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Bilayer quantum Hall systems, realized either in two separated wells or in the lowest two sub-bands of a wide

quantum well, provide an experimentally realizable way to tune between competing quantum orders at the same

filling fraction. Using newly developed density matrix renormalization group techniques combined with exact

diagonalization, we return to the problem of quantum Hall bilayers at filling ν = 1/3 + 1/3. We first consider

the Coulomb interaction at bilayer separation d, bilayer tunneling energy ∆SAS, and individual layer width w,

where we find a phase diagram which includes three competing Abelian phases: a bilayer-Laughlin phase (two

nearly decoupled ν = 1/3 layers); a bilayer-spin singlet phase; and a bilayer-symmetric phase. We also study

the order of the transitions between these phases. A variety of non-Abelian phases have also been proposed for

these systems. While absent in the simplest phase diagram, by slightly modifying the interlayer repulsion we

find a robust non-Abelian phase which we identify as the “interlayer-Pfaffian” phase. In addition to non-Abelian

statistics similar to the Moore-Read state, it exhibits a novel form of bilayer-spin charge separation. Our results

suggest that ν = 1/3 + 1/3 systems merit further experimental study.
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I. INTRODUCTION

The remarkable experimental discovery of quantized resis-

tance of a two-dimensional electron gas (2DEG) in strong

perpendicular magnetic fields [1] has revealed many topolog-

ically ordered phases that form due to strong Coulomb inter-

actions in a partially filled Landau level [2]. Some exam-

ples include the “odd-denominator” fractional quantum Hall

(FQH) states that belong to the sequence of Laughlin [3],

hierarchy [4, 5] and “composite fermion” [6] states. One

of their prominent features is the presence of quasiparticles

(“anyons”) that carry fractional charges [3] and obey frac-

tional statistics [7, 8]. More intriguing, “non-Abelian” quasi-

particles have been proposed to occur in several experimen-

tally observed FQH states in the first excited Landau level.

Most notably, this is the case with an even-denominator fill-

ing factor ν = 5/2 state [9], believed to be described by the

Moore-Read Pfaffian state [10–12] that contains non-Abelian

anyons of the Ising type [13–15].

Non-Abelian anyons are of much current interest, both from

a fundamental physics perspective and as a platform for topo-

logical quantum computing [16, 17]. The Ising anyons in

the Moore-Read phase are akin to “Majorana zero modes”

sought after in many recent experiments [18–22]. The abil-

ity to control non-Abelian excitations would give rise to long-

lived quantum memory [23].

The aforementioned hierarchies of Abelian and non-

Abelian states are a priori relevant when the FQH system can

be described as a single partially occupied Landau level, that

is, the electrons carry no internal degree of freedom. However,

“multicomponent” FQH states are ubiquitous; most obviously

electrons carry spin. While the Coulomb energy scales as

e2/ǫℓB[K] ≈ 50
√

B[T], assuming free electron values for

the mass and g factor in GaAs, the Zeeman splitting is only

EZ [K] ≈ 0.3B[T], suggesting that in many circumstances the

ground state of the system may not be fully spin-polarized.

Several classes of unpolarized FQH states have been formu-

lated, including the so-called Halperin (mmn) states [24] and
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spin unpolarized composite fermion states [25–28]. In mate-

rials such as AlAs or graphene, ordinary electron spin may

furthermore combine with valley degrees of freedom, which

can change the sequence of the observed integer and FQH

states [29–38].

Here we study an important class of multicomponent FQH

systems where the internal degrees of freedom correspond to

a subband or layer index, generally referred to as pseudo-spin.

For example, if a 2DEG is confined by an infinite square well

in the perpendicular z-direction, the effective Hilbert space

may be restricted to several low-lying subbands of the quan-

tum well (QW). In the most common case, the relevant sub-

bands are the lowest symmetric and antisymmetric subbands

of the infinite square well that play the role of an effective

SU(2) degree of freedom. Furthermore, it is possible to fab-

ricate samples that consist of two quantum wells separated by

a thin insulating barrier. We refer to the latter type of device

as the quantum Hall bilayer (QHB). The interest in bilayers

and quantum wells comes from their experimental flexibility

that allows one to tune the parameters in the Hamiltonian to

a larger degree than it is possible with ordinary spin. For ex-

ample, in a QHB with finite interlayer distance, the effective

Coulomb interaction is not SU(2) symmetric. Therefore, the

“intralayer” Coulomb interaction (the potential between elec-

trons in the same layer) is somewhat stronger than the “inter-

layer” Coulomb (i.e., the potential between electrons in oppo-

site layers). The ratio between the two interaction strengths

is given by the parameter d/ℓB, the physical distance be-

tween layers in units of magnetic length, which in experiment

can be continuously tuned. The tunneling energy between

the two layers (in units of the Coulomb interaction energy),

∆SAS/
e2

ǫℓB
, can also be tuned. The tunability of interactions

in quantum Hall bilayers and quantum wells can give rise to a

richer set of FQH phases that extend beyond those realized in

single-layer systems. Examples of such phases occur at ν = 1
and ν = 1/2. They have a rich experimental history that we

briefly review in Sec. II.

In this work we focus on the QHB at total filling factor

ν = 1/3 + 1/3. The early experiment by Suen et al. [39]

measured the quasiparticle excitation gap in a wide QW as

a function of ∆SAS. The gap was found to close around

∆SAS/
e2

ǫℓB
. 0.1, with an incompressible phase on either side

of the transition. A realistic model of this system [40], that

included LDA calculation of the band structure, reproduced

the observed behavior of the gap. A more complete phase

diagram as a function of both d/ℓB and ∆SAS/
e2

ǫℓB
was ob-

tained in Ref. 41. This study, however, assumed zero width

for each layer and was restricted to small systems. The phase

diagram was argued to consist of three phases. For small d/ℓB
and small ∆SAS/

e2

ǫℓB
, the system maintains SU(2) symmetry

and resembles the usual ν = 2/3 state with spin. It has been

known that the ground state in this case is a spin-singlet (112)
state [25, 42–44] (for an explicit wavefunction see Refs. 41

and 45). If d/ℓB is large, the layers are decoupled and the

system is described by the Halperin (330) state, which is the

simple bilayer Laughlin state. On the other hand, large ∆SAS

effectively wipes out the layer degree of freedom, and the sys-
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FIG. 1. (Color online) Phase diagram of 1/3+1/3 QHB in terms of

dimensionless layer separation d and tunneling energy ∆SAS. Data

was taken with cylinder circumference L = 14ℓB and layer width

w = 0. The dashed lines indicate sweeps performed to determine

the nature of the phase transitions (see Sec. IV for details). Later

in this work, additional axes will be added to this plot, driving the

system into a non-Abelian phase (see Fig. 7). The black dotted line

and square mark the region studied experimentally in Ref. 46, and

their observed phase transition.

tem becomes single component. This bilayer symmetric state

is described by the particle-hole conjugate of Laughlin’s 1/3

wavefunction (hereafter called the 1/3 state).

Our motivation for revisiting the problem of ν = 1/3+1/3
QHB is twofold. First, previous theoretical studies of this sys-

tem have been limited to very small systems due to the expo-

nential cost of exact diagonalization (ED). This limitation is

particularly severe in the present case because of the pseudo-

spin degree of freedom. Recent work has demonstrated that

to some degree this cost can be overcome by using variational

methods such as the “infinite density-matrix renormalization

group” (iDMRG) [47, 48]. By combining insights from ED

and iDMRG, we are able to obtain a more accurate phase di-

agram of the ν = 1/3 + 1/3 QHB system as a function of d
and ∆SAS, as shown in Fig. 1. Although our results are qual-

itatively consistent with Ref. 41, the access to significantly

larger system sizes enables us to study the order of the associ-

ated phase transitions, which we find to be first order.

