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We report the first angle-resolved photoemission measurement of the wave-vector dependent plas-
mon satellite structure of a three-dimensional solid, crystalline silicon. In sharp contrast to nano-
materials, which typically exhibit strongly wave-vector dependent, low-energy plasmons, the large
plasmon energy of silicon facilitates the search for a plasmaron state consisting of resonantly bound
holes and plasmons and its distinction from a weakly interacting plasmon-hole pair. Employing a
first-principles theory, which is based on a cumulant expansion of the one-electron Green’s function
and contains significant electron correlation effects, we obtain good agreement with the measured
photoemission spectrum for the wave-vector dependent dispersion of the satellite feature, but with-
out observing the existence of plasmarons in the calculations.

PACS numbers: 74.20.Rp, 74.20.Mn, 75.30.Ds

Introduction.— Within the contemporary view of con-
densed matter physics[1] in the Fermi liquid paradigm,
the electronic structure of materials is described in terms
of a quasiparticle picture, where particle-like excitations
(such as those measured in transport or photoemis-
sion experiments) in an otherwise strongly interacting
electron system are characterized by weakly interacting
quasi-electrons and quasi-holes, consisting of the bare
particles and a surrounding screening cloud of electron-
hole pairs and collective excitations. One example of such
collective excitations are plasmons, quantized charge
density oscillations resulting from the long-range nature
of the Coulomb interaction. Both the energy and the dis-
persion relation of plasmons depend sensitively on the di-
mensionality of the material. In three-dimensional mate-
rials, the energy required to excite a plasmon is typically
multiple electron volts, but in two- and one-dimensional
systems, such as doped graphene[2] or metallic carbon
nanotubes[3], plasmons can be gapless excitations with
strong wave-vector dependence and vanishing energy in
the zero wave-vector limit.

The interaction with plasmons has an important effect
on the properties of electrons and holes in solids. For
example, the energy dispersion relation of the electrons
in a crystal (the band structure) is modified. As a more
drastic consequence of strong electron-plasmon coupling,
Lundqvist[4] predicted the emergence of a new kind of
composite quasiparticles, called plasmarons [5], consist-
ing of resonantly bound plasmons and holes, which give
rise to additional sharp features from the conventional
quasiparticle peaks, known as the satellite structures,
in photoemission and tunneling spectra. Recent experi-
ments on doped graphene[6–8] and two-dimensional elec-

tron gases in semiconductor quantum wells[9] observed
prominent satellite structures, which were interpreted as
signatures of plasmaron excitations.

Other studies[10, 11] pointed out that the observed
satellite features could also result from the creation of
weakly interacting plasmon-hole pairs instead of strongly
interacting plasmaron states. Such shake-up satellites
are well known in the photoemission spectroscopy of
molecules, where they result from the creation of an
electron-hole pair or a vibrational mode in addition to
the quasi-hole in the photo-excitation process. Because
of the low plasmon energy in two-dimensional systems
(which is proportional to the square root of the plas-
mon wave vector) and other experimental complications,
such as the dielectric screening from a substrate, it has
been difficult to identify unambiguously from experiment
whether the observed satellites originate from plasmarons
or shake-up processes involving plasmons.

In three-dimensional systems, the plasmon energy is
much larger than in two- and one-dimensional systems
(it approaches a large constant value at small wave vec-
tors plus a term which is proportional to the square of
the plasmon wave vector) resulting in significant energy
differences between possible plasmaron states and un-
bound hole-plasmon pairs. Also, possible complications
from environmental screening are eliminated. However,
obtaining angle-resolved photoemission spectra of bulk
satellite features requires higher energy photons because
of the higher binding energy of the satellites and also the
need to minimize surface related effects. So far, satellite
properties in three-dimensional solids were only probed in
angle-integrated photoemission experiments[12, 13], but
such experiments do not give direct insights into satellite



2

I J

C

F

D

G

E

H

FIG. 1. (a): Experimental photoemission spectrum of silicon taken along φ = −30◦ (see appendix for definition of φ) using
a photon energy of 711 eV. Here, k|| denotes the component of electron wave vector parallel to the surface. (b) and (c):
Theoretical photoemission spectra from GW plus cumulant theory and GW theory, respectively along φ = −30◦. (d), (e) and
(f): Same spectra as in (a), (b) and (c), but only the binding energy range relevant to the first satellite feature is shown.

properties associated with individual quasiparticle states,
such as their line widths and dispersions.

