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Dynamical phase transitions can occur in isolated quantum systems that are brought out of
equilibrium by sudden parameter changes. We discuss the characterization of such dynamical phase
transitions based on the statistics of produced excitations. We consider both the O(N) model in
the large N limit and a spin model with long range interactions and show that the dynamical
criticality of their prethermal steady-states manifests most dramatically not in the average number
of excitations but in their higher moments. We argue that the growth of defect fluctuations carries
unique signatures of the dynamical criticality, irrespective of the precise details of the model. Our
theoretical results should be relevant to quantum quench experiments with ultracold bosonic atoms
in optical lattices.
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I. INTRODUCTION

The dynamics of isolated quantum many-body sys-
tems is a subject of interest in many areas of physics
involving cold atomic gases,1 solid state pump and probe
experiments,2 quantum optics,3 heavy ions collisions and
cosmology. A particularly intriguing question in this con-
text is the possible emergence and detection of new dy-
namical critical phenomena appearing in the steady or
quasi-steady states of these systems. In this work, we will
discuss possible experimental consequences of dynami-
cal phase transitions occurring after an abrupt change of
one of the parameters of an isolated quantum system (a
quantum quench). Long times after the quantum quench
a many-body system is expected to either thermalize4,5
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Figure 1: Schematic of the double quantum quench proto-
col. The system is prepared in the disordered (Mott) phase
in a deep optical lattice (a). By reducing the lattice depth,
the system is quenched to the ordered (superfluid) phase and
evolves in time (b). Finally, by rapidly ramping up the op-
tical lattice, the dynamics is frozen and the defect density is
measured (c). In (d) the lattice depth over time is shown.

or in the presence of integrability to relax to the Gen-
eralized Gibbs Ensemble (GGE).6,7 However, even when
thermalization occurs, its dynamics can be highly non-
trivial requiring a two step process through a prether-
mal state;8,9 a phenomenon expected both in low dimen-
sional systems close to integrability10–13 and in high di-
mensional systems close to the mean field limit. These
intermediate states as well as the GGE have the intrigu-
ing feature of supporting non-thermal behavior14,15 and
in certain instances genuine dynamical critical effects, i.e.
critical phenomena in the steady state attained after the
quench.16–21 Examples of prethermalization and dynam-
ical critical behavior were first observed in the dynam-
ics of the Hubbard model,16,17 in a variety of mean field
models,18,19 and field theories20 such as the three dimen-
sional quantum O(N) model in the infinite N limit.21,22

However, the nature of these transitions and how to dis-
tinguish them from thermal critical phenomena both the-
oretically and, most importantly, experimentally is elu-
sive thus far.

In this work, we address these issues and discuss a char-
acterization of dynamical critical phenomena in bosonic
systems based on the full statistics of excitations gener-
ated in a double quantum quench (see Fig. 1). In partic-
ular, we will argue that dynamical phase transitions can
be detected by studying qualitatively how the fluctuations
in the number of excitations grow in time. Alternatively,
they can be characterized by studying quantitatively the
non-analytic behavior of the stationary number of exci-
tations (or higher moments) as a function of the quench
parameter (see Fig. 2). Experiments of this type are feasi-
ble with cold atomic gases, where high resolution optical
imaging techniques give a unique opportunity to study
the dynamics of cold atoms in optical lattices with sin-
gle site resolution,23–25 as demonstrated by recent mea-
surements of the defects produced by ramping a system
across a quantum critical point,24 the first direct measure
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of a string order parameter,26 the detection of light-cone
spreading of correlations,27 and the study of the dynam-
ics of a mobile spin impurity.28

In order to corroborate our claims we will work out in
detail the example of the quantum O(N) model in the
large N limit, which in equilibrium and for N = 2 is in
the same universality class as the Bose-Hubbard model.
The quantum O(N) model is known to display a genuine
dynamical phase transition for large N and dimensions
d > 2. Furthermore, we discuss the infinite range Ising
model to demonstrate that our claims are insensitive to
the precise choice of the model.