Given that 1/3 + 1/3 bilayer systems are experimentally

available and allow a great deal of tunability (changing the

layer width w, d or ∆SAS), our second goal is to explore the

possibility of realizing more exotic (non-Abelian) phases in

these systems by tweaking the interaction parameters. Indeed,

recently a number of trial non-Abelian states have been pro-

posed for these systems [49–55]. At filling ν = 1/3 + 1/3,

the relevant candidates are the Z4 Read-Rezayi state [56],

the bilayer Fibonacci state [55], the “intralayer-Pfaffian” and

“interlayer-Pfaffian” states [50]. The latter was first intro-

duced in Ref. 49, which showed that the phase supports Ising

anyons and also exhibits spin-charge separation. We develop

a diagnostic that detects spin-charge separation in the ground-
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state wavefunction using the entanglement spectrum. By

varying the short-range Haldane pseudopotentials in the bi-

layer system at finite interlayer distance and tunneling, we find

evidence for a non-Abelian phase that exhibits spin-charge

separation and has non-trivial ground-degeneracy, consistent

with the interlayer Pfaffian state. The phase is realized by

either reducing the V0 or increasing the V1 pseudopotential

component of the interaction, which may naturally occur as a

consequence of strong Landau level mixing.

The remainder of this paper is organized as follows. In

Sec. II we review some of the previous experimental work

in QHB and QW systems. In Sec. III we introduce the model

of the QHB and discuss the numerical methods and diagnos-

tics for identifying the FQH phases and transitions between

them. Sec. IV contains our main results for the phase dia-

gram of 1/3+ 1/3 QHB as a function of parameters w, d and

∆SAS. We discuss in detail the three Abelian phases that oc-

cur in this system, and identify the nature of the transitions

between them. In Sec. V we explore the possible new phases

when the interaction is varied away from the bare Coulomb

point. We establish that the modification of short-range (V0
or V1) pseudopotentials leads to a robust non-Abelian phase

that exhibits spin-charge separation and can be identified with

the interlayer Pfaffian state. Our conclusions are presented in

Sec. VI.

II. EXPERIMENTAL BACKGROUND

In this Section we briefly review some of the important ex-

periments on quantum Hall bilayers and wide quantum wells.

As mentioned in the Introduction, one of the great advantages

of studying these systems is the ability to experimentally tune

parameters in the Hamiltonian, e.g., the interlayer separation

and interlayer tunneling in a QHB. Different samples can be

constructed with different values for these quantities. Tun-

neling energy is independent of layer separation since it can

be varied by changing the height of the potential barrier be-

tween the layers without changing its width. Another conve-

nient way to tune these parameters is by applying voltage bias

to separate contacts made to each layer [57]; the variation of

electron density ρ thus changes the effective ℓB at fixing fill-

ing ν via the relation ρ = ν/2πℓ2B. This allows d/ℓB and

∆SAS/
e2

ǫℓB
to be tuned continuously in a single sample.

To illustrate the typical parameter range that can be ac-

cessed, we note that at ν = 1/2 + 1/2 it has been possi-

ble to vary d/ℓB in range 1.2–4, while the interlayer tunnel-

ing ∆SAS can be either completely suppressed or as large as

0.1e2/ǫℓB [58]. The width of individual layers in this case

is less than d. On the other hand, in wide QWs one controls

independently the width of the entire well and the tunneling

amplitude ∆SAS. The latter is defined as the energy split-

ting between the lowest symmetric and antisymmetric sub-

bands, and typically varies between zero and 0.2e2/ǫℓB. For

systems where FQH can be observed, the physical width of

the well is typically 30–65 nm [59]. Self-consistent numeri-

cal calculations estimate that this corresponds to an effective

bilayer distance d/ℓB = 3–7, with individual layer widths

1.5–3ℓB [59]. The tunability via d/ℓB or ∆SAS/
e2

ǫℓB
can en-

gender new physics that does not arise in a single layer quan-

tum Hall system. Two important examples of such phenomena

have been observed to occur at total filling factors ν = 1/2
and ν = 1.

At total filling ν = 1/2, the QHB ground state is compress-

ible in the limit of both very large and very small d/ℓB. At

large d/ℓB , it is described by two decoupled 1/4+1/4 “com-

posite Fermi liquids” [60] (CFL), while around d/ℓB = 0 it

is the spin unpolarized 1/2 CFL. At intermediate d/ℓB, an

incompressible state forms when d/ℓB . 3 [61, 62]. Numer-

ical calculations performed over the years, primarily utilizing

exact diagonalization [63–67], have confirmed that the incom-

pressible state at vanishing interlayer tunneling is the Halperin

331 state [24]. More recently, there has been some renewed

interest in the ν = 1/2 two component systems [59, 68] due

to the possible transition into the Moore-Read Pfaffian state

as tunneling is increased [69–71]. Evidence for a tunneling-

driven Moore-Read state has also been found for bosonic

QHB at total filling ν = 1[72]. Analogous scenario may hold

for QWs at total filling ν = 1/4, where the competing phases

are the Halperin (553) state and the 1/4 Pfaffian state [73].

Very recently, GaAs hole systems have been shown to realize

an incompressible state at ν = 1/2 near the vicinity of Landau

level crossing [74].

As a second example of novel phases in QHB systems, we

briefly mention the celebrated ν = 1 state (for recent reviews,

see Refs. 58 and 75). At large d/ℓB the system is compress-

ible (two decoupled CFLs), but undergoes a transition to an

incompressible state for d/ℓB < 2, even at negligible in-

terlayer tunneling. The incompressible state is represented

by the Halperin (111) state, which can also be viewed as a

pseudo-spin ferromagnet [76]. This wavefunction encodes the

physics of exciton superfluidity, with an associated Goldstone

mode [77] and vanishing of Hall resistivity in the “counter-

flow” measurement setup [78, 79]. The existence of an in-

compressible state (consistent with an exciton superfluid) has

been established in numerics [80–84], though the questions

about the details and nature of the transition, as well as the

possibility of intermediate phases, remain open.

The case of total filling ν = 2/3, which is the subject of

this paper, has been less studied compared to previous exam-

ples. In the mentioned Ref. [39] the transition between a one-

component and two-component phase was detected as a func-

tion of ∆SAS, while in Ref. [40] similar data was obtained as

a function of the tilt angle of the magnetic field. These ex-

periments have been performed on a single wide QW. More

recently, Refs. [46] and [85] have studied ν = 1/3 + 1/3 in

a QHB sample which directly corresponds to the model we

study. (see Sec. III) By applying a voltage bias as described

above, they perform four sweeps in the d, ∆SAS plane. In

one sweep [46] they find a seemingly first-order transition at

d/ℓB ≈ 2, ∆SAS/
e2

ǫℓB
≈ 0.1. This sweep, and the location of

the observed transition, are shown in Fig. 1. Another sweep

entirely in the large ∆SAS regime sees no phase transition,

while two other sweeps are performed at small ∆SAS. These

sweeps see a ν = 2/3 state at large d/ℓB which vanishes as

the interlayer separation is decreased. The rest of the phase
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diagram remains to be fully mapped out. In our work we de-

termine this phase diagram numerically, which can guide ex-

periments towards realizing all the possible phases in this bi-

layer system. Finally, we mention that very recently [86] the

stability of fractional quantum Hall states was investigated in

a wide quantum well system with competing Zeeman and tun-

neling terms. The Zeeman splitting was controlled by an in-

plane magnetic field. This system may not be fully captured

by our model in Sec. III because of the potentially strong or-

bital effect of an in-plane field in a wide QW. It is possible,

however, that the transition observed at ν = 5/3 in Ref. 86 is

indeed in the universality class of 1/3 → (112) transition that

we identify in Sec. IV below.

III. MODEL AND METHOD

A. The bilayer model

We label the two layers of the bilayer with the index µ ∈
{↑, ↓}, and consider Hamiltonians of the general form

H =
1

2

∫

d2rd2r′ V µνC (r− r
′)nµ(r)nν(r′)

− ∆SAS

2

∫

d2r cµ†(r)σxµνc
ν(r), (1)

where cµ†(r) creates an electron in layer µ at the position r ≡
(x, y). The first term is the Coulomb interaction, expressed in

terms of the density operator

nµ(r) = cµ†(r)cµ(r). (2)

for an electron in layer µ. The precise form of the interac-

tion term depends on the details of the bilayer. The second

term encodes tunneling between the two layers. When V µνC is

SU(2) symmetric this Hamiltonian is equivalent to a ν = 2/3
system with spin, and in this case ∆SAS can be thought of as

the Zeeman splitting.