To elucidate the nature of the plasmon satellites in
three-dimensional solids, we chose silicon as a prototypi-
cal system. It is one of the most studied and technolog-
ically important three-dimensional semiconductor mate-
rials, and a full understanding of its electronic structure
including the wave-vector dependent satellite properties
is highly desirable. Accurate knowledge of the electron-
plasmon and light-plasmon interactions is particularly
important for current and future plasmonic devices[14–
16].

Results—. Figure 1(a) shows the measured angle-
resolved photoemission spectrum from the [111] surface
of silicon along the φ = −30◦ direction (see appendix)
using photons with an energy of 711 eV. The spectrum
exhibits prominent sharp, dispersive features at binding
energies smaller than 13 eV corresponding to the usual
quasiparticle excitations (i.e., the band states). At bind-
ing energies higher than 15 eV, we observe a more diffuse

satellite band structure, which looks like a fainter, broad-
ened copy of the quasiparticle band structure. Figure
2(a) shows the measured angle-resolved photoemission
spectrum along the φ = −60◦ direction and exhibits sim-
ilar features to the spectrum obtained along φ = −30◦.

To gain insight into the observed photoemission
spectra, we compare them to state-of-the-art theo-
ries of electronic excitations in condensed matter sys-
tems. Such theories yield spectral functions, Ank(ω) =
1/π × |ImGnk(ω)|, which are proportional to the angle-
resolved photoemission spectrum within the sudden
approximation[17]. Here, n and k are the band index
and the wave vector of the hole created in the photoemis-
sion process, respectively, and Gnk(ω) denotes the wave
vector and frequency-dependent interacting one-particle
Green’s function. Calculations of the Green’s function
typically proceed by evaluating a set of Feynman dia-
grams, which represent interaction processes between the
electrons and other excitations[18].

The GW method[19, 20] has been used to analyze pho-
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FIG. 2. (a): Experimental photoemission spectrum along φ = −60◦ (see appendix for a description of the experimental photoe-
mission setup). (b) and (c): Theoretical photoemission spectra from GW plus cumulant theory and GW theory, respectively.
(d), (e) and (f): Same spectra as in (a), (b) and (c), but only the binding energy range relevant to the first satellite is shown.

toemission experiments and, recently, to interpret satel-
lite features for two-dimensional systems[6, 7, 9]. This
approach captures the complicated, dynamic polariza-
tion response of the electron sea to the appearance of a
hole in the photoemission process by approximating the
electron self-energy as the first term in a Feynman series
expansion in the screened Coulomb interaction, but it ne-
glects the contribution of other higher order Feynman di-
agrams describing additional correlation effects between
electrons. For low-energy quasiparticle properties, such
as the electronic band gaps and quasiparticle dispersion
relations of semiconductors and insulators, the GW ap-
proach has resulted in very good agreement with experi-
mental measurements from first principles[20]. However,
much less is known about its accuracy for satellite prop-
erties. For the special case of a dispersionless hole (such
as the hole resulting from the removal of an electron from
a tightly bound atomic core state) interacting with plas-
mons, the GW approach fails dramatically to describe
the satellite properties[10, 12, 21]. The exact solution of

this model problem can be obtained using a cumulant ex-
pansion of the Green’s function[22]. The resulting spec-
tral function exhibits an infinite series of satellite peaks,
separated by the plasmon energy from the quasiparticle
peak and from each other. The GW approach instead
predicts a single satellite peak separated from the quasi-
particle peak by 1.5 plasmon energies[23]. This demon-
strates that theories containing additional correlation ef-
fects beyond GW theory can give rise to qualitatively
different predictions for the satellites.

