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Design principles and predictions of new 3D Dirac semimetals are presented, and placed in the
context of currently known materials. Three different design principles are presented (Cases I,
II and III), each of which yields predictions for new candidates. For Case I, 3D Dirac semimetals
based on charge balanced compounds, BaAgBi, SrAgBi, YbAuSb, PtBi2 and SrSn2As2 are identified
as candidates. For Case II, 3D Dirac semi-metals in analogy to graphene, BaGa2 is identified as
a candidate, and BaPt and Li2Pt are discussed. For Case III, 3D Dirac semi-metals based on
glide planes and screw axes, TlMo3Te3 and the AMo3X3 family in general (A=K, Na, In, Tl,
X=Se,Te) as well as the Group IVb trihalides such as HfI3 are identified as candidates. Finally we
discuss conventional intermetallic compounds with Dirac cones, and identify Cr2B as a potentially
interesting material.
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INTRODUCTION

Recent advances have expanded the usual set of bulk electronic materials beyond metals, semimetals, semiconductors
and insulators, adding topological insulators (see, e.g. [1–3]) and 3D Dirac semi-metals. These additions represent
distinct electronic materials types. In 3D Dirac semi-metals, the subjects of this work, conduction and valence
bands touch each other at single, discrete points in k-space, around which the dispersion has a linear k-dependence.
This unusual band dispersion leads the electrons around the Fermi energy to behave like relativistic particles, which
contrasts with the usual non-relativistic Schrodinger electrons in most metals and semi-metals. While materials design
principles for topological insulators have been posited previously [4], currently lacking is a bridge to connect physics
and materials design principles for 3D Dirac semi-metals. This paper describes three distinct ways of achieving the 3D
Dirac semi-metal state from a combined physics and chemistry perspective, along with predictions of new 3D Dirac
semimetals based on the presented rationale. For Case I, Dirac semi-metals from charge balanced semiconductors
are described, Case II describes Dirac semimetals from orbital degeneracies and Case III describes Dirac semi-metals
from glide planes and screw axes. In Case I, the Dirac point is symmetry allowed (but dependent energy levels and
band dispersions in the specific compound), whereas in Cases II and III the Dirac point is symmetry demanded.
All materials discussed in this paper are real materials that have been previously experimentally reported; for all
calculations, the experimentally determined unit cell and atomic positions were employed.

CURRENT MATERIALS

The first experimentally realized Dirac semi-metal, graphene, has a 2D electron gas of Dirac fermions at the Fermi
level due to the unique structure and sp2 bonding network of carbon atoms on the honeycomb lattice. Graphene has
six 2D Dirac cones, each located at a K point of the hexagonal Brillouin zone (Figure 1a) [5]. This leads to interesting
transport properties, including very high electron mobilities and chiral quantum Hall effects [6]. After the explosion
of research in graphene, interest was piqued in realizing this state in a 3D system. It was known that at the transition
between a trivial insulator and topological insulator, a 3D Dirac semi-metal should emerge as an intermediate state[7].
An example of this, TlBiSe2−xSx, which is between the topological insulator TlBiSe2 and the trivial insulator TlBiS2,
has a Dirac point at the Brillouin zone center, or Γ point (Figure 1(b))[8, 9]. However this is only true for a precise
value of x in the solid solution (around x=0.5). This has also been shown experimentally for Hg1−xCdxTe[10]. The 3D
Dirac semimetal state is also expected, although not yet experimentally verified, for specific x values in the systems
Bi2−xInxSe3, Pb1−xSnxSe, Pb1−xSnxTe, Bi1−xSbx and Hg1−xCdxSe (as HgSe has a topological band inversion, like
HgTe[11]. In each of these situations, one end member is a trivial insulator, and the other is a topological insulator[1–
3]; the critical point between the two should be a 3D Dirac semi-metal. Realizing a true, stable, homogeneous 3D
Dirac material in these systems is an experimental challenge [10, 12, 13] but nonetheless it has been shown that at
least near the critical Dirac semimetal composition or pressure, anomalous transport properties such as large linear
magnetoresistance and a massive Dirac spectrum (that is, a Dirac cone with a small gap) can be observed [8, 14–16].
Materials that are near the 3D Dirac semi-metal state can be fine-tuned to that point by changing their composition
or with external variables such as temperature and pressure. Alternative types of 3D Dirac semi-metals that are not
so sensitive to temperature, pressure and composition homogeneity are desired.
Two more recently studied materials, Cd3As2 and Na3Bi, have intrinsic 3D Dirac points along a high symmetry

line in the Brillouin zone, protected by an element of crystalline symmetry (C4 and C3, respectively) shown in Figure
1(c-d). These crossing points are robust and are not dependent on temperature or a specific compositional parameter
that may vary slightly from point to point in a single crystal [17–22]. As such, both of these materials represent
stable, robust 3D Dirac semi-metals.
For Cd3As2, the C4 rotation axis prevents the formation of a full band gap in the bulk electronic structure; a Dirac-

