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It is proposed that the ground-state manifold of the neutral nitrogen-vacancy center in diamond
could be used as a quantum two-level system in a solid-state-based implementation of a broadband,
noise-free quantum optical memory. The proposal is based on the same-spin Λ-type three-level
system created between the two E orbital ground states and the A1 orbital excited state of the
center, and the cross-linear polarization selection rules obtained with the application of transverse
electric field or uniaxial stress. Possible decay and decoherence mechanisms of this system are
discussed, and it is shown that high-efficiency, noise-free storage of photons as short as a few tens
of picoseconds for at least a few nanoseconds could be possible at low temperature.

PACS numbers: 71.55.Cn, 03.67.Lx, 42.50.Dv, 71.70.Ej

I. INTRODUCTION

Quantum-optical memories (QOMs)1 are devices that
can store optical quantum information, and retrieve it
back on demand. QOMs are crucial for the synchroniza-
tion of quantum optical devices and communication net-
works.2 This task requires QOMs that can sustain many
storage attempts during storage time, and storage time
long enough to allow for coordination and feed-forward.2

The Raman QOM3,4 is one type of QOM that meets
both these requirements. It is based on the conversion of
an input signal photon into a long lived material excita-
tion, e.g. a spin wave, with the use of a strong control
pulse introduced into the medium with the signal photon.
The energies of the signal and control differ by exactly
the energy of the material excitation. The signal is re-
trieved by introducing another control pulse, converting
the material excitation back into light. The storage time
is the coherence time of the material excitation, and the
minimal storage attempt time is the duration of the sig-
nal, i.e. the inverse of its bandwidth, limited by the
detuning of the signal and control from resonance, and
by the energy of the material excitation.

This protocol has been recently implemented in Cs va-
por, demonstrating the storage of ∼300 ps long photons
for more than 1 µs.5–7 One major drawback of the Cs
vapor implementation is a relatively high noise level.6,7

This results from the retrieval of spurious material exci-
tations created by spontaneous Raman scattering of the
control field due to the unavoidable coupling of the latter
to the populated ground state.8

Here we propose the use of an ensemble of neutral
nitrogen-vacancy centers (NV0s) in diamond9 as an al-
ternative, solid-state platform for a broadband Raman
QOM. The NV0 was previously proposed10 as a plat-
form for quantum information processing (QIP) based
on a spin-coherent metastable excited state, inaccessi-
ble from the ground states by direct optical transition.11

Our proposal is based on a different set of NV0 states,

which, as shown below, demonstrate strong Raman cou-
pling. This is the same-spin Λ-type three-level system
formed by the two NV0 orbital ground-states and the
first optically-accessible excited state.
We analyze the level structure and show that the

ground states could be manipulated by experimentally
achievable external electric field or stress. This has two
important implications. First, the ground-state splitting,
and thus the acceptance bandwidth of the device could
be controlled. Second, complete suppression of readout
noise could be achieved by cross-linear polarization selec-
tion rules that emerge under the external field and enable
the control field couple to only one of the ground states.
Note that in contrast to the Cs case, where the stor-

age medium is a spin excitation, in our proposal it is
the orbital degree of freedom of the ground states that
is excited. Electronic orbitals are susceptible to lattice
vibrations and local distortions. For orbitally degenerate
ground states this is manifested through dynamic Jahn-
Teller (DJT) distortions.9,12 Nevertheless, we show that
at low temperatures, the coherence time should be at
least a few nanoseconds, long enough for feed-forward.
The manuscript is organized as follows. In Sect. II we

analyze the level structure of NV0 under electric field
for the ideal case of no internal strain and a single NV0

orientation, and calculate the Raman coupling and the
noise suppression factor. The conditions required for a
strong Raman coupling are discussed in Appendix A. In
Sect. III we develop a scheme for implementing noise-
free, Raman QOM using NV0s in common diamond sam-
ples containing NV0s of all orientations, and estimate
the expected memory efficiency. In Sect. IV we discuss
the influence of random strain and phonon coupling on
the ground-state manifold, and estimate the expected
noise suppression factor and memory time for realistic
experimental conditions. Spin fluctuations, charge fluc-
tuations, and intersystem crossing are discussed as well.
Low-temperature spectral measurements of the NV0 flu-
orescence, relevant to the discussion, are presented in Ap-
pendix B. Finally, in Sect. V we conclude.
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II. NV0 – AN ORBITAL Λ-SYSTEM