The first-principles GW plus cumulant (GW+C)
approach[10] we use in the present study is a means to
generalize the exact solution of the core electron prob-
lem to the case of dispersing valence electrons[21, 24]. It
retains the accuracy of the first-principles GW approach
for quasiparticle properties, but includes approximately
an infinite number of higher order diagrams, which are
needed for an accurate description of satellite properties.

Figures 1(b) and (c) show the calculated photoemis-
sion spectra from the GW plus cumulant (GW+C) and
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GW approaches, respectively, for the φ = −30◦ direc-
tion. Both theories predict prominent, intense, occupied
quasiparticle bands at binding energies smaller than 13
eV and a less intense satellite band structure at higher
binding energies. While the satellite band structures ob-
tained from the GW and GW+C methods look quali-
tatively similar, there are several significant differences:
(i) the binding energy of the satellite bands is signifi-
cantly larger in the GW method extending to more than
35 eV, while the GW plus cumulant satellite bands only
extend to less than 30 eV, (ii) the total width of the
satellite band manifold is 14.4 eV in the GW approach,
significantly larger than the GW plus cumulant theory
width of 10.8 eV and also the quasiparticle band width
of 11.7 eV, and (iii) the distribution of spectral weight
is different in the two approaches. In particular, in the
GW approach, the highest-binding-energy satellite band
at 35 eV binding energy in the vicinity of the Γ-point is
very sharp and intense, while the three degenerate satel-
lite bands at lower binding energy are broader and less
intense. The GW+C approach does not predict such a
sharp, intensive high-binding-energy satellite band.

Discussion—. The sharp satellite band at high bind-
ing energies in the GW theory arises from a plasmaron
excitation. Mathematically, well-defined excitations re-
sult from solutions of the quasiparticle or Dyson’s equa-
tion, ω − εnk = Σnk(ω) − V xcnk , where εnk denotes the
energy obtained from a mean-field calculation, such as
a density-functional theory calculation, and V xcnk denotes
the corresponding exchange-correlation potential. Here,
Σnk(ω) denotes the self-energy, which describes the in-
teraction of the quasi-hole with plasmons and other ex-
citations. Figure 3(a) shows the graphical solution of the
quasiparticle equation for the Γ-point of the bulk Bril-
louin zone of silicon. If the GW approximation is used
to calculate the self-energy[19, 20], we find two solutions:
one solution at low binding energy corresponding to a
quasiparticle excitation and a second solution at a bind-
ing energy of 35 eV corresponding to a plasmaron. In
contrast, we do not find a second solution to the Dyson’s
equation in the GW plus cumulant theory. Figure 3(b)
shows that the spectral function from GW plus cumu-
lant theory nevertheless has a second peak, which is sep-
arated from the quasiparticle peak by 16 eV. This sepa-
ration agrees well with the calculated and experimentally
measured plasmon energy in silicon[25], indicating that
the satellite results from the creation of weakly interact-
ing, unbound plasmon-hole pairs. In particular, it can
be shown that the matrix-element weighted density of
states of non-interacting hole-plasmon pairs with a par-
ticular wave-vector k has a maximum at the sum of the
energy of the hole with wave vector k and the zero wave-
vector plasmon energy, if both the hole and the plasmon
have parabolic dispersion relations; and consequently the
satellite band is simply a copy of the hole band shifted
by the zero wave-vector plasmon energy. In contrast, the
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FIG. 3. (a): Graphical solution of Dyson’s equation for the
lowest valence band of silicon at the Γ-point. The blue ar-
row denotes the plasmaron solution of the GW theory. (b):
Spectral functions for the lowest valence band of silicon at
the Γ-point from GW plus cumulant and GW theory. Arrows
denote the position of the satellite peaks.

separation in the GW theory is 24 eV, indicating strong
interactions between the hole and the plasmons within
this lower-order approximation.