like band crossing in the electronic structure is protected along the line Γ-Z in the Brillouin zone; two Dirac points at
± kz are observed [17–21](Figure 1(c)). This material has anomalous transport properties, including extremely high
electron mobility and very large magnetoresistance [23–25]. One disadvantage of Cd3As2 is that the band inversion
energy, or the energy range over which the electron dispersion is purely ”Dirac-like,” is very small. Furthermore,
crystals of Cd3As2 have a strong tendency to cleave along the pseudo-close-packed (112) crystal plane, which does
not preserve the C4 symmetry. This is important in that some proposed experiments require the application of a
magnetic field along the C4 rotation axis (the crystallographic [001] direction) [23]. In addition, care is required in
the handling of Cd and As during materials synthesis, due to the high toxicity of these elements.
For Na3Bi, the three- and six-fold symmetry axes protect the Dirac points along the c direction, leading again

to two Dirac points at ± kz, although this time in a hexagonal lattice (Figure 1(d)). These Dirac cones are highly
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anisotropic, which is different from the case of Cd3As2 [18, 21]. Na3Bi also has a much larger band inversion energy
than Cd3As2. This leads to more leeway in a real material for the defects to be controlled such that the Fermi level
will intersect a pure Dirac dispersion regime of the electronic structure. Also advantageously, crystals of Na3Bi can be
cleaved to expose the (001) plane, as well as the (100) plane, allowing for experimental versatility in the probing of the
Dirac semi-metal state [26]. Unfortunately, however, the growth and care of single crystals of a material that is nearly
completely elemental sodium poses significant experimental challenges; Na3Bi decomposes rapidly upon exposure to
air or moisture.
Given the experimental difficulties with the current materials, theoretical prediction and experimental validation

of new materials is of high interest, and has indeed been called for [27]. Other Dirac materials exist as well; Dirac
materials with a Dirac mass (i.e. the Dirac spectrum has an energy gap) have been known for some time, with Bi
being a famous example. A recent example in the AMn2Bi2 family also shows anomalous transport properties[28].
Proposed but not yet observed Dirac materials with a small mass include the cubic antiperovskites such as Ca3SnO—
these compounds, given that they have a bulk gap, are intrinsically related to topological insulators [29, 30]. Finally,
Dirac-like states have been observed in the Fe based superconductors [31–33]. These Dirac cones exist within the spin
density wave phase, and thus are difficult to treat theoretically. It is further unclear whether they have a small Dirac
mass or not.
The remainder of this paper will focus on the general design principles for finding new 3D Dirac semi-metals, in the

framework of Density Functional Theory (DFT) using the PBE and modified Becke Johnson (mBJ) functionals, as
well as specific examples and predictions for new materials. Only compounds with inversion symmetry are considered
here, as compounds that lack inversion symmetry have complications due to spin splitting of the bands.

METHODS

Electronic structure calculations were performed in the framework of density functional theory using the Wien2k
code[34] with a full-potential linearized augmented plane-wave and local orbitals basis together with the Perdew-
Burke-Ernzerhof parameterization of the generalized gradient approximation, or the modified Becke Johnson (mBJ)
exchange functional, as indicated[35, 36]. The plane wave cutoff parameter RMTKmax was set to 7 and the Brilloun
zone was sampled by 2000 k-points. The mBJ functional was used due to its improved accuracy for band gaps,
and also for improved band inversion strengths for band-inverted systems such as 3D Dirac semi-metals . Spin orbit
coupling (SOC), when applied, was included as a perturbative step. For YbAuSb, mbJLDA+U was used, with a Ueft

of 7eV applied to the Yb 4f electrons. For all calculations, the energy convergence was set to 0.0001 Rydbergs, and
the charge convergence was set to 0.001 electrons. For all calculations discussed in this paper, the mbJ exchange
functional was used (with Spin orbit coupling included as a perturbative step) unless otherwise specified.
Cr2B.95 samples were synthesized as published elsewhere[37]. The Hall effect and resistivity of Cr2B were measured

on poly-crystalline platelets of approximate dimensions 2 × 6 × 0.08mm in a standard six-wire geometry, using
our in-house cryostat and magnet. The current was applied along the longest edge, while the magnetic field was
perpendicular to the sample plane. We fitted the Hall conductivity σxy to a two-band model which combines the full
Drude expression enµ2B/(1 + (µB)2) for the fast band with a linear term cB, where the parameter c is expected to
include several (linearized) contributions from the bands of low carrier mobility. Here e, n, and µ are the fundamental
charge of the electron, the carrier density of the fast band and its mobility, respectively. The resulting carrier mobility
of the fast band is approximately independent of temperature below 40K.