A characterization in terms of traditional critical ex-
ponents would suggest that the dynamical transition of
the O(N) model is of the same universality as the corre-
sponding thermal phase transition22. In contrast, the
full statistics of defects clearly differs from the ther-
mal case and characterizes the dynamical criticality:
while the number fluctuations of defects saturate in time
for quenches above the dynamical critical point (i.e.,
quenches to the dynamically disordered phase), they
grow indefinitely for quenches to or below the dynami-
cal critical point (i.e., to the dynamically ordered phase),
see Fig. 2a. Furthermore, observables that saturate as a
function of time display singularities at the dynamical
transition, as shown in Fig. 2b. Finite N corrections are
expected to eventually lead to a saturation of this in-
definite growth and to a smearing of the kinks at times
∝ N . The fate of the dynamical transition when relaxing
the large N constraint is beyond the scope of this work.
However, our results could help to experimentally iden-
tify dynamical criticality in systems for which theoretical
results are currently not available.

The rest of the paper is organized as follows. In Sec.
II A we discuss the appearance of a dynamical phase tran-
sition in the quantum O(N) model and its characteriza-
tion in terms of traditional critical exponents. In Sec.
II B we compute the statistics of excitations generated
in such a model by a double quench protocol as repre-
sented in Fig. 1 and show the emergence of the different
qualitatively behaviors described above. In Sec. III we
discuss the case of the infinite range Ising model, showing
that critical signatures in the statics of the excitations are
not a unique feature of the O(N) model. In Sec. IV we
discuss the one dimensional Bose-Hubbard model, where
no prethermal behavior is expected, showing that in this
case the statistics of excitations unveil the corresponding
dynamical crossover diagram. Section V summarizes and
discusses the results.

II. THE O(N) MODEL

A. Dynamical phase transition

The quantum O(N) model consists of an N compo-
nent real scalar field in d spatial dimensions with quartic
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Figure 2: (a) The quantum noise, i.e. fluctuations, in the
number of defects, shows qualitatively different behavior for
quantum quenches above, to, and below the dynamical phase
transition (DPT). While it saturates for quenches to the
dynamically disordered phase (above the transition), blue
dashed line, it grows logarithmically for quenches to transi-
tion, red solid line, and as a power law for quenches to the dy-
namically ordered phase (below the transition), black dotted
line. In contrast, the number of excitations in the steady state
shows a non-analytic behavior as a function of the quench pa-
rameter at the dynamical critical point (b).

interaction, whose Hamiltonian reads

H =

∫
ddx

2

[(
~Π
)2

+
(
~∇~φ
)2

+ r0

(
~φ
)2

+
λ

12N

(
~φ
)4
]
,

(1)
where [φi(~x),Πj(~x

′)] = iδd(~x − ~x′)δij , with i and j de-
noting different components. Below we will consider the
N →∞ limit (see Ref. 29 for an introduction) where the
model is soluble. In the disordered phase, where 〈φ〉 = 0,
it can be described by a quadratic theory with an effec-
tive mass parameter

r = r0 +
λ

12

∫
k

1√
|~k|2 + r

, (2)

where from now on
∫
k

=
∫ Λ ddk

(2π)d
, and Λ is the ultraviolet

cutoff. The equilibrium critical point is identified by the
condition r = 0, giving r0,c = − λ

12

∫
k

1

|~k|
, which is finite

for d > 1. From Eq. (2) it is also possible to compute the
critical exponent ν, since ξ−1 ∼

√
r, obtaining ν = 1/2

(mean field) for d ≥ 3, and ν = 1
d−1 for 1 < d < 3.

Let us now imagine to prepare the system in the ground
state for r0 = r0,i, corresponding to an effective mass ri
and perform a quench to r0,f . Numerical evidence for
a dynamical transition following a quench of r0 starting
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within the ordered phase has been found in this model in
d = 3.21 Below we will instead consider quenches starting
in the disordered phase,22 look for the dynamical critical
point, i.e., the point at which the asymptotic effective
mass vanishes, and calculate how the full statistics of
excitations evolves in time.

