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Recent experiments demonstrated that isovalent doping system gives the similar phase diagram as
the heterovalent doped cases. For example, with the phosphorous (P)-doping, the magnetic order in
BaFe2(As1−xPx)2 compound is first suppressed, then the superconductivity dome emerges to an extended dop-
ing region but eventually it disappears at large x. With the help of a minimal two-orbital model for both
BaFe2As2 and BaFe2P2 , together with the self-consistent lattice Bogoliubov-de Gennes (BdG) equation, we
calculate the phase diagram against the P content x in which the doped isovalent P-atoms are treated as impuri-
ties. We show that our numerical results can qualitatively compare with the experimental measurements.

PACS numbers: 74.70.Xa, 74.25.Dw, 74.62.Dh

I. INTRODUCTION

Recent intensive studies on the 122 family of iron-pnictide
XFe2As2 (where X = Ba, Sr or Ca) compounds found that the
superconductivity (SC) can be induced by different means1–5.
In all these cases, the resulting phase diagrams are quite simi-
lar. Starting from a co-linear spin-density wave (SDW) metal,
a SC dome emerges with doping in the parent compound,
while the SDW gets suppressed. In the electron-doped and
hole-doped materials, the emergence of SC is due to the im-
balance between the electron and hole carrier densities in the
system. However, isovalent substitution of As with phospho-
rous (P) in BaFe2As2 shows similar phase diagram5–8 with-
out introducing additional net charge carriers. This raises the
question about the underlying mechanism for the phase tran-
sition from the SDW to SC, and eventually to normal metal as
the doping parameter x in the system increases, which is the
issue we wish to address in the present work.

Since P anion is smaller than As anion, it has been sug-
gested that superconductivity in this isovalent system is in-
duced by a chemical pressure5,6,9, or it is correlated with the
distinct role of lattice parameters, e.g., the As-Fe-As bond an-
gle10,11, anion-height12, and bond length of Fe-As and Fe-P13.
Besides, it has also been suggested that the uniaxial pressure8,
similar to the electron-doped Ba(Fe1−xCox)2As2 system14,15,
and charge inhomogeneity16 plays an important role in the
emergence of superconductivity. On the other hand, Rotter
and co-authors17 compared structure data determined by high-
resolution x-ray powder and single-crystal diffraction, with
theoretical models obtained by DFT calculations, and empha-
sized that even subtle details of the crystal structures are cru-
cial to magnetism and superconductivity.

In this work, we want to answer the outstanding question
that “What is the essential ingredient to cause the phase dia-
gram of BaFe2(As1−xPx)2 ? ”. Before we dive into the detail
of our minimal effective Hamiltonian, we need to address sev-
eral points for how we choose the tight-binding model. First,
in order to understand the electronic structure of the com-
pound BaFe2(As1−xPx)2 , the scatterings of charge carriers
by the randomly doped P- atoms or sites should be carefully
addressed. Since the impurity (or P-atom) concentration are

taking from 0 to 100% in the calculation, it is essential to con-
struct a large real-space lattice to capture reasonable statisti-
cal ensemble. Historically, several microscopic multi-orbital
models have been developed18–26 and we adopt a minimal
two-dimensional (2D) and two-orbital model from Tai and
his co-authors26. This model has been tested for capturing
several important features of the 122 BaFe2As2 compounds,
such as the paramagnetic band structure and Fermi surface
topology according to the dxz(dyz) orbital ordering, the en-
tire hole- and electron-doped phase diagram26, the evolution
of impurity quasiparticle states27 and the Fermi surface evolu-
tion for the co-linear SDW phase28. All these features are in
agreement with experiments. More importantly, our effective
two-orbital model helps reducing the degree of freedom from
the complexity associated with the multi-orbital models and
enables us to construct a large lattice Hamiltonian to perform
a cost-effective calculation in the presence of disorders and to
calculate the phase diagram as a function of the P-doping. It
is almost impossible to apply the three-orbital (dxz , dyz and
dxy), the five d-orbital and the eight-orbital (Fe-d+As-p) mod-
els to perform the same type of calculation29. Afterall, the
essential features of the magnetic and SC orders at arbitrary
doping could be accounted for by dxz and dyz orbitals. The
other orbitals only make minor and quantitative modifications.