CASE I: 3D DIRAC SEMIMETALS FROM CHARGE BALANCED SEMICONDUCTORS

When a direct band gap of a charge balanced semiconductor closes and the conduction and valence bands overlap,
one of three things can happen in a material (Figure 2a): 1. The crossing points are “gapped out” due to hybridization
(an “avoided crossing”) and the system becomes a topological insulator with a band inversion. 2. The same as in 1,
but the system becomes a normal insulator with a band inversion and 3. The crossing points gap out at all points
except certain special points along certain lines of crystal symmetry, leading to a 3D Dirac semi-metal state. [7]
What controls which of these scenarios occurs in a real material? The answer lies in the underlying point group

symmetry of the crystal structure. The essential idea is this: given the symmetry of the crystal structure and the
nature of the orbitals making up the electronic states that cross when the band gap closes, the electronic states must
be orthogonal to each other in order to not interact with each other and gap out. However, the rules of which orbitals
truly are orthogonal to each other in the presence of SOC are contained within the ”double group”, as opposed to the
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point group [38, 39]. The double group is essentially the point group that also takes into account that the states in
question are spin 1/2 particles. For example, the C2v double group only has one irreducible representation, meaning
that in this system all states have the same symmetry [40]. This is a drastic difference compared to C2v without SOC,
which has four different irreducible representations. This is why SOC has the tendency to gap out band crossings.
The strength of this interaction is partially controlled by the atomic number of the atoms involved, as it scales roughly
with Z4.
Therefore, in order to realize the 3D DSM state with a fourfold degenerate Dirac point, at least along some line of

crystal symmetry, the states that cross must have different symmetries in the double group. This can be realized in
general with C3, C4 and C6 rotation symmetries [40]. As the bands can cross at an arbitrary point on all of the lines
of crystal symmetry, the full double group isn’t used, as that corresponds to the symmetry at the Γ point. Instead,
the double group of a line of symmetry is used. In this way, not all crystal structures and space groups are equal. For
example, in the tetragonal space group I4/mcm, the line along the c axis has C2v symmetry, and therefore cannot
have a Dirac point, while in the tetragonal space group P4/mmm, the same line has C4v symmetry, and thus a Dirac
point is allowed. The lines along the rotation axes for Cd3As2 (I41/acd) and Na3Bi (P63/mmc) have C4v and C6v

symmetries, respectively, which allows them to display a 3D Dirac point. One important result of these considerations
from the materials perspective is that this type of DSM is not possible in orthorhombic, monoclinic, or triclinic space
groups due to the lack of appropriate double group symmetries. This rules out many potential materials candidates
in the search for new DSMs.
It is important that the presence of a double group that allows for different irreducible representations does not

guarantee that the valence band and conduction bands in the vicinity of the Fermi energy specifically will indeed have
different irreducible representations. For example, in Bi2Se3, which along the kz axis has the symmetry C3v, different
symmetries are allowed for the bands, and it could have a Dirac point. However, the valence and conduction band
orbitals near EF in fact happen to have the same C3 symmetry, and thus a full band gap opens, forming a topological
insulator. The overall formula of these materials, however, can lead to useful predictions. In general, one wants to
look for materials that have a gap closing due to the presence of heavy elements (due to the large SOC and the
required overlap of the valence and conduction bands) and hexagonal, rhombohedral, tetragonal, or cubic symmetry
(due to the requirement of a C3, C4 or C6 axis for the necessary double group symmetry).
A simple family of materials that exhibits these characteristics, including the different symmetry along the c axis

necessary to have the Dirac point, is the 111 family of hexagonal ZrBeSi-type compounds. These materials crystallize
in the same space group as Na3Bi (P63/mmc) [41] and have a very simple crystal structure, with layers of BN-type
nets separated by large cations. An archetypal example, BaAgBi (which is charge balanced at Ba2+Ag+Bi3−) is shown
in Figure 2(a-b) [42]. In this compound and many related ones, the orbitals making up the valence and conduction
bands have different symmetries under C3 rotation in the double group. This allows for gapping out (or an avoided
crossing) by SOC of all states, with the exception of one point along Γ-A, leading to a 3D DSM state, as shown in
Figure 2(d). Many materials in this family have this 3D Dirac point. There is often the complication, however, of the
presence of other, non-Dirac bands; this is the case for SrAgBi, shown in Figure 2(e)). In SrAgBi, the Dirac point is
not at EF due to an electron pocket at M (not shown).
The LiGaGe-structure family, related to the above materials but with a puckering of the honeycomb net, also