The dynamics of the system can also be described by
an effective quadratic model, but the self-consistently de-
termined effective mass becomes time-dependent and is
given by

r(t) = r0,f +
λ

6

∫
k

〈φ~k(t)φ−~k(t)〉, (3)

where φ represents one of the components of the field.
From now on we will focus on a single component due to
their inherent symmetry. Expanding the field in terms of

the operators a~k and a†~k

φ~k(t) = f~k(t)a~k + f?~k (t)a†
−~k
, (4)

which diagonalize the initial Hamiltonian, i.e. H0 =∫
k
(|~k|2 + r)1/2

(
a†~k
a~k + 1/2

)
, and imposing the Heisen-

berg equation of motions, we find that the functions f~k(t)
have to satisfy the equation

d2f~k(t)

dt2
+
(
|~k|2 + r(t)

)
f~k(t) = 0, (5a)

r(t) = r0,f +
λ

6

∫
k

|f~k(t)|2 (5b)

with initial conditions fk(0) = 1√
2ωk,i

, ḟk(0) = −i
√

ωk,i

2 ,

ωk,i =

√
|~k|2 + ri, which are fixed by the requirement

that a~k and a†~k
diagonalize the initial Hamiltonian.

The numerical integration32 of Eqs. (5) shows that r(t)
always relaxes to a stationary value different from the
equilibrium as a result of the fact that the distribution
of quasiparticles after the quench remains non-thermal,
see appendix A. To predict this stationary value we make
the ansatz that the stationary part of the equal time two-
body Green function is the same as in a free theory (λ =
0) with initial parameter ri and final parameter r? to be
self-consistently determined.30 Following this route, we
obtain

r? = r0,f +
λ

24

∫
k

2|~k|2 + ri + r?

(|~k|2 + r?)

√
|~k|2 + ri

. (6)

A comparison with the exact integration of Eq. (5) shows
that this ansatz gives the correct asymptotic value as long
as r0,f is above or at the dynamical transition, identified
by the condition r? = 0. When r0,f < rc0,f it predicts
a negative value, while the numerical solution for the
asymptotic value is always zero. Using Eq. (6) one ob-
tains

rc0,f = − λ

24

∫
k

2|~k|2 + ri

|~k|2
√
|~k|2 + ri

. (7)
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Figure 3: (Color online) Saturation value of the defect den-
sity N(t → ∞)/V , V = Ld, red solid line, for quenches from
r0,i = 5 to r0,f and λ = 10. N(t → ∞)/V is non-analytic at
the dynamical phase transition, indicated by the thick gray
line. Inset: The first derivative of the asymptotic defect den-

sity− 1
V

dN(t→∞)
dr0,f

exhibits a pronounced kink at the transition.

We notice that rc0,f is finite for d > 2, which thus is the
lower critical dimension of the transition. Furthermore,
rc0,f is always less than r0,c, i.e., always within the zero
temperature ordered phase.

From Eq. (6) it is also possible to derive the behavior
of the asymptotic mass r? for small deviations of r0,f

from the dynamical critical point, δr0,f = r0,f − rc0,f .
For δr0,f > 0 we then have

r? = δr0,f −
λ

6
r?
∫
k

√
|~k|2 + ri

4|~k|2(|~k|2 + r?)
. (8)

For d > 4 the integral is convergent in the limit r? → 0,
so that r? ∼ δr0,f , while for 2 < d < 4 the integral is

the dominant term implying r? ∼ (δr0,f )
2/(d−2)

. This
translates to the behavior of the correlation length in the
stationary state ξ?, since (ξ?)−1 ∼

√
r?. Defining the

exponent ν? as (ξ?)−1 ∼ (δr0,f )
ν?

, we thus have ν? =
1
d−2 for 2 < d < 4 and ν? = 1/2 for d ≥ 4, with d = 4
playing the role of an upper critical dimension.

Apparently the critical properties described above are
similar to that of the finite temperature transition,22

i.e., critical dimensions and exponents are obtained
by a shift up by one dimension as compared to the
corresponding quantum phase transition. However, we
will now show that, contrary to the thermal case, the
dynamical transition leaves strong signatures on the
statistics of excitations produced in the quantum quench.

