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We investigate lattice ordering phenomena for the heterovalent ternaries that are based on the
wurtzite lattice, under the constraint that the octet rule be preserved. We show that, with the single
exception of a highly symmetric twinned structure, all allowed lattice orderings can be described by
a pseudospin model corresponding to the two different stackings of ABAB rows of atoms in the basal
plane that occur in the Pna21 and Pmc21 crystal structures. First-principles calculations show that
the difference in the energies of formation between these two structures is 13±3 meV/fu (formula
unit) for ZnSnN2 and is an order of magnitude larger for ZnGeN2, and that for both materials
the Pm31 structure, which contains only octet-rule-violating tetrahedra, has a significantly higher
energy of formation and a signficantly lower band gap. We predict almost random stacking and
wurtzite-like x-ray diffraction spectra in the case of ZnSnN2, consistent with reported measurements.
The octet-rule-preserving model of disorder proposed here predicts a band gap that for ZnSnN2 is
relatively insensitive to ordering, in contrast to the prevailing model, which invokes the random
placement of atoms on the cation sublattice. The violations of the octet rule in the latter model
lead to significant narrowing of the band gap. The Raman and photoluminescence spectra of ZnSnN2

are interpreted in light of the ordering model developed here. The observation that ZnGeN2 orders
in the Pna21 structure under appropriate growth conditions is consistent with the larger difference
in the energies of formation of the Pna21 and Pmc21 structures for this material. The ordering
model presented here has important implications for the optical, electronic and lattice properties of
all wurtzite-based heterovalent ternaries.

PACS numbers: 61.50.-f, 78.20.-3

I. INTRODUCTION

The heterovalent ternaries are a large family of mate-
rials that are close cousins of the binary zincblende and
wurtzite semiconductors. Conceptually, either the cation
or the anion lattice of the binary material is replaced by
two ordered sublattices composed of equal proportions of
two atomic species such that the average ratio of valence
electrons to atoms equals four, and the bonding remains
tetrahedral. Ideally, the ordering of the atoms on the two
sublattices of the heterovalent compound is constrained
to satisfy local charge neutrality, a constraint referred to
in general as the octet rule. The II-IV-V2 ternaries and
their alloys thus provide an interesting alternative to the
isovalent III-V alloys for band structure engineering of
semiconductors.

While alloys of the binaries usually have a ran-
dom distribution of cations, the pure ternaries tend
to form ordered compounds. The II-IV-V2 and I-III-
VI2 compounds based on the zincblende lattice are
well known to order in the chalcopyrite structure1,2

and have received significant attention for their non-
linear optical properties and photovoltaic applications.
For example, Cu(In,Ga)(S,Se)2 thin films are widely
used in photovoltaics3–5 and ZnGeP2, CdGeAs2 and
AgGa(Se,Te)2 single crystals are used as frequency dou-

blers and parametric oscillators in nonlinear optical
applications.6–8

Order-disorder transitions of these chalcopyrite mate-
rials have been reported, with the disordered state appar-
ently exhibiting the binary, parent zincblende structure
in x-ray diffraction spectra.1,2 The accepted model, first
proposed by Buerger in 1934, is that the cations undergo
entropy-driven randomization of their positions in the
two cation sublattices.9 This randomization is necessarily
accompanied by many local violations of the octet rule,
although the rule is observed on average, for stoichiomet-
ric material. Thus, some tetrahedra have, for example,
one A and three B cations or vice versa rather than two
of each. Wei et al.10 used a generalized one-dimensional
Ising model, similar to the model developed here for the
wurtzite-based ternaries, to investigate the band struc-
ture and stability of polytypes of the zincblende-based
ternary materials obeying the octet rule.

Recently, the more ionic, wurtzite-based ternary ni-
trides have generated renewed interest.11 Some are pre-
dicted to have important potential for several applica-
tions in optoelectronics, from solid-state lighting12 to
photovoltaics.13 The synthesis of ZnSnN2 in particular
has fueled interest in its use for solar photovoltaics, espe-
cially because this material is composed solely of earth-
abundant elements.14–21 As is the case for the zincblende-
based ternaries, the type of ordering and the possibility of
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FIG. 1: (Color online) Projection of the ABC2 Pna21 and
Pmc21 crystal structures on the c-plane, with principal axes
as indicated and the unit cells outlined. Large spheres are the
cations, small spheres are the anions.

order-disorder transitions in the wurtzite-based ternaries
are of fundamental as well as practical interest.

For ZnGeN2 and ZnSnN2 the parent binary materi-
als are the III-nitrides, and the parent binary phase
is wurtzite. ZnGeN2 was first synthesized in 1970,
and its crystal structure was reported initially to be
monoclinic.22,23 Subsequent reports variously reported
the structure to be monoclinic,22 orthorhombic24 or
hexagonal. The currently accepted crystal structure is
the sixteen-atom orthorhombic unit cell pictured in Fig.
1 on the left. The relation between this superstructure,
with the Pna21 space group, and the wurtzite unit cell
in the ideal case (that is, with no relaxations of the
wurtzite atomic positions) is ao = 2aw1, bo = aw1+2aw2,
co = cw, where the subscripts w denote the wurtzite lat-
tice vectors and the subscripts o denote the orthorhombic
lattice vectors. The band gap calculated by the quasi-
particle self-consistent GW (QSGW ) method25,26 is in
close agreement with the experimental value obtained
from near-band-gap luminescence27 of 3.40± 0.01 eV.

Comparison of the calculated Raman frequencies, in-
tensities and polarization selection rules for ZnGeN2

yielded close agreement with measurements,28 but the
experimental spectra intriguingly included additional fea-
tures that were identified with peaks in the phonon den-
sity of states, indicating that some form of disorder
is present in the samples. It has been demonstrated
that the x-ray diffraction spectra could be varied from
wurtzitic to the fully-ordered orthorhombic Pna21 struc-
ture through the choice of growth conditions.29

Reported calculations of the band gap of ZnSnN2 in the
Pna21 structure differ widely, from 1.4 to 2 eV.14,17,26

At least some of these differences may simply be due
to differences in the lattice parameters and computa-
tional methods used. (Different hybrid functionals30–32

were used in Refs. 14 and 17 and QSGW was used in
Ref. 26.) Synthesis of ZnSnN2 was first reported in
2012 by molecular beam epitaxy14, soon afterward by
radio frequency (RF) sputter deposition16,17 and by a
vapor-liquid-solid method19, and more recently by direct
current (DC) magnetron sputtering21. All four meth-
ods yielded wurtzitic x-ray diffraction spectra, implying
considerable disorder on the cation sublattices that was

presumed to involve many violations of the octet rule. It
was suggested that controlling the degree of this disor-
der would allow the controlled variation of the band gap
from 1 to 2 eV.15 However, measurement of the band
gap by photoluminescence excitation spectroscopy19 of
material that looked wurtzitic in x-ray diffraction gave a
gap in close agreement with accurately predictive quasi-
particle band structure calculations for perfectly ordered
Pna21 crystals, using experimentally determined lattice
parameters.13,26 The main question we address in this
paper is how to reconcile these seemingly contradictory
observations.