contains Dirac cones in the electronic structure. Although this system does not have inversion symmetry (the space
group is P63mc), the states are not spin split along the relevant Γ-A line. Thus these materials can also be 3D DSMs,
an example of which, YbAuSb (Figure 2(c)), is shown in Figure 2(f). In YbAuSb, again, the Dirac point along Γ-A is
not precisely at EF , partially due to bands crossing along Γ-L due to the spin splitting from the lack of an inversion
center (for YbAuSb, mbJLDA+U was used, with the U only applied to the Yb 4f electrons to treat them as core
states, as is common when treating rare earth ions). This family is chemically convenient as it is can host a large
number of different elements, including magnetic f7 Eu2+. This sort of band structure tuning through changing Z in a
large chemical family also occurs in the half-Heusler compounds, which become topological insulators[43]. There are
also further related hexagonal families, such as the four-layer LaAuSb family, that have these Dirac cones along Γ-A.
Overall, the existence of 3D Dirac cones in BaAgBi, SrAgBi, and YbAuSb, indicates that charge balanced compounds
in these structure types with heavy elements are fertile ground for the discovery of 3D Dirac semimetals, due to the
combination of a band inversion centered around Γ, large spin orbit coupling and the symmetry elements required to
maintain the 3D Dirac point.
As such, a more detailed classification is possible in the 111 ZrBeSi type materials family. We show in Figure 3a how

the electronic characteristics of the family change as a function of the total Z divided by the Pauling electronegativity
difference (we use the electronegativity difference between the large cation and the average of the anionic honeycomb
sublattice). The figure shows whether or not the system has a Dirac point, and how much other bands are interfering,
quantified by the density of states (DOS) at the Fermi level (EF ) (a perfect 3D DSM should have essentially zero
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DOS at EF ). While not completely systematic, it can be seen that once this Z/E metric reaches a certain value, the
compounds have a Dirac cone in their electronic structure (Figure 3(a)).
We also show this evolution more simply as a function of Z (Figure 3(b)). Here, Z correlates well with the DOS.

This is because a larger Z leads to a larger SOC which in turn results in a better gapping of the system. (This can
be seen by comparing BaAgBi to SrAgBi.) The calculated DOS for all the compounds is likely to be higher than
in the real materials, as the PBE functional tends to underestimate band gaps, but the trend is very clear. In this
structural family the compound BaAgBi appears to be the most promising potentially new 3D Dirac semimetal. Its
study experimentally would be of significant interest. For the calculations in Figures 3(a) and (b), the PBE exchange
functional was used instead of mBJ, as many materials in the family are fully metallic.
Because there exists a C4 protected tetragonal 3D DSM (Cd3As2) as well as C3 and C6 protected 3D DSMs (Na3Bi

and proposed in the ZrBeSi family), it is natural to ask whether this can be realized in a cubic system that can have
C3 symmetries (as the C4 symmetry is not required in cubic materials). Indeed, our calculations on the pyrite MX2

family show that the heavy compound PtBi2(Figure 4(a)), space group Pa3̄(which is isoelectronic and isostructural
to the semiconductor PtSb2)[44] has a 3D Dirac point along the line Γ-R, which falls along the threefold rotation axis
with symmetry C3v (Figure 4(c)). This is due to a band inversion along the line Γ-R, in combination with large spin
orbit coupling, leading to avoided crossings along all lines except Γ-R due to the bands having different C3 rotation
eigenvalues. While other bands cross the Fermi level, there is still a continuous gap, and this serves as proof of concept
that this type of 3D DSM is possible in cubic systems.
As a final note, it is theoretically possible that a stoichiometric compound naturally realizes the topological critical

point criterion for the 3D DSM, without necessarily being protected by a rotation symmetry. While in TlBiSe2−xSx
this occurs at a critical value of x (around x=1), our calculation of the electronic structure of the compound
SrSn2As2(Figure 4(b)), which is isostructural to Bi2Te2Se [45], shows that the compound is naturally very near
the critical point. This suggests that even without tuning it may realize the 3D DSM state (Figure 4(d)).
Thus here we described the general principles behind predicting 3D DSMs in charge balanced semiconductors

based on symmetry considerations, and predict specifically that materials in the ZrBeSi materials family, specifically
BaAgBi; the LiGaGe materials family, specifically YbAuSb; the pyrite family, specifically PtBi2; and the Bi2Te2Se
family, specifically SrSn2As2; are of interest as potentially new 3D Dirac semimetals.

CASE II: 3D DIRAC SEMIMETALS FROM ORBITAL DEGENERACIES

Besides the band overlap in compounds with charge balanced semiconducting formulas, there are other ways of
achieving the Dirac semimetal state. In fact the most famous 2D Dirac semi-metal is graphene, which is based on a
different, but related concept, in which certain orbitals are forced to be degenerate at certain points in the Brillouin
zone due to crystal symmetry. In graphene, this is rather simple, and has been explored previously. Essentially, as
there are two C atoms in a honeycomb array per unit cell, there are two pz orbitals per unit cell. As such, two basis
sets, a bonding one and an anti-bonding one, construct the band structure. Due to the crystal symmetry, these two
basis sets become equivalent at the K point, which forces them to be degenerate. This leads to a 2D DSM state. This
degeneracy is susceptible to gapping out (or an avoided crossing) due to SOC, but in graphene the SOC effect is not
strong enough to do this due to the low Z. The stacking of layers on top of each other also ruins this effect, meaning
that the 3D material graphite is no longer a DSM.
So how can the same concepts that make graphene a DSM create a 3D material that is also a DSM? As the stacking

of the honeycomb layers is what gaps out the Dirac point in graphite, we suggest that moving the layers further apart
in a 3D material so that their interaction is very weak can either reduce or eliminate this gap. This can be done
by inserting a layer of positive cations between the honeycomb layers while maintaining the same electron count as
graphene. This occurs in MgB2,for example, in which the B2