In Eq. (1) we assumed that the perpendicular z coordi-

nate has been integrated out, leading to an effective two-

dimensional Hamiltonian. This is possible because the mag-

netic field is perpendicular to the 2DEG plane, and the trans-

verse component of the single body wavefunctions ψ factor-

izes,

ψµ(x, y, z) = φz(z ± d/2)φ(r). (3)

The single-body wavefunctions depend on two length scales:

the spatial separation d between the two layers in the direction

ẑ, and the finite layer width w of each layer. In this work we

assume φz(z) is set by an infinite square well of width w,

φz(z) =

√

2

w
sin

(πz

w

)

. (4)

The Coulomb interaction in three dimensions is given by:

V3D(x, y, z) =
e2

ǫℓB

ℓB
√

x2 + y2 + z2
, (5)

We can then recover the Coulomb interaction part of Eq. (1)

by integrating out the perpendicular coordinate

V µνC (r) =

∫

dz dz′ |φz(z)|2|φz(z′)|2

V3D(r, z − z′ + (1− δµν )d). (6)

Throughout this work we project the Hamiltonian (1) into the

lowest Landau level, ignoring the effects of “Landau level

mixing” present at finite e2

ǫℓB
/~ωc. In this case, it is possible

to expand VC in terms of the Haldane pseudopotentials Vα,

which are the potentials felt by particles orbiting around one

another in a state with relative angular momentum α. Later in

this work we add additional Vα terms to VC in order to explore

the neighboring phases. In experiment, such variations of the

interaction may arise due to Landau level mixing [48, 87–94].

Henceforth, we set the energy and length scales e2

ǫℓB
=

ℓB = 1 whenever units are omitted.

B. Numerical methods

We work in the Landau gauge, (Ax, Ay) = ℓ−2
B (y, 0),

where the single-particle orbitals with momentum kx = 2πm
L

(m ∈ Z) are spatially localized near y = kxℓ
2
B. The sys-

tem is fully periodic along the x-direction, but naturally maps

to a long-range interacting 1D fermion chain along y-axis.

We study such chains using exact diagonalization as well as

density-matrix renormalization group [47, 48].

For the purposes of exact diagonalization (ED), it is useful

to minimize the finite-size effects by assuming the 1D chain to

be periodic (i.e., the physical system is periodic along both x
and y directions, or equivalently it has the topology of a torus).

Using magnetic translation symmetry reduction of the Hilbert

space [95], it is possible to study systems of about 10 electrons

with pseudo-spin degree of freedom at filling 1/3 + 1/3. The

advantages of ED method are the direct access to the entire

low-lying excitation spectrum, resolved ground state degener-

acy, the ability to simulate complicated interactions (e.g., 3-

body) that give rise to non-Abelian states, and compute over-

laps between model wavefunctions and exact states.

Because of the exponential cost of ED that becomes pro-

hibitive for systems with pseudo-spin degree of freedom, the

bulk of our results are obtained via the recently developed in-

finite DMRG method (iDMRG) [47, 48] that allows access

to larger system sizes. iDMRG places the Hamiltonian on an

infinitely long cylinder of circumference L, and employs a

variational procedure to find the ground state within the vari-

ational space of matrix product states (MPS) [96–98]. MPS

can only represent systems with a finite amount of entangle-

ment S, which in turn is limited by the “bond dimension”

χ via S < log(χ), while the computational resources re-

quired scale asO(χ3). In this work we used a bond dimension

χ ∼ 5000–8000. On a cylinder, the entanglement scales with

the circumference L, but is independent of the length of the

cylinder. Therefore, while the complexity remains exponen-

tial in the circumference, it is constant in the length of the

cylinder, which provides an advantage over ED.
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C. Entanglement invariants for the identification of FQH

phases

All of the phases we study in this work are gapped, have

quantized Hall conductance σxy = 2
3
(e2/h), and have no lo-

cal order parameter which can be used to distinguish between

them. However, these phases do have different topological

orders, and we can therefore apply a number of recent devel-

opments [47, 99–101] which demonstrate how the topological

order of a system can be extracted from its entanglement prop-

erties.

In a topological theory, the ground state degeneracy on both

the torus and infinitely long cylinder is equal to the number

of anyon types. There is a special basis for the ground state

manifold, the minimally entangled basis, in which each basis

state |a〉 can be identified with an anyon type a [99, 102, 103].

By measuring how various entanglement properties of |a〉
scale with the circumference L, we can measure: the quan-

tum dimensions da [102, 104]; the internal quantum numbers

(spin, charge, etc.) of each anyon a; the “shift” S [105], or

equivalently the bulk Hall viscosity [47]; the topological spins

θa = e2πiha and the chiral central charge c− of the edge the-

ory [47, 99, 101]. Below we provide a brief summary of these

measurements in the context of FQH systems, and refer to

Refs. 48 for a detailed discussion.

To measure entanglement properties we divide the cylin-

der in orbital space into two semi-infinite halves L/R and

Schmidt decompose the state as |Ψ〉 =
∑

µ λµ |µ〉L ⊗ |µ〉R.

The entanglement entropy is defined as S = −∑

µ λ
2
µ logλ

2
µ.

In ground state |a〉, the entropy Sa scales as [102, 104]

Sa = βL − log
D
da

+O(e−L/ξ̃), (7)

where da is the quantum dimension of anyon a, and D is the

total quantum dimension of the topological phase. The cor-

rections are set by a length scale ξ̃ which need not be directly

related to the physical correlation length.

To measure a U(1) charge Qa for anyon a, we partition

the total charge operator into its components to the left / right

of an entanglement cut, Q̂ = Q̂L + Q̂R. The left Schmidt

states are eigenstates of Q̂L, Q̂L |µ; a〉L ≡ Qµ;a |µ; a〉L,

where |µ; a〉L are the Schmidt states of ground state |a〉 and

Qµ;a ∈ Z in units where the elementary charge is 1. The

charge Qa of anyon a is given by the charge polarization in

the ground state, which can be expressed as an “entanglement

average” [47]

e2πiQa ≡ e2πi
∑

µ λ
2
µQµ;a . (8)

Qa is defined modulo 1. In the bilayer systems with U(1) ×
U(1) symmetry we can apply the measurement for both layers

to get two charges.

Rotating the cylinder can also be viewed as a U(1) charge,

whose generator is the momentum K̂. Its eigenvaluesKa can

be combined with certain analytically calculable properties of

the Landau levels to recover the Berry phase for an adiabatic

Dehn twist (modular transformation). Similar to the charge,

FQH Phase
Ground-state

degeneracy
S

Spin-charge

separation
c−

(330) 9 3 2

(112) 3 1 0

1/3 3 0 0

Z4 Read-Rezayi [56] 15 3 2

Interlayer-Pfaffian [49] 9 3 X 5/2

Bonderson-Slingerland [52] 9 4 X 5/2

Intralayer-Pfaffian [50] 27 3 X 3

Bilayer Fibonacci [55] 6 3 14/5

TABLE I. Possible candidate states at ν = 1/3 + 1/3 and their

observed properties. We call a phase “spin-charge separated” if one

can consistently assign charge/spin to the excitations, with one such

excitation having neutral charge and pseudo-spin ±1/2 (see Sec. V).

the resulting phase Ta = exp(2πiMa) may be computed from

an entanglement average:

Ma =
∑

µ

λ2µKµ;a + analytic terms. (9)

Ma is the “momentum polarization”, scaling as [47, 101]

Ma = − νS

(4πℓB)2
L2 + ha −

c−
24

+O(e−L/ξ̃) (mod 1).

(10)

Here S is the shift, ha is the topological spin of anyon a, and

c− is the chiral central charge of the edge.

The shift S [105] is an constant mismatch between the num-

ber of fluxNΦ and electronsNe required to realize the ground

state of the phase on the sphere, NΦ = Ne/ν − S, and plays

a particularly important role in our analysis. For the (330),

(112), 1/3 states and the interlayer-Pfaffian (introduced in

Sec. V below) the shift takes values S = 3, 1, 0, 3 respectively

(see Tab. I), so distinguishes most of the phases. Because S in

these cases is an integer and the dominant contribution to Ma,

it converges very quickly and is far easier to measure than ha,

c− or da.

IV. ABELIAN PHASE DIAGRAM

In this Section we study the ν = 1/3+1/3 QHB system as

a function of experimentally relevant parameters: interlayer

separation (d), tunneling (∆SAS), and layer width (w). We

determine the phase diagram using the topological characteri-

zation explained in Sec. III C, and find three different Abelian

phases [41]: decoupled ν = 1/3 bilayers (330) or the bilayer

Laughlin phase, a bilayer-SU(2) symmetric spin-singlet hier-

archy state (112), and a transversely polarized particle-hole

conjugate of the Laughlin state 1/3.