A second possible octet-rule-preserving orthorhombic
structure, with the Pmc21 space group and consisting
of an 8-atom unit cell with vectors ao = aw1, bo =
aw1 + 2aw2, co = cw, was recently proposed,17 and is
depicted in Fig. 1 on the right. For ZnSnN2, the cal-
culated energy of formation of the Pmc21 structure was
reported to be equal to that of the Pna21 structure to
within the computational accuracy of 10 meV per nitro-
gen atom. Observation of the Pmc21 structure, however,
has not yet been reported.

In this paper, we propose that the lattice disorder in
ZnSnN2 evident in the x-ray diffraction spectra results
not from the random placement of cations on the group
III sublattice, but from a more constrained type of disor-
der that preserves local charge neutrality. This proposal
is based on first-principles calculations for the Pna21

and Pmc21 structures, which obey the octet rule, and
the Pm31 structure, which does not. The two struc-
tures that obey the octet rule have very close energies
of formation and band gaps, while the structure violat-
ing the octet rule has a substantial cost in the energy of
formation and a much lower band gap. Based on these
calculations, we then investigate the possible orderings
of cations on the wurtzite cation sublattice with the re-
striction that the octet rule must be obeyed. We demon-
strate that all possible orderings under this constraint
can be viewed as combinations of the row stackings in
the basal plane occurring in Pna21 and Pmc21. Reg-
ular arrangements of these stackings define a polytype
ordering and, in the case of random stacking, a new type
of disorder for these materials. Using this approach, we
find that ordered ZnSnN2 is thermodynamically unfavor-
able. Furthermore, the band gap of ZnSnN2 should be
relatively insensitive to this type of disorder. Thus, the
ZnSnN2 paradox mentioned earlier is resolved. In the
case of ZnGeN2 the lattice has been observed to range
from ordered Pna21 to disordered, depending on growth
conditions. This situation is likely the result of kinetic
rather than thermodynamic factors.

The ordering model developed here has broad implica-
tions for the optical, electronic and lattice properties of
all wurtzite-based ternary materials, and possibly even
calls for a re-examination of the question of ordering in
the zincblende-based ternaries.

The remainder of the paper is organized as follows.
First, we introduce the lattice ordering pseudospin model
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in Sec. II while relegating the details of the proofs to
Appendix A. Next, we provide the details of the compu-
tational and experimental methods in Sec. III. Finally,
new experimental and calculated results for ZnSnN2 and
ZnGeN2 are presented in Sec. IV. A brief summary (Sec.
V) concludes the paper.

II. LATTICE ORDERING IN
WURTZITE-BASED HETEROVALENT

TERNARIES

Based on first-principles results for the energies of for-
mation, we focus on orderings of the cations that preserve
the octet rule in every nearest-neighbor tetrahedron. In
this section, we show that all of these can be described
in terms of a layered pseudo-spin model.

We first illustrate that one can build octet-rule-
preserving polytypes of the Pmc21 and Pna21 unit cells
(Figure 1). If the Pmc21 unit cell is rotated from its ori-
entation in Fig. 1 by 120◦, as shown in Fig. 2, the rows of
cations have ABAB periodicity, as do the rows of cations
along the a-axis in the Pna21 structure. Thus the Pna21

and Pmc21 structures can be obtained by stacking such
rows along the b-axis.

We define the s = ±1 pseudospin layers as shown in
Figs. 2(c) and (d). The dashed lines outline primitive
cells of the Pmc21 structure. One can clearly see that the
two layers are mirror images of each other for a vertical
mirror plane. The Pna21 structure results from +1,−1
stacking of these pseudospin layers along the Pna21 b-
axis, and the Pmc21 structure results from +1,+1 or
−1,−1 stacking. It follows that an infinite number of
polytypes can be built from larger repeat units. In Ap-
pendix A we show rigorously that the only ternary crystal
structures based on the wurtzite lattice that observe lo-
cal charge neutrality are those described by sequences of
the ±1 pseudospin layers, with the sole exception of the
structure shown in Fig. 2(e). This unique structure is
a six-fold twinning of the Pmc21 crystal structure about
the central axis of the figure. The dashed lines show the
interfaces between the six crystals.

We note, parenthetically, that it is straightforward
to prove by similar methods that the only heterovalent
ternary structures based on the zincblende lattice that
are consistent with the octet rule are the polytypes iden-
tified and modeled by Wei et al.10 In that case, the struc-
tures are the Cu-Au ordering (along [001]) and the chal-
copyrite structure.

In the thermodynamic approach used in modeling
polytypes, the differences in the free energies are the most
important quantities. A major contribution to the free
energy is the energy of formation, which is expressed for
a crystal of N pseudospin layers in terms of the layer
interactions:

E = E0 +
1

N

M∑
n=1

N−1∑
i=1

Jnsi · si+n (1)

(a) (b) 

(d) 

(e) 

(c) 
+1 -1 

FIG. 2: (Color online) The Pmc21 crystal structure rotated,
in (a) clockwise and (b) counterclockwise directions by 120◦

with respect to Fig. 1, with the unit cell outlined; (c) de-
fines the +1 and (d) the −1 pseudospin layer, with the 8-
atom repeat units outlined in dashed black; (e) the octet-
rule-preserving twinned structure. The twin boundaries are
shown by the dashed lines.