−2 layer has the same structure as graphene, and the
layers are separated by layers of Mg2+ ions. However, while MgB2 is metallic and in fact superconducting [46], the
interlayer coupling is still too strong as there is too much covalent bonding between Mg and B. In order to regain the
Dirac point at K, the interlayer coupling must be reduced even more, by going to larger, more electropositive cations.
We note that the intercalated graphite compound LiC6 has been shown by ARPES to have a Dirac point below EF [47]
as the intercalation moves the graphitic layers further apart. However, the electronic structure is generally complicated
due to incomplete charge transfer (resulting in interlayer bands), as well as the dependence of the electronic structure
on stacking sequence[48, 49]. Furthermore, if the Dirac point is conserved in an intercalated graphite compound, it
would necessarily be below the Fermi level due to the electron count.
Following this logic, our calculations show that the compound BaGa2 (Figure 5(a)) [50], which contains layers of

very large and very ionic Ba atoms, retains a Dirac cone centered at K, and very little interlaying coupling. This
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leads to a very small gap at H, which is the wave vector above K in 3D. The cone comes from the Ga pz orbitals,
which have a very small SOC interaction, and therefore create a negligible gap (Figure 5(b)). As such, this can be
described as a quasi 2D Dirac cone. In BaGa2, unfortunately, there are other bands present at the Fermi level as
well, so it is not a perfect candidate material. The concept, however, remains valid. This concept also applies to the
material Bi14Rh9I3 in which a graphene-like layer of Bi-Rh cubes is separated by very large spaces in the z direction
[51]. This leads to Dirac points at various K points (as the compound is not hexagonal) that are, however, gapped
out by SOC due to the high atomic weight of the atoms in question.
Another way to avoid the problem of 3D stacking is by having the Dirac point come from orbitals that do not

interact with each other along the c axis. For example, a Dirac point in 2D at K can be also derived from px and py

orbitals, which is the case for the hypothetical layered compound BiI where the pz orbitals are bonded to a ligand
that locks them out [52]. (In compounds of this type, the SOC interaction is large and gaps out the system.) In
3D, this type of electronic system is possible to achieve in compounds with hexagonal layers of atoms that are in an
overall linear coordination. One example of this is the material PbTaSe2. In this case, the 2D Pb layer is in linear
coordination with the Se atoms, leading to a hexagonal lattice of px and py orbitals, which creates a Dirac point
in the Pb-derived electronic structure at K [53]. This Dirac point is still there in the full 3D electronic structure.
However, as it is from Pb p orbitals, the SOC interaction is very large and creates a very large gap. Furthermore,
The TaSe2 sublattice contributes bands, and the resulting compound is superconducting. However, lighter elements
in this sort of configuration, such as a hypothetical SiTaSe2, could create another quasi-2D DSM.
Another example of hexagonally ordered atoms in linear coordination can be found in a couple of platinum-based

materials in which there are linear chains of platinum anions that are ordered hexagonally in 2D. These include BaPt
and Li2Pt, in which Pt2− anions are in linear coordination with each other [54, 55]. The crystal structure of BaPt
is shown in Figure 5(c), highlighting the Pt chains. This leads to a Dirac point at K for the case of no SOC for
both materials. However, again, the SOC present in the real materials gaps them out. This is shown in Figure 5(d).
However, the concept that linear chains of atoms that are ordered hexagonally in 2D can lead to a Dirac point at K,
as in graphene, holds. In the case of linearly coordinated Pt2− ions, it is the in-plane dx2

−y2 and dxy orbitals that
combine to form the Dirac cone, similar to how in PbTaSe2 the it is the in-planepx and py orbitals, that do so. In
fact, this linear chain of metal atoms in a hexagonal arrangement is generic to the NiAs structure type, so there may
be other materials within that family that show similar electronic structures.
Thus we argue that 3D DSMs are possible for this kind of materials system, where hexagonally-based sheets of

atoms form the basis of the electronic structure, in analogy to graphene, but where the bonding is such that the
interactions in the third dimension are weak. We have not yet been able to identify a real material that is an excellent
candidate example, but show that BaGa2 and BaPt and Li2Pt (along with Bi14Rh9I3 and PbTaSe2, as discussed in
references 51 and 53) are real materials that may display interesting electronic properties as a result of displaying
these types of electronic states.