Fig. 1 shows the phase diagram at well width w = 0 and

cylinder circumference L = 14 (which is used to all data in

this section). Phase boundaries were determined at the points

marked in black; these points were found by performing simu-

lations in sweeps, changing either d or ∆SAS, and plotting the
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results. We find points where the correlation length and entan-

glement entropy have either discrete jumps or peaks, and we

claim that these points are the phase transitions. The upper

panels of Figs. 4, 5 and 6 show examples of the correlation

length data used to determine the locations of these transi-

tions. The dashed lines in Fig. 1 show the sweeps where these

data were taken. We note that the region in the vicinity of

the tentative triple point is somewhat difficult to resolve, but

we have have not found any evidence for additional phases.

The three Abelian phases can be intuitively understood in the

following limiting cases.

First, when ∆SAS is small and d is large the two layers inter-

act only weakly, and we have two decoupled Laughlin states.

Second, when ∆SAS is extremely large the single particle or-

bitals are superpositions of both layers. Both symmetric and

antisymmetric superpositions are possible, but when ∆SAS is

very large the antisymmetric superpositions are energetically

forbidden (the energy difference between the two states is

∆SAS), so we can view the system as a single quantum well

with ν = 2/3, whose ground state is the particle-hole conju-

gate of the Laughlin 1/3 state, which we call the 1/3 state.

This state is particularly natural at d = 0, where the system

is equivalent to a single layer with spin: the tunneling term

is a Zeeman field which spin-polarizes the system along the

transverse direction.

Third, when d = 0 and ∆SAS = 0 the system is equivalent

to a single-layer system with spin that has full SU(2) symme-

try. The ground state is a (112) state [25, 41, 45].

The attentive reader might note that, topologically, the

(112) and 1/3 phases are actually the same phase, in the sense

that their K matrices are related by an SL(2,Z) transforma-

tion. However, in the presence of rotational symmetry these

phases have a different shift S, and so they are not the same

phase. One may be concerned that in an experiment disorder

will break the rotational symmetry and allow the (112) and

1/3 state to be continuously connected, but this is in fact not

the case, as this transition has been seen experimentally both

in wide quantum wells [39], and in single-layer systems with

spin [106].

A. Determination of the phases

We have determined the phases by using the entanglement

invariants discussed in Sec. III C. First, we measure the mo-

mentum polarization Ma in order to compute the shift S,

which should take the values 3, 1 and 0 in the (330), (112)

and 1/3 state, respectively. Fig. 2 shows the momentum po-

larization at three representative points in the phase diagram.

We plot Ma as a function of L2, so by Eq. (10) we should get

straight lines with a slope proportional to S. The green line

(330) was taken at d = 1.6, ∆SAS = 0, giving S ≈ 3; the red

line (112) was taken at d = 0.2, ∆SAS = 0, giving S ≈ 1; the

blue line 1/3 was taken at d = 2, ∆SAS = 0.1, giving S ≈ 0.

All of these values match those predicted for the appropriate

phase.

Fig. 3 shows entanglement spectra for the same points as
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FIG. 2. (Color online) Momentum polarization Ma for the represen-

tative points from the phases in Fig. 1, plotted against ν

(4πℓB)2
L2.

The coefficient of proportionality is the shift S, which we can read

off to be 3, 1 and 0 for the (330), (112) and 1/3 phase respectively,

as expected. Data was taken at d = 1.6, ∆SAS = 0; d = 0.2,

∆SAS = 0; and d = 2, ∆SAS = 0.1 for the (330), (112) and 1/3
phases, respectively. Values for the shift obtained from fitting the

data are shown directly on the figure.
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FIG. 3. (Color online) Entanglement spectra for the phases in Fig. 1:

the (330) state, with counting of 1, 2, 5, . . . dispersing to the right;

the 1/3 state, with counting 1, 1, 2, . . . dispersing to the left; the

(112) state, which has an non-chiral spectra (being a convolution

of a left and right mover). These results are in agreement with the

predicted values for these phases.

those shown in Fig. 2. The counting and chirality of the

low-lying entanglement spectra are unique to each phase, and

as elaborated in Fig. 3 we find spectra consistent with each

phase.

The phase diagram in Fig. 1 was taken using an infinite

cylinder with a circumferenceL = 14. To assess the finite size

effects, we have measured the behavior of select cuts along

the phase boundaries for L = 12–16. We found that the lo-

cation of the (112) → (330) transition changes with system
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size by d < 0.02. The (330) → 1/3 and (112) → 1/3 tran-

sitions do move to smaller ∆SAS at larger L, with a change

from L : 12 → 16 of about 0.003. While the transition may

continue shifting to slightly smaller ∆SAS as L is further in-

creased, at large d the change is small on the scale of the full

phase diagram.

At smaller d, the critical value of ∆SAS is fairly small at

L = 14 and so we may be concerned that in the thermody-

namic limit it is actually zero. We can test this at d = 0
by exploiting the fact that tunneling acts as a simple Zeeman

field in the spin realization, so the energetics can be fully de-

termined by the energy difference between the (112) and 1/3
phases at d = 0, ∆SAS = 0. Using the additional symmetries

at this point we can perform accurate finite-size scaling to ex-

tract the energy difference in the thermodynamic limit, and

we find that the transition occurs at ∆SAS ≈ 0.018. There-

fore at least at small d, it appears that we have reached large

enough sizes so that finite size effects do not change the loca-

tion of the phase transition. Note that this system is formally

equivalent to a ν = 2/3 system with spin, and our value for

the energy difference matches the numerical literature for the

spin-polarization transition in that system.[107]

We have also assessed the sensitivity to layer width w for

select cuts through the phase boundary. In the upper panels

of Figs. 5 and 6, we used dashed lines to show the correlation

lengths at finite widths. We see that a finite layer width shifts

the location of the (112) : (330) transition to larger d, while

the (330) : 1/3 transition is shifted to smaller ∆SAS. Atw = 1
the boundaries have changed by about 10% compared to w =
0, so we don’t expect any qualitative differences in the phase

diagram.

Naturally there are many differences between the system

we are studying numerically and those which are studied in

experiments. In addition to the finite-size effects and our sim-

plified treatment of layer width, we also neglect other fac-

tors including Landau level mixing and disorder. One can

therefore ask how relevant our data is to experiments, par-

ticularly as to the quantitative locations of the phase transi-

tions shown in Fig. 1. One way to address this is to compare

to the experimental data which already exists. Ref. 46 stud-

ied the (330) : 1/3 transition and found it at approximately

d = 2, ∆SAS = 0.1. The location of their observed transition

is shown in Fig. 1. We obtain ∆SAS ≈ 0.07, and this gives us

reason to believe that our data can be used as a guideline for

future experiments.

B. Order of the transitions

The large system sizes accessible to our DMRG simulations

allow us to assess the nature of the various phase transitions

in Fig. 1. We find strong evidence that the (330) : 1/3 and

(112) : 1/3 transitions are first order. The (330) : (112) tran-

sition appears to be very weakly first order, though we cannot

definitely rule out a continuous transition. To determine the

order of the transition we check for discontinuities in ∂gE,

where g = ∆SAS, d tunes across the transition, as well as for
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FIG. 4. (Color online) Data as a function of tunneling strength, cross-

ing the (112) : 1/3 transition. The correlation length is flat except

very close to the transition, where it is discontinuous. There is also

a kink in the energy and in g̃. This is all consistent with a first-order

transition.

divergences in the correlation length and discontinuities in lo-

cal observables.

The upper panel of Fig. 4 shows the (112) : 1/3 transition,

at which the correlation length jumps discontinuously while

remaining finite, indicating a strongly first-order transition. In

the upper panels of Figs. 5 and 6 we show correlation lengths

for (330) : 1/3 and (330) : (112) transitions. The correla-

tion length peaks as the transition is approached, suggesting

either a continuous or weakly first order transition. A contin-

uous transition would be gapless, generating a large amount

of entanglement which cannot be efficiently represented by

an MPS; finite χ effects then cutoff the divergent ξ. Con-

sequently we would expect a strong dependence of ξ on the

MPS bond dimension χ. The different colored lines in the fig-

ure correspond to increasing χ, and we see that ξ increases

with χ, which could be consistent with a continuous transi-

tion. However, a similar effect could be seen at a weakly first-

order transition if χ is not large enough to capture the state.
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FIG. 5. (Color online) Data as a function of tunneling strength, cross-

ing the (330) : 1/3 transition. The correlation length has a peak near

the transition, but this is consistent with both a first and second order

transition. The middle panel shows the energy for both the (330) and

1/3 phases (see text), and as these lines are not parallel the systems

energy has a kink. There is also a jump in g(r = 0), consistent with

a first-order transition.