Comparing the theoretical spectral functions of the
GW and the GW+C approaches to the experimental
angle-resolved photoemission spectra (Figures 1 and 2),
we find good agreement in both kinds of calculations
for the quasiparticle band structure at binding energies
smaller than 13 eV. However, for the satellite band struc-
ture, the agreement of experiment with GW plus cumu-
lant theory is much better than that with the GW theory.
In particular, the experimental spectrum does not show a
sharp plasmaron band as satellite at 35 eV, in stark con-
trast with the prediction of GW theory. Also, the bind-
ing energy and the intensities of the measured satellite
bands are in good agreement with the GW plus cumulant
approach, indicating that the satellite band results from
weakly interacting plasmon-hole pairs, very much as is
observed in core-level shake-up plasmon satellites[22, 26],
but of course with the addition of wave-vector dispersion.
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This shows clearly that the observed satellite structures
originate from the shake-up of plasmons and not from
the formation of plasmarons. Taking into account the
good agreement of recent GW+C calculations with spec-
troscopic measurements in nanomaterials[10, 11], we con-
clude that the GW+C method provides a unified picture
of electron-plasmon interactions in materials. This work
also calls into question some prior studies in which plas-
marons have been invoked as relevant excitations [6, 7, 9].
Future work should investigate the importance of higher-
order cumulant functions which so far have only been
studied for electron-phonon interactions[27].
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Appendix

Experimental and computational methods.— As a sub-
strate, we used a silicon wafer sufficiently conducting (n-
doped, 10-20 Ω·cm) in order to avoid charging effects in
the photoemission experiments. The single crystals were
cut (±0.05◦) and polished by Siltronix, with the surface
oriented perpendicular to the [111]-direction. The sam-
ple was introduced into an UHV chamber at a base pres-
sure of ≤ 1 × 10−11 mbar and degassed at T = 650
C for 24 hours. The crystal was then repeatedly flash-
heated up to T = 1373 C for a few seconds by direct
current heating. During flash-heating the pressure re-
mained below p = 5×10−9 mbar. This procedure re-
moved the native oxide layer from the surface and re-
sulted in the equilibrium structure of Si(111), the well-
known 7×7-reconstruction. This procedure ensured an
atomically flat surface, which is the ideal starting condi-
tion for an ARPES experiment. To obtain greater bulk
sensitivity and minimize the effects from surface states,
a photon energy of 711 eV was chosen. The photoe-
mission measurements were performed at liquid nitro-
gen temperatures to reduce the effects of thermal diffuse

scattering, which led to x-ray photoelectron diffraction
effects superimposed on the measured ARPES spectra.
These effects, although still present in the data, were
further separated out using the procedure in of Bost-
wick and coworkers[6]. The experiments were performed
at the ANTARES beam line at the Soleil synchrotron
in Paris[28], France, which employs two X-ray undula-
tors in tandem, a PGM monochromator combined with
a Scienta R4000 spectrometer. The spectrometer was
operated in an angular mode spanning a 25 or 14 degree
angular range with a resolution of 0.1 degrees. The angle
between the spectrometer and the photon beam was 45
degrees and all spectra were recorded at normal emission.
The spectrometer resolution was better than 400 meV at
pass energy 200 eV and the photon resolution was 100
meV at hν = 711 eV, yielding an overall instrumental
resolution of 130 meV. The binding energy scale was cal-
ibrated using the Au 4f7/2 peaks at 84.00 eV of a gold
reference sample.