II. MODEL CONSTRUCTION

We begin with BaFe2As2 , a prototype parent compound
of superconductors, showing a co-linear SDW antiferromag-
netic ground state30. The Fe atoms in BaFe2As2 form a square
lattice, while the As atoms sit in the center of each square pla-
quette of the Fe lattice and are displaced alternatively above
and below the Fe-Fe plane, which leads to two sublattices of
Fe atoms denoted by sublattice A and B. In Ref. 26, the au-
thors proposed a minimal 2-orbital model with these two Fe
atoms per unit-cell through considering the orbital ordering
physics of Fe-3dxz and Fe-3dyz orbitals, and later on it has
been proven that one could also use a gauge transform to rep-
resent this model within 1-Fe atom per unit-cell 31.

Here we start with the kinetic term of the lattice Hamilto-
nian for the mixed compound, BaFe2(As1−xPx)2 , written as,
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H0 = Ht̃ + HPinter
. Where Ht̃ is the hopping term in real

space and the tilde symbol of t̃ is presenting either for pure
BaFe2As2 , pure BaFe2P2 , or the different ones caused by the
As-P mixture,

Ht̃ =
∑

i,j,α,β,σ

t̃αβi j c
†
i α σcj β σ −

∑
i,α,σ

µ c†i α σci α σ (1)

where c†i α σ and ci α σ are respectively the creation and anni-
hilation operators for an electron with spin σ in the orbitals
α = 1 or 2 on the i-th lattice site, µ is the chemical poten-
tial which is adjusted to give a fixed filling factor, and t̃αβi j are
the hopping integrals. We choose the nonvanishing hopping
elements as26,31: t̃αᾱ±x̂ = t̃αᾱ±ŷ = t̃1, t̃11

±(x̂+ŷ) = t̃22
±(x̂−ŷ) = t̃2,

t̃11
±(x̂−ŷ) = t̃22

±(x̂+ŷ) = t̃3, t̃αᾱ±(x̂±ŷ) = t̃4, t̃αα±x̂ = t̃αα±ŷ = t̃5,
t̃αα±2x̂ = t̃αα±2ŷ = t̃6. The second term in H0 is on-site
interorbital scattering of the four Fe sublattices around the
substituted-P atom, HPinter =

∑
i,α6=β,σ Vinterc

†
i α σci β σ

here Vinter = 0.031, describes a very weak on-site interor-
bital scattering, and we assume it is caused by the existence
of substituted-P atoms. It was found the on-site interorbital
scattering will suppress, and even completely destroy the su-
perconductivity in the system32. Here, we choose the six hop-
ping integrals, t̃, to be:

t̃1−6 = t1−6 = (0.09, 0.08, 1.35, −0.12, −1.00, 0.25),

for pure BaFe2As2 system (Appendix in Ref.31);

t̃1−6 = t′1−6 = (0.25, 0.35, 1.65, −0.22, −1.45, 0.25),

for pure BaFe2P2 system;

t̃1, 5 = ã t1,5 + b̃ t′1,5, (two sets with ã+ b̃ = 1; ã, b̃ > 0),

for the NN-t on the As-P boundary;

t̃2, 3, 4 = a t2, 3, 4 + b t′2, 3, 4, (a+ b = 1; a, b > 0),

for the NNN-t around substituted-P.
(2)

where NN represents the nearest-neighbor, and NNN repre-
sents the next-nearest-neighbor. Note that, with substituted-P
atoms in the system, which is a mixing of As and P atoms,
we propose a mixed hopping integrals varying caused by the
As-P mixture as shown in Eq. 2. The a and b values may vary
according to different situations, the technical details of the
mixing in hopping integrals are given in the Appendix A.

Now, we are ready to write down the full Hamiltonian with
the modified hopping term H0 for BaFe2(As1−xPx)2 ,

H = H0 +Hint +H∆. (3)

We follow the same formalism as in Ref. 31 for the inter-
action terms, Hint and H∆. Where Hint contains an on-site
Hubbard, U , and Hund’s coupling, JH , which is responsible
for the co-linear SDW order.