Therefore we need other ways to determine the order of these

transitions.

Another approach is to look at behavior of the energy at

the transition point. For a first-order transition, we expect a

kink in the energy, while for a continuous transition we expect

the energy to vary smoothly. The middle panels of Figs. 4,

5 and 6 show the energies near these transitions. The first

order (112) : 1/3 transition has a clear kink in the energy.

The (330) : 1/3 transition also appears of have a kink. The
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FIG. 6. (Color online) Data as a function of interlayer separation,

crossing the (330) : (112) transition. The correlation length has a

peak, while the energy has a kink and the g(r = 0) are jumps across

the transition. This is indicative of a first order transition, though the

transition is weaker compared to the others in the phase diagram.

system also exhibits hysteresis for both the (112) : 1/3 and

(330) : 1/3 transitions: if we initialize the system in the 1/3
phase it will stay in that phase even if ∆SAS is below its critical

value. This is of course expected in a first order transition, and

in the middle plot of Fig. 5 we plot two separate lines, which

are the energy of the (330) and 1/3 phases (the actual energy

of the system is whichever of these energies is lower). We

can see that these lines are not parallel, which clearly shows

that there is a kink in the system’s energy and therefore the

transition is first order. At the (330) : (112) transition we

find a very weak kink, so we tentatively conclude all three

transitions are first order.

It is also useful to look at the behavior of local correla-

tions, such as the real space density-density correlation be-

tween electrons in different layers:

g(r) = 〈n↑(r)n↓(0)〉 − 〈n↑(r)〉 〈n↓(0)〉 , (11)

where nµ(r) was defined in Eq. (2). In the (330) phase, the
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layers are uncorrelated, and this quantity should be approxi-

mately zero. In the other phases, at small r the electrons repel

and so g(r) should be negative. We can also look at the same

correlation function in orbital space instead of real space:

g̃(m) = 〈n↑
mn

↓
0〉 − 〈n↑

m〉 〈n↓
0〉 ,

nµm ≡ cµm
†cµm.

(12)

Form = 0, this quantity will be negative in the 1/3 phase, but

it will be small in the other phases. When the above quantities

have different values on either side of a phase transition, we

expect them to jump discontinuously for a first-order transi-

tion and to vary continuously for a second-order transition.

We plot these quantities in the bottom panels of Figs. 4, 5

and 6, and see discrete jumps in all cases. Based on the re-

sults of this section we can claim that all the transitions in the

diagram are first order, with the strongest first order transition

being the (112) : 1/3 transition. The (330) : (112) transition

has only a slight kink in the energy and the jump in g(r) is

smaller than the other transitions, so this is the weakest first

order transition in the diagram.

In Ref. 85, four experimental sweeps in our phase diagram

were performed. Two of these sweeps had small ∆SAS, and

had d ≈ 1.4−2.8. These sweeps found a ν = 2/3 state which

we take to be the (330) state at large d, but below d ≈ 1.8 they

find no QH state. We believe that this is because their exper-

iments were taken at layer width w/ℓB ≈ 2, which would

move the (330) : (112) transition to larger d, putting it near

where they observe the vanishing QH state. Furthermore, we

have found that the (330) : (112) transition is weakly first-

order, implying that at the transition there is a small energy

gap. We surmise that the quantum Hall state is not observed

in experiment because the gap is very small near the transition,

and so the transition point is being smeared by finite tempera-

ture and disorder effects.

C. Spin polarization

In addition to the bilayer degree of freedom electrons carry

spin, resulting in a four-component system. Thus far we have

assumed the spin is polarized by the external magnetic field,

an assumption we can test with our simulations.

The spin-polarized 1/3 phase at d = 0, w = 0 and large

∆SAS is essentially a one-component system with filling 2/3,

while the competing spin-unpolarized state is a two compo-

nent (spin) system with each component having filling 1/3.

The spin-unpolarized case has a lower Coulomb energy pro-

portional to ℓ−1
B ∝ B1/2 (this is why we find (112) in the

equivalent bilayer problem), while the spin-polarized state

gains a Zeeman energy proportional to the applied fieldB. For

systems at fixed ν = 2/3, for a small perpendicular magnetic

field (and proportionally small density), the system will be in

a spin-unpolarized state, while for large magnetic field (and

density) the system will spin polarize. The spin base case been

studied both numerically [107] and experimentally [106], but

the results to not agree, with the numerics predicting a critical

magnetic field of ≈ 11T and experiments measuring ≈ 3T.

FIG. 7. Phase diagram as a function of interlayer separation d and

the modification of the Haldane potential δV0. We find that as −δV0

is increased, a new phase appears which we believe is a bilayer-spin

charge separated non-Abelian phase. Data is taken with zero tunnel-

ing ∆SAS = 0 and layer width w = 0.

It has been proposed that the difference between these values

is due to the finite layer width of the samples [106]. We are

in a position to confirm this, and indeed we find that increas-

ing the layer width does decrease the critical magnetic field,

with a layer width of ≈ 5 magnetic lengths being sufficient

to bring experiment and simulation into agreement. Thus, in

context to the bilayer set up, whether the 1/3 state is com-

pletely spin-polarized will depend on the bilayer separation

(d) and the strength of the magnetic field.

For the bilayer-(112) point at d = 0, w = 0 we compute the

energy of an SU(4) symmetric four-component system (bi-

layer + spin) with each component having filling 1/6. The

resulting state is gapless, which means that our DMRG per-

forms poorly and we can only obtain a rough estimate for the

energy. However, it appears that the magnetic field required

to spin-polarize the system is approximately an order of mag-

nitude less than that required to polarize the 1/3 phase, so this

phase should be spin-polarized even at small magnetic fields.

In the large-d (330) phase, the problem reduces to decou-

pled layers, and it is well known that ν = 1/3 system spin-

spin polarizes, so we expect this will remain true for all d into

the (112) phase.

Also note that experimental studies [46, 85] on this sys-

tem have observed a spin-polarized system at all the tunnel-

ing strengths and interlayer separations accessed, for magnetic

fields B ≈ 4–11T.

V. NON-ABELIAN PHASE

In addition to the Abelian phases shown in Fig. 1, a num-

ber of non-Abelian candidates have been proposed to appear

in the 1/3 + 1/3 system. These include the Z4 Read-Rezayi

state [56], the “interlayer-Pfaffian” (iPf) [49] and “intralayer-

Pfaffian” states [50], and the bilayer Fibonacci state [55].
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While we find no signature of these non-Abelian phases when

restricting to the lowest Landau level and tuning the param-

eters d, w, and ∆SAS, experimental samples certainly con-

tain further tuning parameters we have neglected. To account

for those, we have further perturbed the model with Haldane

pseudopotentials V0 and V1. Remarkably, we find that a mod-

ification of the interlayer interaction, either through an attrac-

tive hard core −δV0 or repulsive hollow-core δV1, is sufficient

to drive the system into a non-Abelian phase over a range of

layer separations d. In Fig. 7 we show the phase diagram at

fixed ∆SAS = 0, w = 0, as we scan d and the interlayer per-

turbation −δV0. We find that for all interlayer separations d
it is possible to reduce V0 enough to reach a new phase. This

phase is robust against adding non-zero ∆SAS and is consis-

tent with the interlayer-Pfaffian (iPf) state, the evidence for

which we present in this section.

Fig. 8 shows a plot of correlation length and energy as a

function of δV0 for d = 0.5. There is clearly a peak in the

correlation length and a kink in the energy at δV0 ≈ 0.16,

indicative of a first-order phase transition. The other points

in Fig. 7 were determined from similar data. As −δV0 is in-

creased much further, we see that the correlation length con-

tinuously increases, and eventually the iDMRG becomes un-

stable [shaded area in Fig. 7]. Based on small systems studied

by ED, in this regime we expect a strongly-paired phase where

electrons form tightly bound pairs in real space [14, 24]. Upon

even further increase of −δV0 [not shown in Fig. 7], using ED

we find symmetry-broken, CDW and clustered phases [108].