Here the Jn are the energies of interaction between the
n-th nearest-neighbor spin layers, with a range up to M ,
and E0 is a convenient reference energy. The spins here
are isospins pointing up or down. Non-trivial polytypes,
i.e. long-range ordered patterns of spins, result from
competition between different range interactions, as oc-
curs for example in SiC. In other cases, including the one
considered here, the sign of J1 determines which of the
two alternative stackings has the lowest energy. No long-
range polytypes have been observed for either ZnSnN2 or
ZnGeN2, which suggests that for both of these cases the
series can be restricted to nearest-neighbor interactions.
We note that while this thermodynamic model can in
principle predict the energetic ordering of different poly-
types, in practice kinetics can play a decisive role in the
formation of polytypes.
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III. EXPERIMENTAL AND COMPUTATIONAL
METHODS

A. First-principles calculations

The calculations of the lattice parameters and total
energy differences between different structures were car-
ried out using a pseudopotential plane wave method as
encoded in the abinit code.33–35 We used the Fritz-Haber
pseudopotentials of Ref. 36. A high cut-off of 110 Hartree
ensured convergence of the plane wave basis set. The k-
point mesh was chosen to be a shifted 4×4×4 Monkhorst-
Pack mesh for the Pna21 structure. To have exactly
equivalent energies, an 8 × 4 × 4 mesh was used for the
Pmc21 structure because that mesh has half the a-lattice
constant and hence twice the size in that direction in
reciprocal space. For the Pm31 structure, we relaxed
the structure in the primitive four-atom cell but after-
wards calculated the energy differences in the same cell
as for the Pmc21 structure so that we could use exactly
equivalent k-points. Calculations were performed both
in the LDA37 and GGA30 approximations, which respec-
tively underestimate and overestimate the lattice con-
stants. This procedure allowed us to ascertain the effect
of these errors on the energy differences. We found the
errors to largely cancel out, which demonstrates that the
LDA and GGA calculations provide consistent estimates
of the energy differences.

The calculations of the energies of formation were per-
formed using the LDA38–40 and using the full-potential
linearized muffin-tin orbital (LMTO) band structure
method.41 The energies of formation were defined with
respect to the elements in their ground state phases at
ambient conditions. For N this was with respect to the
molecule N2, while for Ge and Sn it was with respect to
the diamond structure, and for Zn, with respect to the
hcp phase. For Sn we used the α-phase, which has the
diamond structure and which is stable below 13.2◦C. De-
tails of our calculations of the energies of formation can
be found in Ref. 11. In particular, we point out that
these calculations give acceptable accuracy for the cohe-
sive energies and molecular binding energies of the indi-
vidual elements, taking into account the usual overbind-
ing of the LDA. Here we need only the differences in
the energies of formation between the different structures
considered. Any systematic errors due to LDA overbind-
ing are expected to drop out of these differences. How-
ever, the contrast with previous work11,26 is that here we
used structures that were fully relaxed with respect to a,
b and c in addition to the internal atomic coordinates as
obtained from the abinit method. This procedure gave
us more accurate energies of formation, in particular for
ZnSnN2, where the differences are small. We could of
course also use the LMTO method to calculate the en-
ergy differences between the structures. However, con-
vergence of the basis set to within the required precision
of a few meV is harder to establish systematically. The
differences agree with the abinit results on the order of

a few tens of meV but we prefer to base our conclusions
about the total energy differences on the abinit results,
because these were deemed better converged with respect
to the basis set.

The band structures were calculated using the QSGW
approach, developed by van Schilfgaarde et al.25 and as
applied to the current materials in Punya et al.26 This
method gives gaps to a precision of about 0.1 eV without
any adjustable parameters for most tetrahedrally-bonded
semiconductors. Because this method tends to underesti-
mate the screening and hence overestimates the gaps typ-
ically by 20% for semiconductors, 80% of the self-energy
was applied to the LDA calculation.

The calculations were done for the two crystal struc-
tures shown in Fig. 1 and for a four-atom unit cell with
space group Pm31. This latter structure is composed of
alternating planes of A and B cations stacked along the
c-axis, and thus is an extreme case of the violation of lo-
cal charge neutrality; all anions are bound to either three
A atoms and one B atom, or vice versa.

B. Calculation of the x-ray diffraction spectra

We followed the formulation of Kopp et al.42 to cal-
culate analytically the x-ray diffraction spectra for a
ZnSnN2 crystal with one-dimensional disorder due to
random stacking along the b axis, as a function of the
total thickness of the crystal and as a function of the
proportion of Pna21 to Pmc21 stacking. This is a trans-
fer matrix method that generates an analytical solution
equivalent to a Monte Carlo generation of the averaged
diffraction peak intensities for an ensemble of crystals.
The solution is specific to the case of a random distribu-
tion of stacked layers described by a stationary Markov
chain; that is, the probability of layer i+1 stacking upon
layer i is dependent only upon layer i. In this case, the
probability is determined by specifying the relative pro-
portions of the Pna21 and Pmc21 phases.

The information required for the calculation includes
the number of pseudospin layers N , the probability Ns/N
associated with each pseudospin type s = ±1, the struc-
ture factors for each of the pseudospin layers, and the
conditional probabilities governing the likelihood of layer
j′ of pseudospin character sj′ occurring after layer j with
pseudospin character sj . Because the two spin states are
mirror-symmetric, they are equally probable, and thus
N+1/N and N−1/N are both equal to 1/2.

The structure factors for the two pseudospin layers
were calculated using the atomic form factors for Zn, Sn,
and N from the International Union of Crystallography
database. The atomic positions were referenced to the or-
thorhombic lattice parameters a = 0.6749 nm, b = 0.5845
nm, c = 0.55443 nm and the Wyckoff positions for the
ideal wurtzite lattice.

The relative peak intensities were calculated using
the standard Lorentz polarization factor Lp(θ) = (1 +

cos2 2θ)/(sin2 θ cos θ) . While Kopp et al.42 avoided the
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Bragg vectors that resulted in singularities, we dealt with
the singularities by replacing each reciprocal lattice vec-
tor k(h,k,l) with k′ = k(h, k + ∆, l), letting ∆ = 10−6.

C. Experimental methods

The polycrystalline ZnSnN2 material for the Raman
and photoluminescence measurements was grown by a
vapor-liquid-solid method described in Ref. 19. Briefly,
the method involved the exposure to a nitrogen plasma
of a Zn-Sn melt held at 485 ◦C. The grown material
was a polycrystalline layer, approximately 300 nm thick,
covering most of an area approximately 0.5 cm in di-
ameter. The average crystallite diameter, estimated us-
ing the x-ray diffraction linewidths, was approximately
70 nm. The measurement of the Raman spectrum was
done in ambient conditions using a solid-state laser with
photon energy at 532 nm focused to a 1-2 µm diameter
spot. Neither the incident nor the scattered radiation
was polarization-resolved. The excitation source for the
measurement of the photoluminescence spectrum was a
633 nm He-Ne laser with incident intensity 1.4 kW/cm2.
The measurement was done at 77 ◦K.

