take into a account a more
sophisticated description of the free-electron gas internal
energy43. Such a description would be more adequate
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FIG. 8. THG efficiencies are plotted as a function of the dis-
tance from the metal substrate. The different curves are ob-
tained using the local-response (dashed) approximation and
the hydrodynamic model for free-electrons (solid), respec-
tively for both silver (a) and gold (b). A cross-section of the
structure is depicted in the left insets; lengths are expressed
in nanometers. The right insets show the absorption map for
the film-coupled nonowire system as a function of the parame-
ters l and g for a constant wavelength λ = 1.55µm and period
Λ = 230 nm. The maximum absorption region is outlined by
the red curve. The etching was taken fixed at 30 nm.

to describe surface phenomena and at the same time it
could be applied to macroscopical systems.

Notwithstanding, we have investigated a variety of dif-
ferent configurations taking into account the contribution
to the THG rising from the dielectric inclusion in the
structure. We have suggested that in order to separate
the THG arose from the metal from that generated in the
dielectric, the latter should be etched several nanometers
under the wires. We have introduced an alternative way
to experimentally investigate this model. As the effec-
tive χ(3) will depend on the distance of the nanowires
and the film, this finding may be easily tested experi-
mentally. The same concept can be applied to the case
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of four-wave mixing or to the three-dimensional variant
of the presented structure–the film-coupled nanocubes–
which possess very similar resonances and even higher
field enhancements, and it can be easily fabricated by
using colloidal methods18. Our findings show a route to
obtain efficient nonlinear processes that exceed other ap-
proaches by several orders of magnitude.
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