The nitrogen-vacancy (NV) center in diamond has two
charge states: neutral, NV0, and negatively charged,
NV−. Fig. 1 presents the ground and optically excited
states of the NV− [panel (a)] and the NV0 [panel (b)],
and the allowed optical transitions between them, under
an external electric field or stress large enough such that
spin mixing is negligible (see below).
The NV− ground state manifold is composed of three

different spin states of the same electronic orbital. This is
one of the reasons for which this system is coherent even
at room temperature,13 which enables its application for
QIP,14,15 metrology,13,16 and more. It was also recently
proposed as a platform for Raman QOM.17

However, from Fig. 1(a) it is clear that without spin
mixing, the NV− states form three independent V-
systems, each of a different spin. This means that Raman
coupling between different ground states of the NV− de-
pends on spin mixing interactions (SMIs). As we show
in Appendix A, for detunings larger than the SMIs, the
Raman coupling goes down quadratically. Therefore, the
maximal detuning, and thus the acceptance bandwidth of
an NV− Raman QOM, would be limited by the strength
of the SMIs.
SMIs can be transverse spin-orbit (SO), transverse

external magnetic field, or transverse spin-spin inter-
actions. In the NV−, due to the low symmetry, the
SO does not have a transverse part within the excited
states manifold.18,19 Transverse spin-spin interactions
can mix excited states of different spins when they are
brought together by external magnetic,20,21 electric,22,23

or stress24–26 fields. External magnetic field with a small
transverse component can do the same for the ground
states.27 In all those cases, however, the SMI is on the
order of 1 GHz or less.21

For the ∼30 GHz detuning required to avoid the inho-
mogeneous broadening of the NV− transition energy,24,25

and accommodate signal pulses of 1 ns or less, the Ra-
man coupling would be about two orders of magnitude
smaller than in an equivalent system where the SMI is
much larger than the detuning, or where SMIs are not
required for Raman coupling.
As shown in Fig. 1(b), the states of the NV0 form two

independent orbital Λ-systems, one for each spin compo-
nent. Here the Raman coupling is not limited by SMIs.
We discuss this structure in more detail below.

A. Level structure and optical transitions under
electric field, neglecting random strain

For the ideal case where internal strain is negligible,
the NV0 Hamiltonian under an external electric field (or
equivalently, external uniaxial stress9) reads,18,19

Ĥ = Ĥ0 + λ‖L̂zŜz + λ⊥

(
L̂xŜx + L̂yŜy

)

+ĤDJT − ~̂d · ~F ,
(1)
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FIG. 1: (a) [(b)] Electronic configurations (left) and schematic
level structure (right) of the NV− (NV0) under electric field
along the x̂ direction in the NV coordinate system (see text).
VB (CB) denotes the valence (conduction) band. An upward-
(downward-) pointing arrow represents an electron with spin
1

2
(- 1

2
). The ellipses in (a) represent spin-triplet configura-

tions. Only one of the three states is presented. The ellipse
in (b) represents a symmetric superposition of both electrons
occupying the Ex state or the Ey state. Only the spin 1

2

states are presented. The double-headed arrows on the right
represent allowed optical transitions. The transition dipole
direction is specified next to each arrow.

where Ĥ0 includes the single-electron energies and the
Coulomb interaction, λ‖(⊥) is the longitudinal (trans-

verse) SO coupling energy, ĤDJT is the DJT Hamilto-

nian,12 ~̂d is the electric dipole vector operator,18,19 and
~F is the electric field vector. The axes are chosen such
that ẑ points from the nitrogen atom to the vacancy and
x̂ lies in one of the three vertical reflection planes of the
NV center. No spin-spin interaction is included since, as
shown in Fig. 1(b), there is only one open-shell electron
in all the relevant states.

Due to their large separation, we treat the ground
and excited states separately. The excited states can be
spanned by the basis {A1,↑,A1,↓}. They include one non-
degenerate orbital, and are not affected by DJT distor-
tions. They also have no angular-momentum, and only
longitudinal dipole moment. Therefore, the Hamiltonian
within this manifold is proportional to a unit matrix,

Ĥes = (εes − d‖Fz)I2, (2)

where εes=521.4 THz is the zero-field excited-state en-
ergy with respect to the mean ground-state energy, Fz is
the ẑ component of the electric field, and I2 is a 2×2 unit
matrix. Since the field dependence of the excited-state
manifold is relatively weak,9 and does not lift any degen-
eracy, it will be neglected in the following discussion.