Hint = U
∑
i,α,σ

〈n̂i α σ̄〉 n̂i α σ + U ′
∑

i,α6=β,σ 6=σ̄

〈n̂i α σ̄〉 n̂i β σ

+ (U ′ − JH)
∑

i,α6=β,σ

〈n̂i α σ〉 n̂i β σ

(4)

where n̂i α σ = c†i α σ ci α σ . The orbital rotation symmetry
imposes the constraint U = U ′ + 2 JH .

Here our pairing interaction is represented by H∆ =
−
∑
ijσ Vijniα↓njα↑ with Vij > 0. The mean-field decou-

pling of H∆ can be written in the following form,

H∆ =
∑
i,j,α

Vij

(
〈ci α ↓cj α ↑〉c†i α ↓c

†
j α ↑ +H.c.

)
. (5)

Vij〈ci α ↓cj α ↑〉 = ∆α
i j is the SC bond pairing order param-

eter between site i and site j. In principle, such an ‘attractive’
interaction (−Vij) between electrons in real space could be
generated via the on-site Hubbard-U interaction according to
the spin-fluctuation theory in real-space, Vij ∼ χij , as de-
scribed in Ref. 33, which makes a consistent picture as one
considers the case of spin-fluctuation theorem in k-space34.
In this paper, we want to emphasis on the effect of the mixed
hopping, t̃, and we do not address the full real-space RPA cal-
culation of Vij33. The nearest neighboring pairing interaction
VNN is known to give rise to the d-wave pairing, while the
next-nearest neighboring VNNN would be responsible for the
s±–pairing symmetry that clearly gaining experimental sup-
ports for the electron and hole-doped BaFe2As2 compounds.
We believe that the d-wave component of the SC order pa-
rameter must be completely suppressed in the compound. In
this paper, we assume that SC of BaFe2(As1−xPx)2 has the
s -pairing symmetry in the Fe-plane. Thus we only need
to consider VNNN for the pairing interaction. The interplay
between VNN and VNNN on the pairing symmetry of the
electron-doped BaFe2As2 has also been recently studied by
our group35. It was demonstrated that the d-wave compo-
nent of the SC order parameter could easily be suppressed by
the s±-wave pairing component, as well as by the disordered
scatterings due to the randomly distributed dopants in the Fe-
planes. Therefore, we only take the NNN pairing interaction
VNNN into account and treated it effectively as a constant, and
this interaction would generate a SC with the s±-wave pairing
symmetry. In our model calculation, we did not find that the
charge-density wave state is stable36.

We write down the matrix form of Eq. 3 with basis ψiα =

(ciα↑, c
†
iα↓)

Transpose, H =
∑
ijαβ ψ

†
iαHBdG ψjβ , and cal-

culate the eigenvalue and eigenvector of HBdG:

∑
j β

 Hαβ
i j ↑ ∆β

i j

∆β∗
i j −H

αβ
i j ↓

 unj β

vnj β

 = En

 uni α

vni α

 (6)

where, Hαβ
i j σ ≡ [H0 + Hint]

αβ
ijσ, is the matrix-element for

the single-particle Hamiltonian. We solve the mean-field
order parameters 〈n̂i α ↑〉 =

∑
n |uni α|

2
f(En), 〈n̂i α ↓〉 =∑

n |vni α|
2

[1− f(En)] and

∆α
i j =

Vij
4

∑
n

(uni αv
n∗
j α + unj αv

n∗
i α) tanh

( En
2kBT

)
, (7)

self-consistently with Eq. 6, where f(En) is the Fermi-Dirac
distribution function. As described above, we only consider
the NNN intra-orbital pairing with pairing potential Vij =
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VNNN = V to serve the s± pairing symmetry. To facilitate
the discussion of physical observables and generating of the
phase diagram, we define respectively the staggered lattice
magnetization and the s-wave projection of the SC order pa-
rameter at each site i, as: mi = 1

4

∑
α(〈n̂iα↑〉 − 〈n̂iα↓〉),

∆i = 1
8

∑
δ,α ∆α

i i+δ , where δ ∈ {±x̂ ± ŷ}. The neighbors
of site i are reached by δ. Besides, we also calculate the aver-
aged values 〈|M |〉 = 1

N

∑
i |mi| and 〈|∆s|〉 = 1

N

∑
i |∆i|, to

investigate the phase diagram. N is the number of Fe sites in
the real-space lattice.