In the new intermediate δV0 phase the iDMRG finds two

nearly-degenerate ground states which we label |Ω1〉 and

|Ω2〉. These states in fact triple the unit cell along the cylin-

der, so by translating |Ω1〉 , |Ω2〉 we know there are at least

six ground states in total. This must be understood as a lower

bound on the degeneracy, as there is no general way to guar-

antee iDMRG finds all possible ground states.

Our evidence for identifying the novel phase with the iPf is

five-fold.

1. The shift is S = 3, as determined by the momentum

polarization.

2. From the ground state |Ω2〉 we deduce there is a anyonic

excitation that carries pseudo-spin ± 1
2

yet is charge

neutral. Hence the phase is “spin-charge separated”,

and we call this excitation the spinon.

3. The spinon excitation is non-Abelian, with quantum di-

mension dΩ2 ≈ 1.4 consistent with the iPf but not the

intralayer-Pfaffian.

4. The momentum polarization of the two ground states

differ by hΩ2 − hΩ1 ≈ −0.21, which corresponds to

the difference in the topological spins of the associated

anyons.

5. The ground states exhibit a purely chiral entanglement

spectra with counting that varies with charge sector.

A summary of the possible candidates is listed in Tab. I

These observations eliminate all other known candidates for

the 1/3 + 1/3 system. In the following Sections, we give
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FIG. 8. (Color online) Correlation length and energy for the spin-

charge separated state as a function of δV0 for d = 0.5, showing

a clear first-order transition at δV0 ≈ 0.16. Note that correlation

length increases rapidly as V0 is made further negative.

a brief description of the iPf phase (Sec. V A), compute over-

laps against the model wavefunction using ED (Sec. V B), and

present evidence for spin-charge separation (Sec. V C) and

non-Abelian statistics (Sec. V D).

A. The interlayer-Pfaffian state

The iPf phase was first introduced and extensively dis-

cussed in Ref. 49, and coined the interlayer-Pfaffian in

Ref. 50. Similar to the Moore-Read phase relevant at ν = 5/2,

the interlayer-Pfaffian has non-Abelian Ising anyon excita-

tions, which behave like unpaired Majorana zero modes. But

the iPf phase is even more interesting than the Moore-Read

phase as it is “spin-charge separated”. Here we treat the two

layers as an effective spin system and label them as ↑ and

↓. The total charge is the sum Q = Q↑ + Q↓ while the

“pseudo-spin” is the difference Sz = 1
2
(Q↑ − Q↓). The lo-

cal excitations are built up from neutral excitons and elec-

trons. The neutral bilayer-excitons have Q = 0 and carry

integral Sz = 0,±1,±2, . . . , while the Q = 1 electrons

carry Sz = ± 1
2

. Thus local excitations obey the relation

Q ≡ 2Sz (mod 2), “locking” spin and charge together. In

the iPf phase the electron can fractionalize into a neutral non-

Abelian “spinon” carrying Q = 0, Sz = 1
2

and three non-

Abelian “chargons” carrying Q = 1
3
, Sz = 0. Thus when in-

cluding fractional excitations there are no constraints between
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charge and spin.

A representative (model) wavefunction for the iPf phase is

given by [49]

Ψ({z}, {w}) = Pf

(

1

xi − xj

)

Ψ221({z}, {w}). (13)

Here {z} and {w} denote complex 2D coordinates of elec-

trons in two layers, while {x} = {z, w} stands for coordinates

of all electrons, regardless of their layer index. The (221) state

is defined as

Ψ221 =
∏

a<b

(za − zb)
2
∏

a<b

(wa − wb)
2
∏

a,b

(za − wb)

× e−
1
4

∑
a |za|

2

e−
1
4

∑
a |wa|

2

. (14)

There are nine anyon types in the iPf phase, which break

up into three sets of three. Three of these anyons are over-

all charge neutral and form the Ising theory: the trivial sector

1, a neutral fermion ψ which carries fermion parity but no

charge, and the non-Abelian spinon excitation φs, which car-

ries pseudo-spin Sz = ± 1
2

but no charge [109]. In addition,

threading 2π flux quanta induces a chargeQ = 1
3
+ 1

3
Abelian

anyon we denote by Φ. The fusion rules are

φs × ψ = φs, φs × φs = 1+ ψ, Φ3 = 1. (15)

By combining fluxes Φ with the Ising sector, we obtain the

nine anyon types:

chargeQ

0 2
3

4
3

sp
in
S
z

0 1 Φ Φ2

0 ψ ψΦ ψΦ2

1
2
φs φsΦ φsΦ

2

(16)

Corresponding to the nine anyon types we should obtain

nine degenerate ground states on the torus or an infinite cylin-

der. Using the 3-body parent Hamiltonian [110, 111] for the

model wavefunction in Eq. (13), we have verified this is in-

deed the case on the torus. By performing exact diagonaliza-

tion of this Hamiltonian, we find three ground states with zero

momentum, each being 3-fold degenerate due to center-of-

mass translations (i.e., inserting Φ), which yields nine ground

states in total.

In the “thin-torus” limit [112–114] the cylinder is effec-

tively a one-dimensional spin-full fermion chain, the ground

states reduce to the “root configurations”.

|1〉 : |· · · 0 2 0 0 2 0 0 2 0 · · ·〉 , (17a)

|ψ〉 : |· · · ↑ 0 ↓ ↑ 0 ↓ ↑ 0 ↓ · · ·〉 , (17b)

|φs〉 : |· · · ↑ 0 ↓↑ 0 ↓↑ 0 ↓ · · ·〉 . (17c)

Here a 2/0 denotes a doubly occupied/empty site, and the

bracket ↑↓ = (↑↓ − ↓↑)/
√
2 denotes electrons placed in a

spin-singlet. We have verified the thin torus wavefunctions by

performing exact diagonalization of the model Hamiltonian in

the thin-torus limit [115].
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FIG. 9. (Color online) Overlap between the iPf state and the ground

state of Coulomb interaction with modified short-range pseudopoten-

tials from ED. The system contains 8 electrons and 12 flux quanta,

on a torus with a hexagonal unit cell. The color scale indicates the

sum of singular values of the 3 × 3 overlap matrix defined in the

main text. (a) The interaction is varied by changing d/ℓB and adding

δV0 pseudopotential. (b) The interaction is varied by changing d/ℓB
and adding δV1 pseudopotential. The same amount of δV1 is added

to both intralayer and interlayer Coulomb. (c) The effect of varying

both V0 and V1 at fixed bilayer distance d = 1.5ℓB . Note that the

iPf phase is located in the narrow red strip, and can be stabilized by

either the reduction in V0 (a), the increase in V1 (b), or increase of

both δV0 and δV1 (c).

B. Exact-diagonalization overlaps

In small systems accessible by ED, the overlap with iPf

model wavefunction becomes large in the novel phase iden-

tified in Fig. 7. For small systems up to 10 particles, we can

obtain the complete set of exact ground states on the torus cor-

responding to Eq. 13, and overlap those with the same num-

ber of lowest states of the Coulomb interaction (possibly with

some short-range pseudopotentials added). This defines an

overlap matrix. The sum of singular values of the overlap ma-

trix can serve as a rough indicator if the system is in the iPf

phase or not. For example, singular values close to zero would

indicate the system being far from the iPf phase. In a finite

system, singular values that can be considered “non-zero” are

those larger than 1/
√
dimH, where dimH is the dimension

of the Hilbert space. Note that because of the invariance under

the center-of-mass translation, it is sufficient to restrict only to

the three ground states with momentum equal to zero, i.e., we

obtain a 3× 3 overlap matrix.