Polycrystalline ZnGeN2 samples were grown on Ge
substrates exposed to Zn and NH3 at near-atmospheric
pressure. The growth processes are described more fully
in Ref. 29. X-ray diffraction measurements were done
on the as-grown samples using a diffractometer in Bragg-
Brentano configuration, with Cu Kα(1,2) irradiation and
a two-dimensional xenon detector with a step size of
0.02◦. The instrumental broadening was measured to
be 0.275±0.02◦, using an alumina standard.

IV. RESULTS

As mentioned in the introduction, the paradox that led
us to abandon the model of a fully disordered cation sub-
lattice was that ZnSnN2 was found to have a band gap
close to that predicted for the perfectly ordered Pna21

structure, while at the same time the material appeared
to have a disordered wurtzite-like lattice structure.19 Be-
cause the Pna21 and Pmc21 structures are superlattices
of the wurtzite structure, distorted by deviations from
the ideal wurtzite atomic positions, their x-ray diffraction
spectra should be characterized by specific superlattice
peaks absent in the disordered structure, and peak split-
tings arising from deviations in the ratios of the lattice
parameters from the ideal wurtzite ratios. The strongest
of the predicted superlattice peaks are the (101) peak
for Pna21 ordering and the (111) peak for Pmc21 or-
dering, as shown in Fig. 5(a). None of the superlat-
tice peaks or expected peak splittings have been observed
for ZnSnN2,15,17,19 while superlattice peaks and the ex-
pected peak splittings for Pna21 ordering have been re-
ported for ZnGeN2.29 Because the calculated ratios of the
lattice parameters are closer to the ratios for the ideal

wurtzite lattice for ZnSnN2 than for ZnGeN2, as shown
later in Table I, the splittings of the degeneracies in the
diffraction peaks due to distortions from the idealized
wurtzite structure are expected to be larger for ZnGeN2

than for ZnSnN2. On the other hand, the superlattice
peak intensities depend on the differences in the atomic
form factors between the group-IV and group-II cations.
These are larger for Sn relative to Zn than for Ge relative
to Zn, and consequently the predicted superlattice peak
intensities for ordered ZnSnN2 are roughly an order of
magnitude larger than for ordered ZnGeN2.

In the first subsection we present additional evidence
from Raman spectroscopy that the lattice of ZnSnN2 is
indeed disordered, and that the band gap is close to 1.7
eV. In the second subsection we present the computa-
tional results for the lattice parameters, the energies of
formation, and the band gaps of the different ordered
structures. Comparison of the band gaps and energies
of formation shows that violations of the octet rule cost
substantial energy and lower the band gaps. Finally, we
apply the pseudospin model to the calculation of the x-
ray diffraction spectra of ZnSnN2 for different numbers of
layers and proportions of the Pna21 and Pmc21 phases,
and resolve the apparent paradox involving the band gap
energy and x-ray diffraction spectra of ZnSnN2.

A. Photoluminescence and Raman spectroscopy

Previously reported photoluminescence excitation
(PLE) spectroscopy of ZnSnN2 done at room temper-
ature yielded an estimated band gap of 1.7±0.1 eV that
was measured using a broad defect luminescence peak
centered at 1.5 eV. At room temperature there was no
near-band-edge luminescence peak present.19 At 77 ◦K
the defect peak at 1.5 eV is still evident (Fig. 3(a)),
but the photoluminescence spectrum is dominated by
the near-band-edge peak centered at approximately 1.72
eV. The relative increase in the near-band-edge lumines-
cence at the lower temperature, a commonly-observed
phenomenon, results from the slowing of the transfer of
photoexcited carriers to the defect states responsible for
radiative recombination. The band gap inferred from the
77 ◦K photoluminescence spectrum is consistent with the
octet-rule-preserving model of disorder and is inconsis-
tent with a model for the disorder that violates the octet
rule. Fig. 3(b) shows the dependence of the defect and
near-band-edge peak intensities as a function of excita-
tion intensity, with the defect peak height normalized to
that of the near-band-edge peak at the lower range of
excitation intensity, in order to best compare the depen-
dence of the two peak intensities on excitation intensity.
At lower excitation intensity the dependence is linear,
while at higher intensity the dependence becomes super-
linear, an indication that defect recombination channels
are becoming saturated at this still-low range of excita-
tion intensity. Deconvolution of the two peaks proved un-
necessary to obtain the defect peak intensity accurately,
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FIG. 3: (a) Photoluminescence spectrum of ZnSnN2 at 77
◦K. The peak at 1.72 eV is near-band-edge recombination.
The peak at 1.5 eV is defect recombination, as was identified
in previous work.19 (b) Photoluminescence peak intensities
versus incident intensity. The defect peak intensity at 1.5 eV
has been scaled to the peak intensity of the 1.72 eV near-
band-edge peak intensity at low excitation intensities.

as the near-band-edge peak intensity at 1.5 eV was neg-
ligible.

We turn now to the results of calculations and measure-
ment of the Raman spectrum of ZnSnN2. The calculated
Raman spectrum in Fig.4(a) was obtained by adding the
calculated intensities of all modes (a1, b1, b2 and a2),
with equal weights, taken from Ref. 43. This spectrum is
dominated by a peak at approximately 590 cm−1, iden-
tified with a wurtzite-E2-high-like vibrational pattern.
The measured Raman spectrum of Fig. 4(b) shows none
of the predicted Raman peaks, not even the dominant
one.

We emphasize that this result is quite different from
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FIG. 4: Raman spectra and calculated phonon density of
states of ZnSnN2. Calculated (a) and measured (b) Ra-
man spectra. Calculated density of states, (c) Gaussian-
broadened, and (d) high-resolution.

the Raman spectra of polycrystalline ZnGeN2, for which
all of the predicted Raman peaks were observed. In-
stead, the ZnSnN2 Raman spectrum closely resembles
the phonon density-of-states spectrum, shown Gaussian-
broadened in Fig. 4(c) and with high energy resolution
in Fig. 4(d), although the peak shapes are somewhat dif-
ferent. The experimental spectrum is strikingly phonon-
glass-like, showing complete breakdown of the k-vector
selection rule. This result is consistent with the x-ray
diffraction results showing a highly disordered lattice.
However, the Raman spectrum does not give informa-
tion on the type of disorder, and in particular does not,
in the absence of quantitative modeling, distinguish be-
tween our model for disorder due to random stacking of
pseudospin layers and one for which the cations are fully
disordered on the wurtzite lattice.