Throughout this paper, we choose fixed interaction param-
eters (U, JH , V ) = (3.2, 0.6, 1.05), no matter whether there
are substituted-P atoms or not. In principal, U , JH and V
should be changed somewhat due to the substitution of P. If
we do so, our result could be better fitted to the experiment.
However, in the present study, we would like to focus our at-
tention only to the hopping effect on the phase diagram with-
out changing the interaction terms.

III. BAND STRUCTURE AND STATIC SPIN
SUSCEPTIBILITY

(a) (b)

(c) (d)

FIG. 1. (Color online) The model calculated band structure of two-
orbital model on the unfolded (1-Fe atom per unit cell) Brillouin
Zone (BZ) for (a) BaFe2As2 (x = 0), (b) BaFe2P2 (x = 1); and
Fermi surface on the unfolded BZ for (c) BaFe2As2 (x = 0), (d)
BaFe2P2 (x = 1). Here the fermi energy is shifted to zero for 1/2
filling.

In this section, we systematically study the band structure
and Fermi surface for pure BaFe2As2 and BaFe2P2 . We will
also compare these features through experiments and LDA
calculations from the literature. Due to the periodicity, the

real-space kinetic term without spin indices,
∑
t̃αβi j c

†
i αcj β +∑

i,α Vinterc
†
iαciᾱ, can be easily Fourier transformed to the

k-space, Ht̃ = 1
N

∑
k φ
†
kMkφk, with the 1-Fe per unit cell

basis. Here φk = (c1,k, c2,k)T and

Mk =

(
εs + ζ+ − µ εo + Vinter
εo + Vinter εs + ζ− − µ

)
(8)

where,

εs = 2 t̃1 (cos kx + cos ky) + 2 t̃6 (cos 2kx + cos 2ky) ,

ζ+ = 2
(
t̃2 + t̃3

)
cos kx cos ky + 2

(
t̃2 − t̃3

)
sin kx sin ky,

ζ− = 2
(
t̃2 + t̃3

)
cos kx cos ky − 2

(
t̃2 − t̃3

)
sin kx sin ky,

εo = 2 t̃5 (cos kx + cos ky) + 4 t̃4 cos kx cos ky.

We diagonalize Eq. 8 to obtain the electronic structures of
pure BaFe2As2 (t̃ = t; Vinter = 0) and pure BaFe2P2 (t̃ =
t′; Vinter = 0.031) compounds with the parameters given
in Eq. 2. The band structures and Fermi surfaces of these
two systems are shown in Fig. 1 for the 1-Fe atom per unit
cell Brillouin zone (BZ). Through the literature study, we
found that the Fermi surface for BaFe2As2 and BaFe2P2 share
very similar signature, e.g., the de Haas-van Alphen exper-
iments6,37,38, the angle-resolved photoemission spectroscopy
(ARPES) experiments39 and the LDA extracted 10-orbital
model40. Here, from our model parameter, it can be seen from
Fig. 1 that the band structures and Fermi surfaces of these two
compounds are similar to each other, however, the hole pocket
around Γ point becomes more expanded in BaFe2P2 than that
in BaFe2As2 , which is also in good agreement with experi-
ments37. Moreover, the band width of BaFe2P2 is wider than
that of BaFe2As2 , which is consistent with recent ARPES ex-
periment16. More detailed band structures and Fermi surfaces
based on the folded BZ of 2-Fe per unit cell are shown in the
Appendix B.

Now, we study the static spin susceptibility bubble for
the tight-binding model without electron-electron interaction.
The static spin susceptibility can be obtained as,

χs(q, iΩ) =− T

2N

∑
k,ωn

Tr [G(k + q, iωn + iΩ)G(k, iωn)] ,

=− 1

2N

∑
k,ν,ν′

|〈k + q, ν
∣∣ k, ν′〉|2

iΩ + Eν,k+q − Eν′,k

×
(
f(Eν,k+q)− f(Eν′,k)

)
,

(9)
where Eν,k and

∣∣k, ν〉 is the ν-th eigenvalue and correspond-
ing eigenvector given by Eq. 8.