Fig. 9 summarizes the effect of varying short-range V0 and

V1 components of the Coulomb interactions inferred from the

overlap of the ground state (obtained by ED) and the model

wavefunction, Eq. (13). We plot the sum of singular values
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of the overlap matrix between the exact ground state of the

Coulomb interaction (with modified short-range components)

and the iPf state. In Fig. 9(a),(b) we vary the bilayer distance

d and add V0 (a) or V1 pseudopotential (b) to the Coulomb in-

teraction. The system contains 8 electrons and 12 flux quanta

on a torus with a hexagonal unit cell. We first note that the

largest value of the overlap occurs in the narrow red strip, cor-

responding to intermediate values of d and the reduction of

V0 or, conversely, the increase of V1. The non-zero overlap in

this region suggests that the system is in the iPf phase. The

ED result in Fig. 9(a) can be directly compared with the phase

diagram obtained by DMRG in Fig. 7. We note that the vari-

ation δV1 in Fig. 9(b) assumes adding the same amount of

δV1 to both intralayer and interlayer Coulomb pseudopoten-

tial. Another possibility is to add δV1 to interlayer Coulomb

only. This yields a qualitatively similar result to Fig. 9(b) but

with somewhat stronger finite-size effects.

Finally, in Fig. 9(c) we consider a combined effect of simul-

taneously varying V0 and V1. The starting point is Coulomb

interaction at fixed bilayer distance d = 1.5 in the (330) phase.

In this case we find the iPf phase to be stabilized for positive

δV0 as well as positive δV1. Note that the largest overlap (i.e.,

sum of singular values of the overlap matrix) is roughly the

same in all cases shown in Fig. 9. Although the magnitude of

the overlap with the iPf is significant, it is relatively moderate

(at maximum 1.8 compared to the “perfect” value of 3). The

reason for this is the difficulty in fully resolving the complete

set of iPf ground states in small finite systems. For example,

finding only two out of three ground states will significantly

reduce the overlaps in Fig. 9. This is responsible for small

overlaps in at least part of the green region in Fig. 9, and leads

to a somewhat narrower iPf phase compared to the DMRG

result in Fig. 7.

C. Spin-charge separation

We now demonstrate how we can extract the charges

(Q,Sz) of an anyon a from entanglement spectrum of its as-

sociated ground state |a〉. Partition the cylinder with a cut

along the circumference into “left” and “right” semi-infinite

halves. Each left Schmidt state |β; a〉 of the MES |a〉 has

quantum numbers Q
↑/↓
β;a . By coarse graining the Schmidt

spectrum λβ;a over quantum-number sectors, we can look at

the probability distribution Pa for charge QL or spin SzL to

fluctuate to the left of the cut:

1 =
∑

QL,Sz
L

Pa(QL, S
z
L), (18a)

〈Q̂L〉a =
∑

QL,Sz
L

Pa(QL, S
z
L)QL, (18b)

〈ŜzL〉a =
∑

QL,Sz
L

Pa(QL, S
z
L)S

z
L. (18c)

The first equation expresses normalization. The “entangle-

ment averages” in the second and third equation determine the

charge and pseudo-spin of the anyon a (modulo local excita-

tions). In Fig. 10, we have plotted this probability distribution
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FIG. 10. (Color online) Entanglement of for spin-charge separation

in the non-Abelian phase. We plot the probability Pa(QL, S
z
L) for

charges QL, S
z
L to fluctuate to the left of the cut in ground states

a = Ω1/Ω2. The center of this distribution gives the charge and spin

of the anyon associated with the ground state. We see that ground

state Ω1 corresponds to a quasiparticle with Sz = 0 and Q = 0,

consistent with either the 1 or ψ sector; in the other ground state

there is a quasiparticle with Sz = 1/2 and Q = 0, consistent with

the φs sector.

in the spin-charge plane for the states |Ω1〉, |Ω2〉 (for cylin-

ders with circumference L = 14). Intuitively the |Ω1〉 has a

probability distribution associated with a completely neutral

object, plus some number of electrons; in contrast |Ω2〉 has a

probability distribution associated with a Q = 0, Sz = ± 1
2

object, plus some number of electrons. The anyon associated

with the latter ground state is what we identify with the spinon

(φs).
Referring to the thin-torus wavefunctions of Eq. (17c), we

indeed see that the symmetric entanglement cut in the φs
sector splits a singlet, leading to the two-fold degenerate

Pσ(QL, S
z
L) just discussed.

Our interpretation can be made rigorous by viewing the

cylinder wavefunction as a 1D fermion chain and appealing

to the theory of 1D symmetry-protected topological (SPT)

phases. The internal symmetry group of the bilayer is G =
(U(1) × U(1)) ⋊ Z2, coming from particle conservation in

each layer and the interchange of the two layers. In addition,

there is a 180-degree inversion symmetry I, which we de-

note by Z
I
2 . As discussed in Sec. III C, the global symmetry

group can be restricted to the left half of the system in or-

der to determine how it acts on left Schmidt states. In a 1D

symmetry-protected topological (SPT) phases, the symmetry

G may be represented projectively on the Schmidt states. The

classification of 1D-SPT phases is given by the distinct pos-

sible projective representations, which are in turned classified

by the second group cohomology classes [116]:

1D G-symm. phases ↔ elements of H2
(

G,U(1)
)

. (19)

For our symmetry the group cohomology contains a particular

Z2 component we identify with spin-charge-separation:

Z2 ∈ H2
(

(U(1)
2
⋊ Z2)× Z

I
2 ,U(1)

I)
. (20)
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Here, U(1)
I

denotes that there is “G-action”, since the inver-

sion I acts on the coefficients via complex conjugation. We

identify the two phases classified by this Z2 with trivial and

spin-charge separated.

We will identify the Z2 invariant by examining how the

symmetry relations are realized projectively on the Schmidt

states. Following established techniques [116–118], let UI

denote the action of inversion and Uθ↑/↓ the U(1) symme-

tries of the upper/lower layer when acting on Schmidt states.

A priori, these U have U(1) phase ambiguities, which we

will gauge fix as follows. We first choose a gauge in which

UθσUθ′σ = Uθσ+θ′σ for θσ + θ′σ ∈ [0, 2π), which fixes Uθσ up

to a single U(1) ambiguity Uθσ → Uθσe
iθσmσ for some mσ .

Next, we further gauge-fix Uθσ by requiring that

UIU
∗
θσ = UθσUI . (21)

This fully fixes the gauge of Uθσ .

Combining the group relations U2πσ ∝ 1 with the gauge

choice established by Eq. (21), we find Z2 invariants

U2πσ ≡ Pσ = ±1. (22)

Because of the Z2 bilayer symmetry, we must have P↑ = P↓.

Thus we find two possibilities:

(P↑, P↓) = (+1,+1) (trivial) (23)

(P↑, P↓) = (−1,−1) (spin-charge separated) (24)

The physical interpretation is as follows. In the spin-charge

separated scenario, 2Sz + 1 = Q mod 2, or equivalently

Q↑ − Q↓ + 1 = Q↑ + Q↓ mod 2. It follows that 1
2
= Q↓

mod 1 and 1
2
= Q↑ mod 1. The half-integral nature of Qσ

is revealed in the entanglement spectrum via the projective re-

lation U2πσ = e2πiQσ = Pσ = −1. Thus Pσ = −1 is a quan-

tized signature of spin-charge separation. Each anyon in the

system has a Pσ , and they must obey the fusion rules. Based

on Fig. 10 we assign Pσ(1) = 1, Pσ(ψ) = 1, Pσ(φs) = −1,

which is clearly consistent with the fusion rules in Eq. (15).

Also note that having an anyon with Pσ = −1 is inconsistent

with some fusion rules, in particular it is inconsistent with the

fusion rules for the Fibonacci phase.

We have explicitly checked the symmetry properties of the

Schmidt states to verify that the MES |φs〉 has non-trivial 1D-

SPT order underG, while |1〉 and |ψ〉 are trivial, which is why

we identify φs ↔ Ω2. Pictorially, referring back to Fig. 10 we

see that |Ω2〉 has a 2-fold degenerate probability distribution,

which is a tell-tale signature of a 1D-SPT phase.

In summary, we have shown the state has an excitation with

quantum numbers Q = 0, Sz = ± 1
2

, which rules out the

(330), Z4 Read-Rezayi, and Fibonacci phases. In light of this

data, we find that |Ω2〉 is consistent with |φs〉, while |Ω1〉 is

consistent with either |1〉 or |ψ〉. The absence of either the

1-family or ψ-family from our numerics is not terribly trou-

bling, as 1 and ψ have no symmetry properties which distin-

guish them; even a slight energetic splitting of the topological

degeneracy may consistently bias the iDMRG towards the lat-

ter.