B. Results of first-principles calculations

In Table I we compare our calculated lattice constants,
for different computational methods and different struc-
tures, with measured results. The calculated lattice con-
stants were obtained using the abinit code with full re-
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laxation of the structure. As an average measure of the
uncertainty we use ((δa/a)(δb/b)(δc/c))1/3 = (δV/V )1/3,
with δa the deviation from experiment for the a lattice
constant, etc. We see that the LDA calculations under-
estimate the lattice constants of ZnGeN2 by 1.6 % and
those of ZnSnN2 by 2.4%. On the other hand, the GGA-
calculations overestimate the lattice constants by 1.3%
for ZnGeN2 and 1.1% for ZnSnN2. These are typical
errors for the LDA and GGA methods. Within each
of these methods the predicted lattice constants for the
Pmc21 and Pna21 structures are the same, on average,
to within 0.1%, for both materials. While there are some
larger differences in the individual lattice constants, the
volumes agree to about 0.3%. Similar results are ob-
tained for the Pm31 structure, which has a slightly larger
unit cell volume. For ZnGeN2, both b/a and c/a are
larger by about 6% and 3%, respectively, relative to the
Pna21 structure, but the a lattice parameter is smaller.
The lattice parameters for the two ZnSnN2 structures are
closer than for ZnGeN2, as expected, since the Zn-N and
Sn-N bonds are closer in length than are the Zn-N and
Zn-Ge bonds.

The energies in Table II were calculated using the re-
laxed lattice constants for each phase. We see from Ta-
ble II that the difference in the energy of formation be-
tween Pmc21 and Pna21 is extremely small in ZnSnN2,
amounting to only 16 meV per formula unit in the LDA
calculations. The LDA and GGA calculations agree on
this small difference to within a few meV precision. In
contrast, the difference between the energies of forma-
tion of the Pm31 and the Pna21 structures is over 0.5
eV, taking the average of the LDA and GGA calcula-
tions. This result confirms that the two structures that
obey the octet rule are negligibly different in their ener-
gies of formation while the structure with only octet-rule-
violating tetrahedra has signficantly larger total energy.
For ZnGeN2, although the Pmc21 and Pna21 structures
differ in total energy by about an order of magnitude
more than for ZnSnN2 (about 0.12 eV/formula unit), the
introduction of octet-rule-violating tetrahedra costs sub-
stantially more energy (over 2 eV).

Before leaving the topic of the differences in energies
of formation, we note that our calculated energy of for-
mation for ZnSnN2 in the Pna21 structure, with respect
to the elements, is −0.734 eV/formula unit. This value
differs from the value quoted in Ref. 11 and is now in
better agreement with, but still more negative than, that
of Chen et al.20 The change is mainly due to the more
accurate structural relaxation in the present work.

Turning now to the band gaps, we see from the last
column in Table II that the band gaps in the Pna21 and
Pmc21 structures are close to each other, and those of the
Pm31 structures are much smaller than these. In fact, for
ZnSnN2 we find a metallic band structure. The full band
structures of ZnSnN2 and ZnGeN2 in the three structures
are shown in Figs. 5 and 6. The symmetry points used in
these plots correspond to Γ = (0, 0, 0), X = (π/a, 0, 0),
Y = (0, π/b, 0), Z = (0, 0, π/c), U = (π/a, 0, π/c),
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FIG. 5: Band structures of ZnSnN2 in, from top to bottom,
the Pna21, Pmc21 and Pm31 structures.

R = (π/a, π/b, π/c) and S = (π/a, π/, 0) for the or-
thorhombic cell and the standard ones for the trigonal
structure, similar to those in wurtzite. We can see that
ZnSnN2 in the Pm31 structure has an inverted band
structure. Because of the two-fold degenerate valence
band maximum the inversion will open a small gap of
order meV when spin-orbit coupling is included. In that
sense we reported the gap as zero in the Table II. For
ZnGeN2 the difference in the band gaps of the Pmc21 and
Pna21 structures is −0.65 eV while for ZnSnN2 it is only
−0.12 eV. The reason for the larger difference in band
gaps for ZnGeN2 probably lies in the larger difference in



8

TABLE I: Lattice constants in Å and unit cell volumes in Å3 for ZnGeN2 and ZnSnN2 for the different structures and
computational methods, compared with experiment. Note that the ideal wurtzite b/aw and c/aw ratios are b/a =

√
3 ∼ 1.732

and c/a =
√

8/3 ∼ 1.633.

compound structure method a b c b/aw c/aw V
ZnGeN2 Pna21 Expt.a 6.44 5.45 5.19 1.693 1.612 182.16

LDA 6.327 5.358 5.115 1.694 1.617 173.40
GGA 6.521 5.522 5.264 1.694 1.615 189.55

Pmc21 LDA 6.102b 5.532 5.127 1.813 1.680 173.07
GGA 6.294 5.699 5.275 1.801 1.676 189.21

Pm31 LDA 6.238c 5.402 5.238 1.732 1.679 176.48
GGA 6.447 5.581 5.388 1.731 1.671 193.89

ZnSnN2 Pna21 Expt.d 6.753 5.842 5.462 1.730 1.618 215.48
LDA 6.573 5.698 5.342 1.733 1.625 200.07
GGA 6.812 5.905 5.534 1.734 1.625 222.60

Pmc21 LDA 6.562 5.689 5.344 1.734 1.629 199.50
GGA 6.804 5.896 5.536 1.733 1.627 222.08

Pm31 LDA 6.604 5.718 5.340 1.732 1.617 201.62
GGA 6.848 5.929 5.544 1.732 1.619 225.07

aFrom Ref. 27
bNote that for the Pmc21 structure, this parameter is twice the

Pmc21 lattice constant ao′ .
cNote that we give the lattice constants corresponding to those

for the Pna21 structure.
dFrom Ref. 19

TABLE II: The energies of formation per formula unit (fu)
relative to the energies of formation of the Pna21 structures,
and the band gaps Eg. The labels LDA and GGA in the
column method only refer to the total energy differences, the
gaps were obtained in the QSGW method using 0.8∆Σ at the
relaxed lattice constants for each phase in the LDA.

compound structure method ∆Etot (eV/fu) Eg (eV)
ZnGeN2 Pna21 0 3.65

Pmc21 LDA 0.120 3.00
GGA 0.111

Pm31 LDA 0.945 1.21
GGA 0.815

ZnSnN2 Pna21 0 1.81
Pmc21 LDA 0.016 1.69

GGA 0.011
Pm31 LDA 0.564 0

GGA 0.464

the bond lengths of the Zn-N and Ge-N bonds, which are
affected by the slightly different structural relaxations in
both crystal structures. We did not include here the zero-
point motion corrections, which are of order 0.1 eV, or
the exciton binding energy corrections, which are of order
20 meV, as was done in Punya et al.26 These corrections
were calculated using the LMTO QSGW approach but
using the LDA structure obtained in abinit and should be
roughly the same for the Pmc21 and Pna21 structures
so should not affect the differences in those gaps. For
semiconductors, the pure QSGW calculation underesti-
mates the screening of the electron-electron interaction
by about 20 %, so we used 0.8∆Σ to compensate for

this underestimate, where ∆Σ is the difference between
the GW self-energy and the LDA exchange correlation
potential. We estimate the total uncertainty in the cal-
culations of the band gaps to be of order 0.1 eV, including
the uncertainty due to the underestimate of the lattice
constants.