CASE III: 3D DIRAC SEMIMETALS FROM GLIDE PLANES AND SCREW AXES

The effects of non-symmorphic symmetry, or space groups containing glide planes and/or screw axes, on the
electronic band structure of solids has been known for a long time [56]. The essence is that the presence of these
symmetry elements makes it such that the normally two-fold degenerate bands must touch at four fold degenerate
points at certain special points at the surface of the Brillouin zone, and that some of these degeneracies are not
susceptible to SOC[57]. One can naturally see how this can be used to create the 3D DSM state. However, due to
the pairing of the bands, these sorts of 3D DSMs cannot be created from charge balanced formulas, or as natural
extensions of semiconducting formulas, as was the case for Na3Bi and Cd3As2. As has been discussed previously,
in non-symmorphic structures an odd number of electrons per formula unit cannot result in a normal insulator [58].
This can be rationalized chemically. In order for a crystal structure to be non-symmorphic, there must be at least
a doubling of the formula unit per unit cell. For example, the simplest non-symmorphic semiconductor is elemental
Si (space group Fd-3m), which contains two Si atoms per unit cell that are related to each other by a glide plane.
Because of this, the electronic bands come in pairs, and must touch at certain points on the Brillouin zone surface.
Each Si has four electrons, so there are 8 electrons in total, or four filled bands per unit cell. This means that two
pairs of bands are filled, which in turn means that a true band gap can be achieved. In order to have EF at a ”Dirac
point”, there would have to be a half-filled pair of bands. This necessitates an odd number of electrons per formula
unit. A general schematic of this scenario is shown in Figure 6(a).
This is exactly the logic that led to the theoretically predicted 3D DSM BiO2 in the SiO2 structure, a hypothetical

(and never to be synthesized) compound [59]. The cubic SiO2 structure contains a diamond lattice of Si4+,analogous
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to that in elemental Si, with SiO2 itself having an even number of electrons per site, therefore resulting in a normal
insulator. Hypothetical BiO2 would have one more electron per formula unit with a diamond lattice of Bi4+ (or one
electron per site) and therefore two more electrons per unit cell, such that one more band is filled, or one half of
a pair of bands is filled. Thus, the Fermi energy would coincide with one of the ”sticking points” in the electronic
structure. In order for other bands to not interfere, one would like the bands that are half filled to be far in energy
from any other bands. This occurs in hypothetical BiO2 wherein the half-filled Bi 6s shell is far removed in energy
from any other orbitals. However, a half filled 6s orbital is unstable [60] and in any case Bi4+ is too large to ever
have tetrahedral coordination with oxygen. [60]. Similarly, the (impossible to ever synthesize) hypothetical spinel
structure compound BiAl2O4 has also been proposed to display this type of electronic system [61].
In order to achieve this sort of 3D DSM in a real material, a stable compound with an odd number of electrons

per site, in an orbital manifold that is far removed from other orbitals in energy, must be synthesized. Main group
elements do not tend to form oxidation states with odd numbers of electrons, and states such as Bi4+ are highly
unstable. Transition metals can form such electronic states, however, although they tend to have d orbitals that
lay very close to each other in energy. One chemically stable materials family based on a transition metal with an
odd number of electrons per site that is a proposed 3D DSM derived from non-symmorphic symmetry are the Ir4+
pyrochlores. The Ir4+ in the compound has a half filled J 1/2 orbital, which is far enough from the other d orbitals in
energy due to the large SOC of Ir [62, 63]. In this case, and for transition metal-based systems in general, localized,
magnetic electrons are often found, which poses challenges for understanding whether a delocalized, conducting 3D
DSM state can actually be realized.
There are two possible solutions to this problem of achieving an effective one electron per site lattice. One is that

instead of having one electron per atomic orbital, which tends to be either chemically unstable or highly localized,
one can use one electron per molecular orbital, as often occurring in cluster compounds. One example of a material
where this may work is the compound TlMo3Te3, or in fact the whole AMo3X3 family, where A=(Na, K, Rb, In, Tl),
X=(Se,Te) (Figures 6(b-c) [64]. In these compounds, the crystal structure is that of condensed chains of face sharing
Mo6 octahedra, surrounded by X, with A filling the channels in between the chains. The face sharing octahedra can
be considered as Mo3 triangles related to each other by a screw axis; as such the crystal structure is non-symmorphic.
Each Mo3 triangle has one extra electron donated to it by the A+ ion, which leads to the band structure shown in
Figure 6(d). One can clearly see the sticking points in the electronic structure, indicative of half filling of a molecular
orbital. Unlike the iridate pyrochlores, the states are delocalized due to the closesness of the Mo3 triangles to each
other. Critically from an experimental perspective, these materials are chemically stable. Due to the chain nature of
the crystal structure of the compounds, the Dirac state is expected to be quasi-1D rather than fully 3D (Figure 6(d)).
Other cluster compounds may also be expected to show similar effects. This idea is roughly analogous to the chemical
concept that atomic radicals are very unstable, but that radicals can be stabilized by delocalizing the electron over a
larger molecular orbital. As such, as shown in this family, cluster compounds may be one promising way of achieving
the non-symmorphic 3D DSM state.
A family of compounds with a very similar electronic structure to this is the family of group 4 trihalides, for