B. Statistics of excitations and signatures of
critical behaviour

Let us now imagine starting in the disordered phase
and performing a first quench of r0 at or close to, the dy-
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namical critical point (see Fig. 1). We then let the system
evolve for a time t and finally return to r0,i in order to
count the number of excitations generated, and observ-

able described by the operator N̂ =
∫
k
a†~k
a~k

33. This is

definitely a fluctuating quantity characterized by a prob-
ability distribution P (N, t), which equivalently can be
described in terms of the moment generating function

G(s, t) = 〈e−sN̂ 〉t. For the O(N) model in the large N
limit, this quantity can be computed exactly. Indeed,
since the theory is effectively quadratic and the differ-
ent k-modes interacts only through the renormalization
of the mass r(t), we obtain G(s, t) =

∏
~kG~k(s, t) with

G~k(s, t) representing the generating function for a single
mode.

In order to compute G~k(s, t) we first express the time

evolved state |ψ(t)〉~k as a function of a~k and a†~k
. The

starting point is the expansion of the time evolved field
φ~k(t) in the same basis, which can be translated from
Heisenberg to Schrödinger picture by writing

φ~k(0) = f~k(t)ã~k(t) + f?~k (t)ã†
−~k

(t), (9a)

Π~k(0) = ḟ~k(t)ã~k(t) + ḟ?~k (t)ã†
−~k

(t). (9b)

The operators ã~k and ã†
−~k

are defined by the relation

ã~k(t) |ψ(t)〉 = 0, i.e. they annihilate the time evolved
state. At the same time, we know that

φ~k(0) =
1√

2ωk,i

(
a~k + a†

−~k

)
, (10a)

Π~k(0) = i

√
ωk,i

2

(
a†
−~k
− a~k

)
. (10b)

By inverting Eq. (9), taking into account that

f~k(t)ḟ?~k (t) − ḟ~k(t)f?~k (t) = i, and inserting the result into

Eq. (10), one obtains

ã~k(t) = α?~k(t)a~k − β
?
~k
(t)a†

−~k
, (11)

with

α~k(t) = f~k(t)

√
ωk,i

2
+ i

ḟ~k(t)√
2ωk,i

, (12a)

β~k(t) = f~k(t)

√
ωk,i

2
− i

ḟ~k(t)√
2ωk,i

. (12b)

From Eq. (11) and the requirement that ã~k(t) annihilates
the time evolved state, one finally finds

|ψ(t)〉k =
1√
|α~k(t)|

exp

(
β?~k(t)

2α?~k
(t)
a†~k
a†
−~k

)
|0〉 , (13)
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Figure 4: (Color online) (a) Variance per unit volume σ2/V ,
V = Ld, in a log-linear scale for quenches above or at the
dynamical transition, i.e., r0,f ≥ rc0,f in d = 3 for different
values of the predicted asymptotic effective parameter r?, see
Eq. (6). The inset shows ratios of different cumulants Cn(t→
∞) as a function of r?, solid lines, and compares them to the
corresponding equilibrium cumulants at finite temperature,
dashed lines. (b) Variance per unit volume σ2/V in a log-
log scale for quenches below the dynamical transition, i.e.,
r0,f < rc0,f in d = 3. δr0,f = rc0,f − r0,f measures the distance
from the dynamical critical point. In all plots λ = 10 and
ri = 5.

with a~k |0〉 = 0.
Having the expression of the state in terms of a~k and

a†~k
, the computation of Gk(s, t) can be straightforwardly

done, for example using coherent states. We finally get
G(s, t) = exp(−Ldf(s, t)) with

f(s, t) =
1

2

∫
k

log
[
1 + ρk(t)

(
1− e−2s

)]
, (14)

defined for s > −s̄ = 1
2 supk log ρk(t)

1+ρk(t) . Here, L is the

linear size of the system and

ρk(t) = |β~k|
2 = |f~k(t)|2ωk,i

2
+
|ḟ~k(t)|2

2ωk,i
− 1/2, (15)

with k = |~k|. The function ρk, which fully determines the
statistics of the excitations, is obtained from integrating
Eq. (5) and represents the average number of excitations
in each mode.
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Let us now characterize the dynamical critical behav-
ior of the system by studying all the cumulants Cn’s of
the distribution of excitations, using the formula Cn(t) =

(−1)n ∂n

∂sn logG(s, t)|s=0. Below, we present the first two

cumulants, i.e., the average N(t) and the variance σ2(t),
in d = 3 and discuss their characteristic dynamics for
quenches to intermediate values of the bare mass r0,f

which are above, below, or at the dynamical critical
point. For additional data see appendix B.