We now interpret the reduction in the band gap of
Pm31 in terms of the presence of octet-rule-violating lo-
cal environments. This reduction in band gap is even
greater than the approximately 1 eV difference reported
by Feldberg et al.15 Similar trends were reported in the
comparison of the calculated band gaps and total en-
ergies of the ordered and disordered ternary zincblende-
based ZnSnP2 system, with larger band gaps and smaller
energies of formation for the two ordered, octet-rule-
preserving CuAu and chalcopyrite structures, compared
to an ordered octet-rule-violating structure, and to a
structure with Sn and Zn atoms placed randomly on the
cation sublattice.44 For the ZnSnN2 system, the defect
calculations by Chen et al.20 also provide some insight,
although less directly, into the reductions in band gaps
that can be expected from violations of the octet rule.
They report SnZn antisite defects to have a +2/0 transi-
tion level at about 0.2 eV below the gap, while ZnSn anti-
sites show a 0/2− transition level at about 0.6 eV above
the valence band maximum. The defects violate the octet
rule in the sense that they lead locally to tetrahedra with
1 Zn and 3 Sn or vice versa. Although we cannot directly
identify Kohn-Sham levels of defects with transition lev-
els, the two should be rather closely related. At a suffi-
ciently large concentration the antisite defect levels would
broaden into bands and may thus be expected to reduce
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FIG. 6: Band structures of ZnGeN2 in, from top to bottom,
the Pna21, Pmc21 and Pm31 structures.

the band gap. Thus, Chen et al.’s results20 suggest that
octet-rule-violating antisite defects could reduce the gap
by about 0.8 eV.

The Boltzmann factors for Pmc21- and Pna21-type
stackings are e−∆Ef/kT /(1 + e−∆Ef/kT ) and 1/(1 +
e−∆Ef/kT ), respectively. These factors do not take prop-
erly into account the statistics of the one-dimensional
stacking, the energy costs and entropy of the octet-rule-
violating defects accompanying disruptions in the order-
ing within a layer, the thermodynamics at the growth
interface, which can be quite different from in the bulk,
and, perhaps most importantly, the kinetics of the growth

and ordering processes. However, they may give a very
rough indication of how likely the two phases are to mix.
For a growth temperature of about 750 ◦K for ZnSnN2,
the Boltzmann factors give proportions of the Pmc21- to
Pna21-type orderings of 55% and 45%. The closeness of
the lattice constants indicates that strain effects on the
gap will be negligible. The band offsets between the two
phases are also expected to be quite small because the
valence band maxima in both structures consist of N-2p-
like states. Thus, for ZnSnN2 we should expect random
stackings of close to equal proportions of the two phases,
and a band gap approximately independent of the or-
dering as long as octet-rule-violating defects are avoided.
The 0.12 eV difference in the two band gaps, plus any
small effects of strain and band offsets, will result in
the generation of a random short-period superlattice that
may be responsible for the roughly 120 meV linewidth of
the near-band-edge luminescence peak observed in Fig.
3.

For ZnGeN2, the difference in the energies of forma-
tion for the Pna21 and Pmc21 structures (∼0.12 eV)
is over an order of magnitude larger than for ZnSnN2

but the growth temperature (∼1000 ◦K) is also larger.
The Boltzmann factors give about 80% Pna21 and 20%
Pmc21. Thus, for ZnGeN2 there should be a significantly
lower tendency for mixing of the two phases to occur.
However, it should be emphasized that these Boltzmann
factors should not be used to predict the proportions of
the two phases, for the reasons noted above.

C. Calculated x-ray diffraction spectra

With values for the energies of formation obtained by
calculation, we can now calculate the layer interaction
parameter J1 defined in Eq.(1); we have Ef (Pna21) −
Ef (Pmc21) = −2J1. For ZnSnN2 we obtain J1 =
6.5 ± 1.5 meV, and for ZnGeN2, J1 = 60 ± 5 meV.
As mentioned previously, we can neglect longer range
interactions in the absence of evidence of polytypes of
these materials. For ZnSnN2, the small value of J1, com-
pared to kT at the growth temperature, is consistent with
roughly equal probabilities for the two types of stacking.

We now show that for ZnSnN2 the measured, wurtzite-
like x-ray diffraction spectra are consistent with our or-
dering model. Figure 7 shows the calculated x-ray diffrac-
tion spectra for ZnSnN2 for four cases; for the per-
fectly ordered Pna21 and Pmc21 phases, for a disor-
dered wurtzite phase for which the atomic form factor
for the cations is the average of those of Zn and Sn, and
for a crystal composed of 240 pseudospin layers made
up of equal proportions, but random distributions, of
+1 and -1 pseudospins. For ease of comparison we use
the ideal wurtzite atomic positions, the lattice parame-
ter a = 0.671 nm, and the ideal wurtzite ratios b/a =

√
3

and c/a =
√

8/3. The strongest superstructure peaks
unique to the pure crystals, which are the (111) peak for
the Pmc21 structure and the (101) peak for the Pna21
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FIG. 7: X ray diffraction spectra for ZnSnN2. From top to
bottom: the calculated powder x-ray diffraction spectra of
ZnSnN2 for the Pna21, Pmc21, and wurtzite crystal struc-
tures, a crystal composed of 240 pseudospin layers with a
50:50 mixture of the Pna21 and Pmc21 structures, and the
measured spectrum, from Ref. 19. The starred peaks in the
measured spectrum are associated with the Zn-Sn melt upon
which the ZnSnN2 was grown.

structure, are labeled. Note that these are reduced in in-
tensity by two orders of magnitude for the 240-layer dis-
ordered crystal, compared to the perfectly ordered struc-
tures. Superstructure peaks are absent in the measured
spectrum, from Ref. 19, and in the other reports of x-ray
diffraction measurements of ZnSnN2.15,17

Figure 8(a) shows the dependence of the intensities of
the superstructure peaks on the number of layers, rel-
ative to the Pna21 (221) peak, which is the strongest
peak common to the Pna21, Pmc21 and wurtzite crystal
structures. This result illustrates that the measurement
of the diffraction spectrum as a function of the number
of layers should be a powerful method to probe the disor-
der. The calculations also show that the x-ray diffraction
spectra in references 17 and 19 have signal-to-noise ratios
far too low to detect the superstructure peak intensities
predicted for this model. In the first case, the depth
probed is the typical Cu Kα coherence length. In the
second case, the coherence length is limited by the 70
nm grain size of the polycrystalline material.