For the full-frequency GW calculations for silicon,
we used the BerkeleyGW package[29]. For the start-
ing mean-field solution, we carried out density-functional
theory (DFT) calculations within the local density ap-
proximation (LDA) using a norm conserving pseudopo-
tential with a 45 Ry cutoff and an 8×8×8 k-point grid
as implemented in the QUANTUM ESPRESSO pro-
gram package[30]. In the GW calculations, we calculated
the frequency-dependent dielectric matrix in the random
phase approximation (RPA) using 96 empty states and
a 5 Ry dielectric cutoff. We sampled frequencies using a
fine grid with a spacing of 0.2 eV up to 150 eV and then
a coarser grid up to 300 eV.

To describe the final state of the photoelectron, we
have employed a free electron model based upon an in-
ner potential of 12.5 eV, an average binding energy of 6
eV, and allowance for the work function of the spectrome-
ter. We have also included effects from the non-negligible
photon momentum. The resulting set of final-state wave
vectors is shown in Fig. 4(b) of the manuscript as the red
arc, which represents the span of the detector in the first
Brillouin zones after translation by the appropriate recip-
rocal lattice vector Ghkl. Note that k = 0 in the spectra
corresponds to the Γ-point of the bulk Brillouin zone,
where the three highest valence bands are degenerate.
Matrix element effects were included by using tabulated
atomic cross sections and projections of the valence band
wave functions onto atomic orbitals.

First-principles GW plus cumulant theory.— In the
GW plus cumulant theory[21, 24], the Green’s function
for a hole is expressed as

Gnk(t) = iΘ(−t) exp

{
− iεnkt

~
+ Cnk(t)

}
, (1)

where εnk denotes the orbital energy from a given mean-
field theory (in this work, a density-functional theory
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FIG. 4. (a): Real space geometry of the photoemission mea-
surement. (b): Final-state wave vectors of electrons (red line)
that reach the detector. The high symmetry points of the
Brillouin zone of silicon are labeled.

starting point is employed) and Cnk(t) denotes the cumu-
lant function. This expression for the Green’s function is
obtained after the first iteration of the self-consistent so-
lution of its equation of motion assuming a simple quasi-
particle form for the starting guess.

The cumulant function can be separated into a quasi-
particle part Cqpnk(t) and a satellite part Csatnk (t) given
formally in terms of the self energy Σnk(ε) by (for t < 0)

Cqpnk(t) = − itΣnk(Enk)

~
+
∂Σhnk(Enk)

∂ε
(2)

Csatnk (t) =
1

π

∫ µ

−∞
dε

ImΣnk(ε)

(Enk − ε− iη)2
ei(Enk−ε)t/~, (3)

where µ denotes the chemical potential, η is a positive
infinitesimal, Enk = εnk + Σnk(Enk)− V xcnk is the quasi-
particle energy, and Σnk(ε) is defined through the rela-
tion

Σhnk(ε) =
1

π

∫ µ

−∞
dε′

ImΣnk(ε′)

ε′ − ε− iη
. (4)

For a given level of approximation of Σ, the cumulant
theory yields an improved Green’s function through the
above equations. In this work, we employ the first-
principles GW approximation[4, 20] for the self energy,
which gives accurate quasiparticle properties for a wide
range of weakly and moderately correlated semiconduc-
tors and insulators.

Having calculated the GW plus cumulant Green’s func-
tion from the above set of equations, we obtain the cor-
responding self energy by inverting the Dyson equation

ΣGW+C
nk (ε)− V xcnk = ε− εnk + iη −G−1nk(ε). (5)

FIG. 5. Comparison of the angle-resolved photoemission spec-
trum of silicon at different photon energies. Photon energies
of 129 eV (a) and 711 eV (b) were used.

Angle-resolved photoemission spectrum at 129 eV pho-
ton energy.— We have also measured the angle-resolved
photoemission spectrum of silicon at a photon energy of
129 eV. Fig. 5 compares the resulting measured spectrum
with the spectrum obtained with 711 eV photons. Al-
though still present at the lower photon energy, the plas-
mon satellite features are much weaker - a consequence
of the reduced extrinsic plasmon losses.
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