First of all, it is important to notice that the time evo-
lution of the average and of the variance are qualitatively
different. The former does not display striking features
and saturates for all r0,f in the long time limit. However,
its asymptotic value as a function of r0,f displays non-
analytic behavior at the dynamical critical point, see Fig.
3. We observe similar non-analyticities also in the infinite
range Ising model, as discussed in section III. In con-
trast, the variance exhibits three qualitatively different
behaviors, as schematically introduced in Fig. 2. When
the first quench is at the dynamical critical point, i.e.
r0,f = rc0,f , the variance per unit volume grows logarith-
mically in time t, see Fig. 4a. This should be contrasted
with what one would expect for a free field theory, where
the variance grows linearly in d = 3, see appendix A. A
totally different behavior is observed for quenches below
the dynamical critical point (to the dynamically ordered
phase), i.e. r0,f < rc0,f : in this case the variance grows as
a power law tα with α = 1 in d = 3, Fig. 4b. Finally, for
quenches to an intermediate value of the bare mass above
the dynamical transition (to the dynamically disordered
phase), i.e. r0,f > rc0,f , the variance saturates at a finite
value, Fig. 4a.

The physical motivation to explore higher moments of
the excitations is that they probe the small momentum
modes which inevitably characterize dynamical critical-
ity. More specifically, the statistics of the excitations and
the scaling of all the cumulants for large times t is fully
determined by the scaling of ρk(t) for small k. Indeed
ρk(t) is singular as 1/kγ up to an infrared cutoff shrink-
ing to zero as 1/t. Since the n-th cumulant is given by
a weighted sum of the integrals over k of all the integer
powers of ρk up to n, we can infer that its asymptotic
behavior in t is given by

Cn ∼
∫

1/t

dk kd−1−γn ∼ tγn−d. (16)

Numerical results in d = 3 confirm that, as expected from
the behavior of the variance, γ = 3/2 for quenches to the
critical point and γ = 2 for quenches below the critical
point, while in d = 4 we have γ = 2 and γ = 3 in the two
respective cases.31

Let us now briefly discuss how the above discussed
behavior of the cumulants is affected by the presence of a
finite (but still large) volume V = L3. This scenario can
be described by an infrared cutoff ∼ π/L in the integrals
over the momenta. In this case, the variance does not
grow indefinitely but rather saturates as a function of
time. Therefore, the time dependence observed before
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Figure 5: Long-time saturation value of the first two cumu-
lants for a finite volume as a function of the quench parameter
r0,f . They show signatures of the dynamical phase transition,
indicated by the tick gray solid line.

applies only to the transient. However, there are still
signatures of the dynamical transition in the behavior
of the saturation value as a function of the quench
parameter r0,f , as one may easily ascertain from Fig. 5.

III. INFINITE RANGE ISING MODEL

As stated in the Introduction, we expect the connection
between the statistics of the excitations and dynamical
phase transitions not to be limited to the specific case
of the O(N) model in the large N limit. To corroborate
such a statement, we will briefly discuss here the simpler
case of the infinite range Ising model, which is also known
to display a dynamical phase transition.19

The Hamiltonian of the infinite range Ising model reads

HI = − K

2N

N∑
i,j=1

σzi σ
z
j − λ

∑
i

σxi

= − K

2N
(Sz)2 − λSx

(17)

where Sα =
∑
i σ

α
i and N is the total number of spins.

Differently from the O(N) model studied in the main
text, the statistics of the excitations of this model co-
incides with the statistics of the magnetization, i.e., the
number of spin flips along the z directions. The com-
putation can be readily done, assuming that the initial
state is a coherent state (and so is its subsequent time
evolution),

|θ, ϕ〉 = e
1
2 θe

iϕS−− 1
2 θe

−iϕS+ |N/2〉. (18)

From this we obtain for the generating function

G(s) = 〈θ, ϕ|e−sS
z

|θ, ϕ〉 = esN/2
(
e−s + |z|2

1 + |z|2

)N
. (19)
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Figure 6: First two cumulants of the time average statistics of
the magnetization as a function of the final quench parameter
λf starting from the ground state at λi = 0.1.