Fig. 2 shows the static spin susceptibility χs(q, 0) versus q
for pure BaFe2As2 and BaFe2P2 , respectively. It shows the
largest values of static spin susceptibilities in both of these
systems occur around q = Q ∈ {(±π, 0); (0,±π)}, which is
responsible for the scattering vector of the co-linear SDW in-
stability18,34. At a first glance on Fig. 2, we know that the spin-
fluctuations in BaFe2As2 is much stronger than BaFe2P2 from
our model parameters. Since the Stoner condition with onsite
Coulomb interaction U = 3.2 corresponds to Uχs(q, 0) > 1
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(a) (b)

(c) (d)

FIG. 2. (Color online) The bare spin susceptibility χs versus
q with the tight-binding parameters as used in Fig. 1 for (a, c)
BaFe2As2 (x = 0); (b, d) BaFe2P2 (x = 1). While (a) and (b) show
the bare spin susceptibility in the first BZ, (c) and (d) show cuts of
bare spin susceptibility along the main symmetry directions.

for BaFe2As2 and Uχs(q, 0) < 1 for BaFe2P2 , this implies
that the co-linear SDW is stable in BaFe2As2 and absent in
BaFe2P2 . This feature is consistent with the first principle
calculations41,42 and neutron scattering experiments43–47, as
well as Ref. 48 which also shows the large intensity difference
on Q for BaFe2As2 and BaFe2P2 . If the superconductivity in
these compounds is originated from the spin-fluctuations, we
can expect that the SC pairing intensity in BaFe2As2 should
be stronger than that in BaFe2P2 , however, the magnetic in-
stability will firstly enter into BaFe2As2 . Therefore, our fo-
cus will be to study the phase diagram in the whole doping
region (0 < x < 1) of BaFe2(As1−xPx)2 in the next section.
Again, we would like to re-emphasize that our model param-
eters for BaFe2As2 and BaFe2P2 are reasonably and qualita-
tively agreed to the reality from the band structure and static
spin-fluctuation studies.

IV. MEAN-FIELD CALCULATED PHASE DIAGRAM

In the following, we study the As-P mixing effect and cal-
culate the phase diagram for BaFe2(As1−xPx)2 . Based on the
mixing parameters described in Eq. 2 and the Appendix A, we
perform the numerical study on a square lattice of 28 × 28
sites with periodic boundary conditions, and employ the lat-
tice BdG self-consistent equation given by Eq. 6. First, we
start at T = 0 for each doping level to obtain the phase bound-
aries through the site-averaged order parameters, 〈|M |〉 and
〈|∆s|〉 , as shown in Fig. 3(a). Then, we gradually increase
T to calculate the temperature dependence on Fig. 3(b). The
phase diagrams exhibited in Fig. 3 are results after making av-
erages over 25 impurity-configurations. Above or beyond the

(a) (b)

FIG. 3. (Color online) (a) Phase diagram of averaged order param-
eters 〈

∣∣M ∣∣〉 and 〈
∣∣∆s

∣∣〉 in BaFe2(As1−xPx)2 with respect to differ-
ent x at T = 0, the dash line with black square shows the average
SDW order parameter, while the solid line with circle shows the av-
erage SC order parameter, (b) The calculated T -x phase diagram of
BaFe2(As1−xPx)2 .

SDW or SC transition temperature, the relevant averaged or-
der parameters are less than 2% of those magnitudes at T = 0.
Here the temperature T is in units of the hopping term, |t5|.

(a) x = 0, 〈
∣∣M ∣∣〉 = 0.11613 (b) x = 0.20, 〈

∣∣M ∣∣〉 = 0.07634

(c) x = 0.40, 〈
∣∣M ∣∣〉 = 0.05059 (d) x = 0.45, 〈

∣∣M ∣∣〉 = 0.00160

FIG. 4. (Color online) Spatial profiles of local magnetic order pa-
rameter M in BaFe2(As1−xPx)2 with x = 0, 0.20, 0.40 and 0.45 at
T = 0, and a specific impurity-configuration is randomly chosen for
each x. × (red) represents the position of substituted-P atom.