Figure 8(b) shows the result of a calculation of the
highest-intensity superstructure peaks, for both a 240-

FIG. 8: Normalized x ray diffraction peak intensities for
ZnSnN2. (a) The ratio of the Pmc21 (111) peak to the (221)
peak for a 50:50 mixture of the Pna21 and Pmc21 phases, as
a function of the number of layers. The intensity of the (221)
peak is independent of the ratio of the two phases. The two
vertical dashed lines mark the number of layers that corre-
spond to the average grain size reported in Ref.19, and the
typical coherence length of a standard Cu Kα x-ray source.
The two horizontal dashed lines at 0.02 and 0.011 mark the
signal-to-noise ratios for the ZnSnN2 x-ray diffraction spectra
reported in references 17 and 19, respectively. (b) The ratios
of the Pna21 (111) and Pmc21 (101) x-ray diffraction peaks
to the (221) peak versus the fractional mixtures of the two
phases, calculated for sampling depths of 24 and 240 pseu-
dospin layers.

layer crystal and for a 24-layer crystal, as the propor-
tions of the two pure phases are varied. It is clear from
this figure that a study of the diffraction peak intensities
as a function of growth conditions could provide impor-
tant information on growth kinetics and thermodynam-
ics. The figure also illustrates that the relative intensity
of the superlattice diffraction peak to the Pna21 (221)
peak drops very quickly below the signal-to-noise ratio
unless the stacking is nearly perfect Pna21 or Pmc21, or
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unless only a few layers in the crystal are sampled.
Unlike in the case of ZnSnN2, for which all measure-

ments to date show a fully disordered lattice, it has been
shown that for ZnGeN2 the extent of the lattice disor-
der may be tuned by growth conditions. Figure 9 shows
two measured powder diffraction spectra for polycrys-
talline ZnGeN2 grown at different temperatures but un-
der otherwise identical conditions.29 The spectrum for
the material grown at 840◦C is well represented by the
calculated spectrum for the Pna21 phase, while the spec-
trum for the material grown at 750◦C is consistent with
the calculation for the fully disordered material. The
effect of the distortion of the Pna21 lattice from the
ideal wurtzite is evident in the comparison of the sim-
ulated ZnGeN2 Pna21 and wurtzite spectra; the distor-
tion results in the breaking of degeneracies for many of
the diffraction peaks. That the x-ray diffraction spectra
show disordered ZnGeN2 at the lower temperature and
ordering in the Pna21 phase at the higher temperature
indicates that at 750◦C the cations, more strongly bound
than in ZnSnN2, do not have sufficient mobility to rear-
range themselves on the cation sublattice. This result is
not a signature of an order-disorder transition, for which
the disordered phase appears at the higher, not lower,
temperature, but is most likely a result of the limiting
kinetics.

Finally, a very rough measure of the expected temper-
ature for the transition from the lowest-energy ordered
structure to a random stacking of the two structures can
be given by the difference in the energies of formation
of the Pna21 and Pmc21 structures, divided by Boltz-
mann’s constant. For ZnGeN2 this estimate is of order
1400 ◦K, and for ZnSnN2, 156 ◦K. Thus, for ZnGeN2 the
growth temperature is well below this transition tem-
perature, while for ZnSnN2 the growth temperature is
well above the transition temperature, consistent with
the qualitative differences in the amount of stacking dis-
order observed in the two cases.

V. SUMMARY AND OUTLOOK

We have shown that all octet-rule-preserving arrange-
ments of the atoms in heterovalent ternary materials re-
lated to the binary wurtzite structure are described by
the one-dimensional stacking of two pseudospin layers,
with the exception of a unique, highly symmetric, multi-
ply twinned structure.

For ZnSnN2, we have calculated the x-ray diffraction
spectra of random stackings of the pseudospin layers as
functions of the numbers of layers and the proportions
of the pure materials. The results illustrate that x-ray
diffraction methods can be powerful tools for probing
this type of one-dimensional stacking disorder. First-
principles calculations of the energies of formation and
band gaps of the constituent pure crystal structures for
ZnSnN2 show that the charge-neutral Pna21 and Pmc21

phases have very similar band gaps, lattice parameters

FIG. 9: Calculated and measured powder x-ray diffraction
spectra of ZnGeN2. Portions of these spectra were published
in Ref. 29. The insets at the left of the experimental spectra
are the data for diffraction angles of 2θ between 20◦ and 24◦,
reproduced with an expanded linear vertical scale to show
better the superstructure peaks that appear for the sample
grown at 840 ◦C. These superstructure peaks are absent for
the sample grown at 750 ◦C. The peaks in the experimental
spectra at the diffraction angle of approximately 27◦ are from
the Ge substrate.

and energies of formation, while structures that violate
charge neutrality do not. These results justify model-
ing the ZnSnN2 x-ray diffraction spectrum with approx-
imately equal proportions, and random stacking, of the
two phases. This model of the lattice disorder resolves
the issue between the apparent lattice disorder inferred
from x-ray diffraction and inelastic light scattering mea-
surements, and the apparent insensitivity of the band gap
to the disorder. In ZnGeN2, calculations reveal larger dif-
ferences between the band gaps and energies of formation
of the Pna21 and Pmc21 phases. Pna21 ordering results
at higher growth temperatures. That disordered material
was obtained at lower growth temperatures is interpreted
to be a result of insufficient cation mobility during the
growth process rather than a thermodynamically driven
order-disorder transition.