The final step is to obtain differential equations for the
parameters θ(t) and φ(t), which can be achieved starting
from the Bloch equations for the spin operators, taking
averages 〈SiSj〉 ' 〈Si〉〈Sj〉, and using the parametriza-
tion Sz = N

2 cos θ, Sx = N
2 sin θ cosϕ, Sy = N

2 sin θ sinϕ.
After some lines of calculation, the final result is

∂tθ = λ sinϕ, (20a)

sin θ∂tϕ = −K
2

cos θ sin θ + λ cosϕ cos θ. (20b)

Solving these equations gives the time dependent statis-
tics of the excitations. For a quantum quench starting in
the ferromagnetic phase to a certain λf , one finds oscilla-
tory solution for both θ(t) and φ(t), so we actually focus
on the statistics of the time averaged magnetization Sz.

In Fig. 6 we show the behavior of the first two cu-
mulants per unit spin at long times as a function of the
final quench parameter λf for a fixed initial state, cor-
responding to the ground state at λi = 0.1. We can
see that both the cumulants signals the presence of the
dynamical phase transition at λf = 0.3 trough their non-
analyticities.

We stress that, even though in the above discussed case
of the Ising model measuring the statistics of the excita-
tions and looking at the order parameter is essentially
equivalent, this is not true in general, as in the case of
the O(N) model and of Hubbard-like models.

IV. ONE DIMENSIONAL BOSE-HUBBARD
MODEL

The statistics of excitations may be a useful quantity
to study even when no dynamical criticality is expected.
In order to illustrate this, in this section we study the
quench dynamics in the nonintegrable, one-dimensional
Bose-Hubbard model using exact numerical techniques,

where our simulations provide insights into the nonequi-
librium crossover diagram taking into account the full
many-body interactions.

We introduce the Bose-Hubbard model on a lattice

ĤBH = −J
∑
〈i, j〉

(
b†i bj + h.c.

)
+
U

2

∑
i

n̂i(n̂i−1)−µ
∑
i

n̂i ,

(21)
where J is the kinetic energy, U the interaction energy,
and µ the chemical potential. The boson creation and

annihilation operators are b†i and bi , respectively, which

define the density operator n̂i = b†i bi .
We follow the protocol of the double quench intro-

duced in the Introduction (see Fig. 1), by starting out
deep in the disordered phase at commensurate filling with
Ji/Ui = 0.01, where the ground state |ψ0〉 is close to a
product state. The dynamics is initialized by quenching
the kinetic energy to Jf/Uf . Consequently the system
evolves for the wait time t at which the statistics of global
defects

D̂ =
∑
i

|n̂i − n| (22)

is measured, where n is the density of bosons. Higher
cumulants can be obtained from the generating function
in the usual way. In our simulations all cumulants satu-
rate. We attribute this to the fact that the nonlinearities
are fully treated in the exact simulations and therefore
the unbounded growth observed in the field theory gets
regularized.

In Fig. 7 we show the saturation value of the first and
second cumulant (i.e., the average and variance, respec-
tively) normalized by the volume of the system for var-
ious quench parameters Jf/Uf and commensurate den-
sity n = 1 and n = 2. We find that the more energy is
pumped into the system by the quantum quench, i.e., the
larger the final kinetic energy Jf/Uf is, the larger is the
saturation value of the global defect density D, and its
higher order statistics.

Since the Bose-Hubbard model is not integrable, it is
expected to thermalize. To study this effect, we perform
finite temperature simulations in which the effective tem-
perature T ∗ is self-consistently determined by the energy
density pumped into the system by the quantum quench

〈ψ0|HBH(Jf , Uf )|ψ0〉 =
Tr[HBH(Jf , Uf )e−HBH(Jf ,Uf )/T?