The intralayer-Pfaffian also has a Q = 0, Sz = ± 1
2

spinon,

but it can be distinguished from the spinon of the interlayer-

Pfaffian by its quantum dimension.
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FIG. 11. (Color online) Differences in entanglement entropy and

momentum polarization for the two degenerate states as a function

of circumference. Data was taken at a variety of different interlayer

separations, δV0 and δV1. The blue dashed lines show the expected

values for the iPf phase, at Sφs−Sψ = log
√
2 and hφs−hψ = − 3

16
.

D. Non-Abelian signatures

In order to directly confirm the non-Abelian nature of

the novel phase, we measure the quantum dimension of the

spinon. In the iPf phase, the spinon has quantum dimension

dφs =
√
2. In contrast, the intralayer-Pfaffian phase has two

kinds of φs excitations, each of which lives in only the top or

bottom layers. In this phase the observed quasiparticle with

spin-charge separation is a product of a spinon in each layer,

and it therefore has quantum dimension d = 2. Our measure-

ments of the quantum dimension therefore allow us to rule out

the intralayer-Pfaffian.

To make this measurement, we compute the difference

in the entanglement entropy between |Ω1〉 and |Ω2〉. From

Eq. (7) [102, 104],

SΩ2(L)− SΩ1(L) = log(dΩ2/dΩ1) +O(e−L/ξ̃) (25)

from which we obtain the ratio of quantum dimensions

dΩ2
/dΩ1

. Assuming |Ω1〉 corresponds to a Abelian anyon

(dΩ1 = 1), and provided the finite-size effects are small

enough, we extract the quantum dimension of the spin-charge

separated anyon. In Fig. 11 we show the results of this sub-

traction, for L = 12–17, for several different combinations

of d, δV0 and δV1. Finite-size and finite-χ effects introduce

significant systematic errors into our calculation of this quan-

tity, leading to results for ∆S = SΩ2 − SΩ1 which vary from

0.1–0.5 for different measurements. Though this prevents us

from determining the quantum dimension precisely, we can

still say that our results are consistent with dφs =
√
2 (as

shown by the blue dashed line in Fig. 11), and inconsistent

with the intralayer Pfaffian value d = 2 (as shown by the green

dashed line), and the Abelian value of d = 1.

Furthermore, we can use a similar subtraction scheme to

extract the (relative) topological spin of the spinon (Ω2) com-

pared to the neutral (Ω1) via the momentum polarization
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[Eq. (10)]. Taking the difference of the momentum polariza-

tions of the ground states

MΩ2 −MΩ1 = hΩ2 − hΩ1 +O(e−L/ξ̃) (mod 1), (26)

we can extract the difference in topological spin ∆h = hΩ2 −
hΩ1 . As shown in Fig. 11, we get ∆h ≈ −0.21 for a number

of points in phase space. This is consistent with the identifi-

cation Ω1 = ψ, Ω2 = φs, as hφs − hψ = 5
16

− 1
2
= −0.1875

in the iPf phase. We attribute the difference between the ob-

served and expected values to finite-size and finite-χ system-

atic errors. (Note that h1 = 0, and thus we can conclude

Ω1 6= 1.)

Further support for our identification of ground states can

be found in the entanglement spectrum. We first give the the-

oretical orbital entanglement spectra for the ground states of

the iPf phase, which depends on both the ground state |a〉 and

the charge across the entanglement cut. (Note that so far in

this work, we have given the entanglement spectra for only

one value of electric charge crossing the entanglement cut, we

chose the value of charge which has the lowest lying entangle-

ment states. Henceforth we will be explicit about the charges.)

For any of the nine MES and fixed charge (Q,Sz) across the

entanglement cut, the entanglement spectra counting follows

one of three possible sequences.

s1 : 1, 2, 6, 13, . . . ,

sσ : 1, 3, 8, 19, . . . ,

sχ : 1, 3, 8, 18, . . . .

(27)

For state |1〉, the entanglement spectrum follows the s1 se-

quence for even Q, and sχ sequence for odd Q. For state

|ψ〉, the spectrum follows sχ and s1 for even and odd Q re-

spectively. For state |φs〉, the entanglement spectrum always

follows sσ.

We attempt to match up the low-lying states of the ground

states |Ω1〉 and |Ω2〉, shown in Fig. 12 for system size L =
24–26, to those expected for the iPf phase. Typically one

defines the “low-lying” entanglement states as those below

the “entanglement gap”, which is a window devoid of states

as the circumference is increased. In practice, at finite sys-

tem size we observe multiple regions without states which

could be called the entanglement gap, which makes it dif-

ficult to specify which levels should be counted. We have

highlighted in the figures to indicate the presumed counting

of iPf, but in full honesty other assignments are possible.

The left panels shows the entanglement spectra for |Ω1〉, with

(Q,Sz) = (0, 0) (top) and (Q,Sz) = (−1, 1
2
) (bottom). As-

suming states with − log(λ2) < 5 are the low-lying states, we

observe the counting 1, 3, . . . and 1, 2, . . . for the two charge

sectors, respectively. This suggests that |Ω1〉 = |ψ〉, con-

sistent with the momentum polarization data above. On the

right panels, we showed the entanglement spectra for |Ω2〉
(for the same charges), which seem to indicate the counting

1, 3, . . . regardless of charge, also consistent with the identi-

fication |Ω2〉 = |φs〉.
In summary, the well-established spin-charge separation

shown in Fig. 10 rules out all currently proposed wavefunc-
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FIG. 12. (Color online) Entanglement spectra for the putative iPf

state. The left two panels show the entanglement spectra for the |Ω1〉
state, for the charge sectors with the lowest-lying and second lowest-

lying entanglement states, the counting for these states is 1, 3, ... and

1, 2, ..., as expected if |Ω1〉 = |ψ〉. The right panel shows spectra for

the |Ω2〉 state. There are two degenerate charge sectors with lowest

lying states. Here we show one example from each of the two sectors

with the lowest-lying entanglement states, and we find counting of

1, 3, . . . in both, as expected if |Ω2〉 = |φs〉.

tions besides the intralayer-Pfaffian and iPf phase. The entan-

glement properties and the overlaps, though not conclusive,

are incompatible with the intralayer-Pfaffian state, but appear

consistent with the iPf state.

VI. CONCLUSION

In this work, we use iDMRG and exact diagonalization

techniques to study a bilayer quantum Hall system with fill-

ing 1/3 in each layer. We find a phase diagram in terms of

the experimentally accessible parameters: layer separation,

interlayer tunneling, and layer width. We find three different

phases: a phase with decoupled layers, a bilayer-spin singlet

phase, and a bilayer-symmetric phase. We confirm the nature

of these phases and study the transitions between them.

We also explore the phase diagram for Coulomb interaction

with modified short-range components (V0 and V1). We find

a non-Abelian phase over a wide region of parameter space.

This phase has anyons which carry spin 1/2 and no charge.

This observation, coupled with a study of additional entangle-

ment properties and wavefunction overlaps, leads us to con-

clude that the non-Abelian phase is interlayer-Pfaffian. Our

data for the non-Abelian phase is inconsistent with all other
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known non-Abelian candidates. However, it is possible that a

novel non-Abelian state could be constructed that can repro-

duce our results.

Although it is experimentally not feasible to directly mod-

ify a given pseudopotential, there are many realistic ways

to change the Coulomb interaction in a quantum Hall sys-

tem. The simplest one is varying the chemical potential to

place the system in a higher Landau level, effectively at filling

ν = 8/3, where FQHE has been seen [119–121]. More re-

cent sample fabrication techniques also allow to access the

regime of large Landau level mixing (with the mixing pa-

rameter κ & 2 [122, 123]), which is expected to strongly

modify the short-range components of the Coulomb interac-

tion. Finally, tilting the magnetic field or explicitly screening

the Coulomb potential may serve as additional experimental

knobs to probe the non-Abelian physics at ν = 1/3 + 1/3.

Since all of these perturbations can ultimately be expanded in

terms of Vα’s, the phase diagram we find here may be helpful

in guiding future experimental studies towards a realization of

the non-Abelian phase.
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Note added. After the completion of this work we became

aware that other authors have also studied bilayer 1/3 + 1/3
systems. Ref. 124 found results similar to the Abelian section

of the phase diagram, as well as evidence for a the Z4 phase in

the second Landau level. Ref. 125 made similar modifications

to the Haldane pseudopotentials as we did and also found a

non-Abelian phase, though they identify it as being the bilayer

Fibonacci phase.
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