We note, parenthetically, that the octet-rule-
preserving twinned structure discovered here and shown
in Fig. 2(c) is highly unusual because at the twin bound-
aries there are no unsatisfied bonds and the bond angles
are distorted only to the extent that the atomic positions
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deviate from the ideal wurtzite positions. The geometry
suggests a nanowire structure; the central core of 3 A
(B) cations in the α- (β-)plane is surrounded by the ring
of 9 B (A) cations, then 15 A (B) cations in the third
ring, and so on. To date, there are no reports of the
synthesis of ternary nitride nanowires, but it is possible,
although highly speculative, that this unique twinned
configuration might be observed not only in some of the
ternary nitride systems, but also in ternary systems that
have chalcopyrite crystal structures in the bulk but that
might have wurtzite-based configurations as nanowires.
Nanowires of some III-V zincblende semiconductors can
be produced in either the wurtzite or the zincblende
structure, or a combination of the two, by controlling
growth parameters.45–47

Finally, we emphasize the point that, although spe-
cific results here pertain only to ZnSnN2 and ZnGeN2,
we expect the general concept of layered disorder in het-
erovalent ternaries to hold a far wider range of validity.
In the nitrides, the octet-rule-violating structures are so
energetically costly mainly because of the higher ionic-
ity of the nitrides. Thus, breaking charge neutrality lo-
cally costs significantly more energy than in the less ionic
III-V compounds. We expect, therefore, that restricting
the disorder to octet-rule-observing configurations will be
most important for other II-IV-N2 nitrides and for other
ionic heterovalent alloys such as LiGaO2. The main re-
sult of our study is that in order to explain a wurtzite-like
diffraction spectrum, it is not necessary to assume fully
random distribution of cations on the cation sublattice.
Random stacking of the two octet-rule preserving struc-
tures is sufficient to explain fully random-looking diffrac-
tion spectra. From that point of view, it appears de-
sirable to also reconsider this concept in the zincblende-
based heterovalent ternaries. In that case also, there are
exactly two ordered structures that preserve the octet
rule, and a similar layered pseudospin model can be
constructed.10 Thus it seems worthwhile revisiting the
question of ordering in those materials. Most of the ev-
idence in the older literature on the subject is based on
the absence of superlattice peaks in x-ray diffraction just
as for the wurtzite case studied here. However, we have
here shown that these superlattice peaks can very easily
be destroyed even within our strongly restricted layer dis-
order model. On the other hand, we should be clear that
our model does not preclude that octet-rule-violating de-
fects will be present in small concentrations, depending
on growth conditions, even in the more ionic compounds.
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Appendix A

We show here that the only octet-rule-preserving
ternary structures ABC2 derived from the wurtzite lat-
tice are either sequences of the pseudospin ±1 layers
stacked along the orthorhombic b axis, or the twinned
structure depicted in Fig. 2(e). We arrive at this conclu-
sion with the help of five rules that follow directly from
the octet rule. The underlying wurtzite lattice is shown
in Fig. 11, with the basal planes containing the cations
labeled α, β, γ and δ.

The octet rule requires that each anion be bonded to
two A cations and two B cations. Thus only two of the
three cations lying in the α-plane that are bonded to the
same anion can be of type A, and the fourth cation, which
lies in the β-plane, must be of type B, as illustrated in
Fig. 10(a).

Rule 1, illustrated in Fig. 10(b), states that the cation
in the α-plane above the common nitrogen atom shared
by three cations in the β-plane must be of type A if two
of the cations in the β-plane are of type B. The proof of
this rule is shown in Figs. 10(c)-(f). The only alternative
to the arrangement of Fig. 10(b) is shown in Fig. 10(c).
Fig. 10(d) follows by application of the octet rule. Notice
the symmetry of Fig. 10(d) about the dashed line; the
cation positions m and m′ are equivalent. The octet rule
requires that one of these be a B cation, as shown in Fig.
10(e). We tilt the perspective in Fig. 10(f) to show that
this arrangement in the β-plane results in a violation of
the octet rule in the γ-plane; the green cation is required
to be both an A atom and a B atom.

Rule 2, not illustrated, states that all structures that
fulfill the octet rule have translational symmetry, with
periodicity c, along the c-axis. This rule follows directly
from rule 1 in the following way. Fig. 10(b) illustrates
that each A cation in the α-plane must share a nitrogen
atom with two B cations in the β-plane. Therefore, the
octet rule requires that the cation in the γ-plane beneath
the A cation in the α-plane must also be an A cation.
Since the bonding is equivalent for all cations, the cation
in the γ-plane directly below any B cation in the α-plane
must also be a B atom.

Rule 3 states that the triplet arrangement of Fig.
10(g) must result in the structure shown in Fig. 2(e).
Each layer added to the core triplet arrangement follows
uniquely by sequential applications of the octet rule and
rule 1. Rule 4 states that the arrangement of Fig. 10(h)
is not allowed. Application of the octet rule and rules 1
and 3 lead to the illustrated contradiction. Rule 5 states
that a type ABAB row, illustrated as BAB in Fig. 10(i),
fixes all rows parallel to this one as type ABAB. There
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are two possible alternatives to rule 5, as shown. Both
lead to a violation of rule 3.

We now show that the only octet-rule-preserving struc-
tures, with the exception of the six-fold twinned struc-
ture, are sequences of ±1 pseudospin layers. This con-
clusion will follow from the conclusion that all allowed
configurations have alternating ABAB cations along one
direction in the basal plane. We start by noting that
in the Pna21 phase the rows of nearest-neighbor cations
in a basal plane have either AABB or ABAB ordering.
For the Pmc21 phase, the ordering of nearest-neighbor
cations is AAAA, BBBB, or ABAB. We now consider
the sequence BAA in a basal plane. There are two possi-
ble orientations, as shown in Figs. 11(a) and (b). These
are equivalent by mirror symmetry. Application of rule 4
requires one or the other of the two structures shown in
Figs. 11(c) and (d). Application of rule 3 to these con-

figurations leads to the arrangements of Figs. 11(e) and
(f). These are equivalent by rotational symmetry, so we
need only consider the consequences of the arrangement
of Fig. 11(d) to cover all possibilities.

It is straightforward to generate Fig. 11(g) from Fig.
11(d) by application of the octet rule and rules 1 and 3.
The result is the horizontal parallel ABAB rows in both
the α- and β-plane that extend infinitely, as illustrated
in Fig. 11(g). By rule 5, any additional parallel rows
must be ABAB. Extension of the initial row BAA, for
example to ABBBA, as shown by the dashed line in Fig.
11(h), fixes the atomic arrangements of all additional par-
allel rows (Fig. 2(i). The sequence AAAA results in the
Pmc21 structure, and the sequence AABB results in the
Pna21 structure. Sequences with larger periods gener-
ate polytypes, and random sequences generate disorder
along one dimension.
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FIG. 10: Atomic arrangements associated with the rules governing the placement of A and B cations so as to preserve the octet
rule.. Application of the octet rule is labeled OR, application of rule 1 is labeled R1, etc.
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FIG. 11: Atomic arrangements associated with the proof of all possible cation placements obeying the octet rule. Application
of the octet rule is labeled OR, application of rule 1 is labeled R1, etc.