In Fig. 3, the pure BaFe2As2 is a co-linear SDW state, and
the pure BaFe2P2 is a paramagnetic metal. The calculated SC
order in doped BaFe2(As1−xPx)2 is much reduced as if we
only consider Ht̃ for the kinetic term, and it has been fur-
ther suppressed if we also take HPinter

into account49. This
is not so surprising that the mean-field results of these two
pure compounds are expected from our static spin susceptibil-
ity study of previous section. In the region, 0 < x < 0.37,
the SDW order of BaFe2As2 is gradually suppressed by the
randomly distributed P-substitution. The SC with the s±-
pairing symmetry emerges as a competing order where it
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(a) x = 0.40, 〈∆s〉 = 0.01165 (b) x = 0.45, 〈∆s〉 = 0.02125

(c) x = 0.55, 〈∆s〉 = 0.02027 (d) x = 0.65, 〈∆s〉 = 0.00798

FIG. 5. (Color online) Spatial profiles of local SC order parameter
∆s in BaFe2(As1−xPx)2 with x = 0.40, 0.45, 0.55 and 0.65 at T =
0, and a specific impurity-configuration is randomly chosen for each
x. × (red) represents the position of substituted-P atom.

has a co-existing region with the SDW order in the region
0.37 < x < 0.43 and the SDW order is suddenly dropped
to zero at x 0.43 as indicated in Fig. 3(a). At x ' 0.45, the
SC order parameter reaches a maximum value, and gradually
decreases for x > 0.45. Finally, the SC order becomes com-
pletely suppressed after x > 0.73. The overall trend of Fig. 3
is in good agreement with many experiments5–8.

In order to understand the SDW-SC competing effect and
together with the As-P mixing picture, we present the spatial
images of the local magnetic, mi, and the SC, ∆i, order pa-
rameters respectively in Fig. 4 and Fig. 5. Below each of the
graphs of Fig. 4 and Fig. 5 is the averaged value, 〈|M |〉 and
〈|∆s|〉 , respectively. We show several different x at T = 0
with a specific configuration of the P-impurities marked by
red-× symbols.

In Fig. 4(a), the magnetic order at x = 0 corresponds to
a perfect co-linear SDW phase. These graphs, Fig. 4(a)-4(d)
and Fig. 5(a)-5(d), demonstrate how the magnetic order weak-
ens as the doping changes for x = (0, 0.2, 0.4, 0.45) and the
behavior of the SC dome for x = (0.4, 0.45, 0.55, 0.65). For
x = 0.2, we find that the SDW order is a bit suppressed
around the P-impurities as shown in Fig. 4(b). For x = 0.4,
the SDW order is further suppressed as in Fig. 4(c), more-
over, the SC order now appears as in Fig. 5(a). By comparing
Fig. 4(c) and Fig. 5(a) (x = 0.4), we learn that the SDW and
SC orders form domains that the stronger region of SC is sep-
arated from the stronger region of SDW. For x = 0.45, the
long range co-linear SDW entirely disappears but there are
still short range magnetic order with extremely weak strength
as shown in Fig. 4(d). On the other hand, Fig. 5(b) shows
the strongest SC on average, we observe that the high inten-
sity spots of the SC order are most likely setting around the

As-P boundaries. For x = 0.55, the SC order is further sup-
pressed and Fig. 5(c) shows that the high-intensity spots are
localized. Finally, when x reaches 0.65 as shown in Fig. 5(d),
the SC order is further localized and its high intensity-spots
are mostly setting on the P-site free region which tells us that
the SC pairing intensity in BaFe2As2 is stronger than that in
BaFe2P2 .

V. CONCLUSION

In conclusion, we have obtained the phase diagrams in the
isovalent substituted system BaFe2(As1−xPx)2 with an effec-
tive model for the first time. The resulting phase diagrams are
in agreement with experiments5–8. Here we suppose that the
hopping integrals between the Fe sites around the substituted-
P are altered. Besides, we assume that there exists a very weak
onsite-interorbital scattering on the adjacent four Fe site as
well. The suppress of the SDW order in this compound as x
increases is caused by the incoherent scattering effect due to
the randomly distributed P atoms. The competing SC order
starts to show up only when the SDW order becomes signifi-
cantly weakened. In our calculation, we put the pairing inter-
action Vij unchanged. However, due to the spin fluctuations,
Vij may become smaller as the concentration of substituted-P
atoms increases. Unfortunately, it is unclear how to treat this
issue in the disordered region. Since U is fixed in our sys-
tem, as a first order approximation, we can use t-J1 and -J2