]

Tr[e−HBH(Jf ,Uf )/T?
]

,

(23)
where |ψ0〉 is the state that initializes the dynamics which
is the ground state of HBH(Ji, Ui). The statistics of ex-
citations evaluated in the thermal state are indicated by
the thin solid lines in Fig. 7(a) and support thermaliza-
tion for large values of Jf/Uf already after a few inverse
hopping times. At low values of Jf/Uf . 0.3, which
marks the equilibrium phase transition, gray thick line,
small deviations between the thermal and the long time
average can be observed. However, we study rather small
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Figure 7: Statistics of the global defect density in the nonintegrable, one-dimensional Bose-Hubbard model. First and second
cumulant as a function of the quench parameter Jf/Uf , left, and their ratios, right, at filling (a) n = 1 and (b) n = 2. Vertical
lines indicate the equilibrium phase transition, solid gray line, and the ratio Jf/Uf at which the equilibrium gap in the Mott
phase corresponds to the energy density pumped into the system, dashed line. The thin solid lines show the thermal value of
the cumulants at the self-consistently determined effective temperature.

systems of L = 8 sites and in order to make a conclu-
sive statement in that regime a proper finite size scaling
needs to be done. The thick dashed line shows the ratio
of Jf/Uf at which the equilibrium gap corresponds to the
energy density of the quantum quench. Around this cou-
pling the deviations of the global defect statistics from
the thermalized state seem to be largest. Note, however,
that the deviations from the thermal results are vanish-
ingly small for all Jf/Uf when we consider the statistics
of local (instead of global) defects, not shown. In the
right column of Fig. 7(a) we show the ratio of the cu-
mulants. The trend here is that the larger Jf/Uf , the
larger the ratios C1/C2 and C2/C3, which is opposite to
the prediction of the field theory for higher dimension,
see inset of Fig. 4 (a).

An important difference between the Bose-Hubbard
model at low filling and the field theory is the following:
While infinitely many particle excitations can be created
in the Bose-Hubbard model on top of a certain state with
commensurate filling n, only n holes can be created lo-
cally. This has to be contrasted with the field theory
which does not obviously discriminate between particle
and hole excitations. Therefore, one could expect, that
for nonequilibrium dynamics the agreement between field
theory and the Bose-Hubbard model improves at higher
filling. In Fig. 7(b) we thus show the saturation values

when starting out at filling n = 2. The main difference
here is that the ratio C1/C2 decreases for larger Jf/Uf
similarly to the results obtained from the field theory in
higher dimension.

V. CONCLUSIONS

In conclusion, we observed that the dynamical phase
transition of the quantum O(N) model in the large N
limit leaves a strong imprint on the statistics of excita-
tions generated in a quantum quench. We expect this
phenomenon to be generic for systems where dynamical
transitions are known to be present at mean field level.
We corroborated this claim by also studying the infinite
range Ising model in Sec. III which displays similar be-
havior.

Whether signatures of such dynamical transition can
be observed in realistic systems such as the Bose-
Hubbard model is an important open question. We ar-
gued that the statistics of excitations could be an exper-
imentally accessible tool to solve this problem. Indeed,
even though the excitations will not grow indefinitely in
a real experimental system, the dynamical phase transi-
tion can still leave a unique fingerprint on the statistics
of excitations in the intermediate prethermal state before
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Figure 8: (Color online) Comparison between r(t) obtained by numerical integration of Eq.(A1) for quenches to different
r0,f > rc0,f (curves of different colors) and the asymptotic value predicted by Eq. (A4) (black dashed lines) for d = 3 (a) and
d = 4 (b).

full thermalization occurs. Experimental studies with ul-
tracold atoms might therefore be able to shed light on
this challenging question.
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Appendix A: Free theory and stationary state

In this section we will consider the dynamics of the
systems for a quench of r0 from r0,i to r0,f , when there
is no quartic interaction, i.e, λ = 0. The first obvious
consequences are that there is no renormalization of the
initial mass and also no dynamics of the mass after the
quench. The equation for the functions f~k(t), which are
the coefficients of the expansion of the field φ~k(t) in the
basis of the initial Hamiltonian, becomes

d2f~k(t)

dt2
+
(
|~k|2 + r0,f

)
f~k(t) = 0, (A1)

with initial conditions fk(0) = 1√
2ωk,i

, ḟk(0) = −i
√

ωk,i

2 ,

ωk,i =

√
|~k|2 + r0,i, set by the requirement that a~k and

a†~k
diagonalize the initial Hamiltonian.