example HfI3 [65]. These have linear chains of d1 transition metal ions, where the ions are close enough to be
considered delocalized. The electronic structure that we calculate for this material is shown in Figure 6e. The
calculated Dirac cone in HfI3 is even more quasi-1D than that calculated for TlMo3Te3. Indeed, the isostructural
and chemically analogous material ZrI3 has been shown to undergo a Peierls-like distortion in which Zr-Zr dimers
are formed, gapping out the electronic states [66]. Peierls distortions are another possible instability to be wary of
for electronic systems with 1 electron per site. This is also the case for the d1 group 5 compounds such as NbSe2
and TaSe2 which also have one electron per site; these compounds are famous for their various electronic instabilities
including Charge Density Wave (CDW) formation and superconductivity.
Cluster compounds may be a way to minimize these instabilities as well, although the compound TlMo3Se3 is

reported to be superconducting[67]. In fact, these quasi 1D Dirac compounds may prove a fertile ground for inter-
esting physics, as our calculations indicate compounds already known to have CDW (or Peierls) and superconducting
instabilities have 3D Dirac states at the fermi level, implying that these materials represent ”interacting” 3D Dirac
electrons. These systems are not perfect 3D DSMs, however, due to having more than one sticking point in the Bril-
louin zone—thus cluster compounds or early transition metal compounds with different symmetry may prove more
ideal.
Another solution to the problem lies in intermetallic systems, in which a simple oxidation state is difficult to assign.

In such a case, the Fermi level can certainly be tuned to a non-symmorphic ”Dirac point”. In intermetallic systems,
however, there tend to be multiple bands crossing EF . One example is the paramagnetic metal Cr2B [37]. Cr2B
is in the non-symmorphic space group Fddd, and contains interlocking honeycomb-like nets of Cr atoms related to
each other by glide planes (Figure 7(a)). Cr2B has no obvious apparent formal oxidation state for Cr, and as a true
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intermetallic, has many bands crossing the Fermi energy, all of which contribute to the charge transport. However, in
the band structure, the non-symmoprhic ”sticking points” formed from linear bands can be easily identified (Figure
7(b)). Given that Cr2B can have a variable B content, we show in the figure the calculated band structure for both
stoichiometric Cr2B and Boron deficient Cr2B0.9 (Figure 7(c)). Due to the metallicity of the compound, the PBE
exchange functional was used for both; for the Boron deficient Cr2B, the virtual crystal approximation (VCA) was
employed (calculations with and without SOC were virtually identical due to the low atomic weight of the atoms).
Ordering of the B vacancies could change the crystal symmetry or unit cell dimensions, and thus the band structure
could be different in the case of B vacancy ordering, and it is possible that the Dirac point would be destroyed.
However there is currently no evidence that the B vacancies are ordered in the real material.However, within the
framework of VCA, at Cr2B0.9, the Dirac point comes to EF . While there are many other bands as well, Hall effect
measurements on polycrystalline Cr2B samples uncovered n-type carriers with high mobility whose effects can be
distinguished from those of the other carriers (Figure 7(d)). This indicates that it is possible that even if other bands
cross EF , the Dirac electrons can still be visible in transport experiments due to their high mobility.
Finally, among this third class of potential 3D Dirac Semimetals, we identify the specific materials HfI3 and

TlMo3Te3 as worthy of future study, and argue that even for classic intermetallic phases such as Cr2B, it is possible
that the effects of non-symmorphic symmetry results in the presence of Dirac electrons whose contribution to the
transport properties may be observable.

CONCLUSIONS

This paper has firstly presented a discussion of currently known 3D Dirac materials, including those that show such
behavior at a specific composition in a solid solution system, such as TlBiSe2−xSx, and those that are native 3D Dirac
semimetals such as Cd3As2 and Na3Bi. Consideration of those materials, graphene, and other factors allowed us to
propose general design principles that will be of use for finding new 3D Dirac semimetals, and present predictions
for specific new materials. Each design principle leads to unique predictions that warrant future research. For case I,
Dirac materials based on charge balanced formulas, it was posited that the ZrBeSi family of materials (such as SrAgBi
and BaAgBi), the LiGaGe family of materials (such as YbAuSb) and other materials such as PtBi2 and SrSn2As2 as
compounds should display 3D Dirac cones. For case II, Dirac materials in analogy to graphene, the prediction of a
3D Dirac cone in BaAgBi was made. For case III, Dirac materials based on glide planes and screw axes, analysis led
to the identification of AMo3X3, HfI3 and Cr2B as compounds with quasi 1D Dirac cones in the bulk, and a Dirac
cone buried with other bands in an intermetallic, respectively. Given the relative novelty of the field of 3D Dirac
semi-metals, these predictions may lead to not only 3D Dirac materials more suitable for experimental study, but also
ones with magnetic, superconducting, and CDW instabilities, which should expand the field of 3D Dirac semi-metals.
It is also expected that the design principles described here will lead to identification of additional candidate materials,
opening up a new area of research in this emerging field.