model to study the superconductivity in perfect BaFe2As2 and
BaFe2P2 systems. Here Vij ∼ J2 might be weak, but it should
not be zero in BaFe2P2 . Although we keep the value of Vij
around the P-sites unchanged, we also assume a weak onsite
inter-orbital scattering-terms near these sites in our calcula-
tion. The choice of a smaller Vij around substituted-P would
not change the main results of the present paper. Beside, we
recognize that there may exist other impurity models for this
compound. In fact we have tried several different formalism,
and it appears that only the model described in the Appendix
A is able to qualitatively account for the experimental phase
diagram. With the theoretically obtained phase diagram for
BaFe2(As1−xPx)2 system, we should be able to calculate and
understand the electronic and thermodynamic properties of
this compound at any doping level x (from 0 to 1).
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VI. APPENDICES

A. The mixing hopping integrals

Here, we give the details about how the hopping integrals,
t̃, mixing with the existence of the substituted-P atoms in the
BaFe2(As1−xPx)2 system. The six hopping integrals are t1−6

for pure BaFe2As2 (see Refs. 26 and 31) and t′1−6 for pure
BaFe2P2 . The details of t1−6 and t′1−6 are given in the present
manuscript. We group the mixing hopping integrals into two
categories: i) NN hopping integrals, ii) NNN hopping inte-
grals, as shown in Fig. 6. In Fig. 6, the green-solid circle
present for the Fe atoms, the open circle present for either
As or substituted P atoms, the orange-dotted line is the NN
hopping terms (t̃1,5), the red-dashed line is the NNN hopping
terms (t̃2,3,4); we use numbers (1 ... 6) to locate the atoms
which affect the nearby NN hopping term (orange-solid line)
and alphabets (A ... G) to locate the atoms which affect the
nearby NNN hopping term (red-solid line).

1 2 3

456

A

B C

D

F

G

E

FIG. 6. Schematic picture for the concept of mixing NN and NNN
hopping terms for BaFe2(As1−xPx)2 .

Now we consider all the situations for the mixing hopping
terms for case i) and ii),
i) NN hopping integrals (the orange-solid line in Fig. 6):

t̃1, 5 =



1) Both As atoms in 2 and 5 are substituted by P:
t′1, 5,

2) Only one As atom in 2 or 5 is substituted by P:
a t1, 5 + b t′1, 5,

3) At least one As in 1, 3, 4 or 6 is substituted by P:
a′t1, 5 + b′t′1, 5,

4) All of them (1 to 6) are As atoms:
t1, 5.

(10)
where a = 1/4, b = 3/4 and a′ = 1/2, b′ = 1/2.

ii) NNN hopping integrals (the red-solid line in Fig. 6):

t̃2, 3, 4 =



1) the As atoms in A are substituted by P:
t′2, 3, 4,

2) At least one As atom in B-G is substituted by P:
a t2, 3, 4 + b t′2, 3, 4,

3) All of them (A to G) are As atoms:
t2, 3, 4.

(11)
where a = 1/4, b = 3/4. Note that there are two directions
of the NN (NNN) hopping integrals which corresponds to two
different configurations of the labeling, 1 to 6 (A to G); here
we only show one of it.

In our previous discussions, we suppose there exist
different hopping integrals between all and some certain
substituted-P atoms. The ratios of a (b) and a′ (b′) are cho-
sen arbitrarily, originally, if we choose a = 1/2, and a′ = 1,
the SDW will emerge at a big value of x ≈ 0.5. We have tried
different sets of ratios, and these values, chosen in the paper,
could give qualitatively comparable experimental phase dia-
gram.

B. Band structure and Fermi surface of the 2-Fe per unit cell
Brillouin Zone

In Fig. 7, we show the band structures and Fermi surfaces
of the pure BaFe2As2 and BaFe2P2 systems in the BZ of 2-Fe
atoms per unit cell respectively.
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(a) (b)

(c) (d)

FIG. 7. (Color online) The model calculated band structure of two-
orbital model on the 2-Fe per unit cell Brillouin Zone (BZ) for (a)
BaFe2As2 (x = 0), (b) BaFe2P2 (x = 1); and Fermi surface on the
2-Fe per unit cell BZ for (c) BaFe2As2 (x = 0), (d) BaFe2P2 (x =
1). Here the fermi energy is shifted to zero for 1/2 filling.
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