The solution of the previous equation is readily

found to be f~k(t) = 1√
2ωk,i

cos

(
t

√
|~k|2 + r0,f

)
−

i√
|~k|2+r0,f

√
ωk,i

2 sin

(
t

√
|~k|2 + r0,f

)
. From this expres-

sion we can compute all the quantities of interest, in-
cluding the equal time two-point correlator of the field

〈φ~k(t)φ−~k(t)〉 = |f~k(t)|2:

〈φ~k(t)φ ~−k(t)〉 =
2|~k|2 + r0,i + r0,f

4(|~k|2 + r0,f )

√
|~k|2 + r0,i

+

r0,f − r0,i

4(|~k|2 + r0,f )

√
|~k|2 + r0,i

cos

(
2t

√
|~k|2 + r0,f

)
.

(A2)

Instead, in the case of the interacting theory with λ 6= 0
the time dependent effective mass is given by

r(t) = r0,f +
λ

6

∫
k

〈φ~k(t)φ−~k(t)〉. (A3)

The numerical integration of the equation of motions
shows that for large t this relaxes toward a stationary
value. To predict this stationary values we make the
ansatz that the stationary part of the equal time Green’s
function 〈φ~k(t)φ−~k(t)〉 is the same as the free theory but
with renormalized masses. In particular, we take Eq.
(A2), disregard the cosine contribution, and make the
substitutions r0,i → ri and r0,f → r?, with r? denoting
the stationary value of the mass, to be self-consistently
determined from Eq. (A3). In this way we obtain the
self-consistent equation for r? written in the main text,
that is

r? = r0,f +
λ

24

∫
k

2|~k|2 + ri + r?

(|~k|2 + r?)

√
|~k|2 + ri

. (A4)

Fig. 8 demonstrates how accurate this equation predicts
the stationary value of r(t) up to the dynamical critical
point, identified by the condition r? = 0 focusing on d =
3 or d = 4, but we checked Eq. (A4) also in lower and
higher dimensions.

Using the solution of the Eq. (A1) for λ = 0 and Eq.
(15), one can find the function ρk(t), and thus determine
the full statistics of excitations for the free case. The



9

(a.1) (b.1) (c.1)

(a.2) (b.2) (c.2)

10
0

10
1

10
2

10
3

0

4

8

12

16

20

10
0

10
1

10
2

10
3

0

2

4

6

8

10

10
0

10
1

10
2

10
3

0

2

4

6

8

10

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

0

4

8

12

16

20

Figure 9: Fluctuations of excitations for quenches (a) above, (b) to, and (c) below the dynamic phase transition for various
parameters as indicated in the figure caption and legend.
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Figure 10: (Color online) (a) Variance per unit volume σ2/V in log-linear scale for quenches above or at the dynamical
transition, i.e. r0,f ≥ rc0,f in d = 4 for different values of the predicted asymptotic effective parameter r?, see Eq. (A4). (b)

Variance per unit volume σ2/V , V = Ld, in log-log scale for quenches below the dynamical transition, i.e. r0,f < rc0,f in d = 4.
δr0,f = rc0,f − r0,f measures the distance from the dynamical critical point. In all plots λ = 10 and ri = 5.

result of such a procedure is

ρk(t) =
(r0,f − r0,i)

2

4(|~k|2 + r0,f )(|~k|2 + r0,i)
sin

(
t

√
|~k|2 + r0,f

)2

.

(A5)
As discussed at the end of Sec. II B, from this expression,
and in particular from its low-k behavior, one can extract
the behavior of all cumulants. We see that, apart from
the sine which provides an infrared cutoff evolving as
1/t, for r0,f 6= 0, ρk is regular at low k, while for r0,f =
0, which is the critical point of the free theory, ρk ∼
1/k2. This implies kn ∼ t2n−d, with kn denoting the n-th

cumulant and t0 corresponds to a subleading logarithmic
growth.

Appendix B: Supplemental results

A systematic study of the time dependent fluctuations
in d = 3 for various parameters of our model is shown in
Fig. 9.

In addition, in Fig 10 the results obtained for the vari-
ance in d = 4 are shown. The variance shows again
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three different qualitative behavior: saturation when r0,f

is above the dynamical critical point, logarithmic growth
when r0,f is at the dynamical critical point, and power

law growth with exponent of two when r0,f is below the
dynamical critical point.
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