The authors research on Dirac semimetals is funded by the ARO MURI on topological insulators, grant W911NF-
12-1-0961, and the NSF funded MRSEC at Princeton University, grant DMR-0819860.
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FIG. 1. (a-d) Schematic electronic structures showing the location in the Brilloun Zone of the 2D (graphene) or 3D Dirac cones
in graphene, TlBiSe2−xSx, Cd3As2, and Na3Bi (a-d, respectively). Brilloun zones redrawn from images at [68](e) Schematic of
a band gap closing, leading to either a Dirac semi-metal or band inverted insulator upon consideration of spin orbit coupling.
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FIG. 2. Case I: 3D Dirac semi-metals based on charge balanced formulas (a) Top-down crystal structure of BaAgBi, represen-
tative of the entire ZrBeSi family. (b) Side view of BaAgBi, showing the 2 layer structure.(c) Side view of YbAuSb, showing
the buckling of the honeycomb lattice (d) Electronic structure of BaAgBi; the 3D Dirac cone is circled in black. The different
colored lines along Γ-A represent different irreducible representations under the C6v double group. (e) Electronic structure
of the similar compound, SrAgBi. (f) Electronic structure of LiGaGe type buckled YbAuSb, calculated in the framework of
LDA+U to account for the Yb core f electrons, with the U applied to the 4f orbitals only. (d-f) were calculated using the mbJ
exchange functional which tends to have improved band gaps over PBE. SOC is included for all band structures shown.

FIG. 3. Case I: 3D Dirac semi-metals based on charge balanced formulas (a) Electronic phase diagram of the ZrBeSi family,
showing the density of states at EF as a function of the total Z divided by the electronegativity difference. Orange squares
represent the compound having a Dirac cone, and red circles represent none. (b) Same as (a) but shown as a function of total
Z only. SOC was included for all calculations.
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FIG. 4. Case I: 3D Dirac semi-metals based on charge balanced formulas.(a-b) Crystal structures of pyrite type PtBi2 and
tetradymite type SrSn2As2, left to right, respectively (c-d) Electronic structures of pyrite type PtBi2 and tetradymite type
SrSn2As2, left to right, respectively, both calculated with the mBJ functional. SOC is included for all calculations.
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FIG. 5. Case II: 3D Dirac semi-metals in analogy to graphene (a) Top-down view of BaGa2, showing the graphene like Ga sub
lattice. (b) Electronic structure of BaGa2, with the Dirac cone circled in red. The fat bands show the contribution of the Ga
pz orbitals. (c) Crystal structure of BaPt, with the Pt-Pt bonds drawn. (d) Electronic structure of BaPt, both without and
with SOC (left to right, respectively). The Dirac cone is circled in red. The fat bands highlight the orbital contribution of the
in plane dxy and dx2

−y2 orbitals of Pt.
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FIG. 6. Case IIIa: 3D Dirac semi-metals from non-symmorphic symmetry (a) Schematic of a band structure with non-
symmorphic symmetry, and a sticking point at X. The electron counts for a normal insulator and a nontrivial metal are shown.
(b) Top-down view of the crystal structure of TlMo3Te3, showing the Mo-Mo bonds. (c) A side view of the Mo3 sub lattice of all
AMo3X3 compounds. (d) Electronic structure of TlMo3Te3. The non-symmorphic sticking point that creates the anisotropic
Dirac cone is circled in red. (e) Electronic structure of HfI3. In this structure there are three non-symmorphic sticking points,
creating a very quasi 1D Dirac cone. SOC was included in all calculations.
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FIG. 7. Case IIIb: 3D Dirac cones in classical intermetallics with non-symmorphic symmetry (a) The crystal structure of Cr2B.
The interlocking honeycomb nets of Cr are shown by drawing the Cr-Cr bonds. (b) The electronic structure of stoichiometric
Cr2B. Some of the non-symmorphic sticking points are circled in red, and the bands making up the Dirac cone that is discussed
are drawn in blue. (c) Close view of the electronic structure of Cr2B0.9, calculated using the virtual crystal approximation.(d)
Hall effect measurements at various temperatures, with the fitted parameters for the 4K cure shown, to showcase the high
mobility electron pocket.