The ground state manifold can be spanned by the basis
{Ex,↑,Ex,↓,Ey,↑,Ey,↓}. Within this manifold, the trans-
verse SO interaction vanishes,22,26 but the DJT energies
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may not be zero. The Hamiltonian then becomes,18,19

Hgs =
λ‖

2

(
02 −iσz

iσz 02

)
+ (Υx − d⊥Fx)

(
I2 02
02 −I2

)

+(Υy − d⊥Fy)

(
02 I2
I2 02

)
,

(3)
where σz is the third Pauli matrix, 02 is a 2×2 zero ma-
trix, Fx(y) is the x̂ (ŷ) component of the electric field, Υx

and Υy are the DJT energies, and the mean energy of
the E manifold at zero field was set to zero.
The longitudinal SO interaction energy and the trans-

verse electric dipole moments are estimated to be λ‖ ≈
4.3 GHz and d⊥ ≈ 5 GHz·µm/V, respectively. Note that
since, to the best of our knowledge, there are no direct
measurements of these coefficients, they are estimated us-
ing the values measured for the excited E manifold of the
NV−,26,28 corrected by the ratio between the measured
strain energy coefficients of the NV0 and the NV−.9,29

This correction is applied in order to account for the
different influence of DJT distortions on the two charge
states.
The values of the DJT energies are also unknown. For

the excited E states of the NV−, the measured level struc-
ture could be fully explained assuming zero DJT ener-
gies.21,23,26 While this does not necessarily mean that
these energies are zero also for the NV0 ground states,
an upper bound could be set by noting that together
with the SO energy, the DJT energies would split the
NV0 zero-phonon line (ZPL) at zero external fields by

S0 =
√
4Υ2 + λ2

‖, where Υ =
√
Υ2

x +Υ2
y. We have per-

formed low temperature measurements on an NV0 en-
semble (see Appendix B), and could bound any possible
splitting to below 24 GHz. Given the estimated value of
λ‖, we set an upper limit of 12 GHz on Υ.
The energies of the ground and excited states, as func-

tions of an external electric field applied along the x̂ di-
rection (x̂ ‖ [1̄1̄2]30 for an NV aligned along ẑ ‖ [111]),
are presented in Fig. 2(a). The solid line presents the
case of Υ=0. The dashed, dotted, and dashed-dotted
lines present the case of Υ=12 GHz, for α=0◦, ±90◦,
and 180◦, respectively. Here α = tan−1(Υy/Υx). At
zero external field, the SO and DJT interactions mix
the Ex and Ey orbitals. In the case of no DJT inter-
action, the states would be the total angular momen-
tum projection states, E± 1

2
= (Ex,↑(↓) ∓ iEy,↑(↓))/

√
2,

and E± 3
2
= (Ex,↑(↓) ± iEy,↑(↓))/

√
2. With the DJT in-

teraction, other Ex and Ey superpositions will form, de-
pending on Υx, Υy, and λ‖. For external fields larger
than S0/dg . 5 V/µm, the states closely approach
{Ex,↑,Ex,↓,Ey,↑,Ey,↓}.
As shown in Fig. 1(b), the A1 excited-state orbital is

optically connected to both Ex and Ey ground-state or-
bitals, creating a Λ-system. This enables non-vanishing
first-order Raman coupling (FORC) between the two or-
bital ground states (see Appendix A.)
Furthermore, in this basis, ground states are cou-
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FIG. 2: (a) NV0 energy levels vs. transverse electric field.
The NV axis is along [111] (ẑ). The field is along [1̄1̄2] (x̂).
The solid line presents the case of Υ=0. The dashed, dotted,
and dashed-dotted lines present the case of Υ=12 GHz, for
α=0◦, ±90◦, and 180◦, respectively. The same convention is
used also in (b)-(d). (b) Linear polarization degree [equals 1
(-1) for x̂ (ŷ) polarization] of the optical transitions related to
the lower (blue/ dark gray lines) and the higher (green/light
gray lines) ground state. (c) The product of the Raman cou-
pling and the detuning, detuning-independent in the large-
detuning regime, in cross-linear polarizations [higher (lower)
energy light polarized along x̂ (ŷ)]. (d) Relative probability
of x̂-polarized light to couple to the higher ground state.

pled to the excited state in orthogonal linear polar-

izations. The dipole transition matrices between the
excited states, {A1,↑,A1,↓}, and the ground states,
{Ex,↑,Ex,↓,Ey,↑,Ey,↓}, for the three dipole components,
are,

Dx =
dge√
2

(
I2
02

)
, Dy =

dge√
2

(
02
I2

)
, Dz =

(
02
02

)
. (4)

The value of dge, estimated from the lifetime of the NV0

(∼20 ns31) using the formula derived in Ref. 17, is about
6 GHz·µm/V.
Fig. 2(b) shows the linear polarization degrees of

the optical transitions in the NV0 coordinate system,
(Px − Py)/(Px + Py), calculated according to Eq. (3) and
Eq. (4), as functions of the electric field, applied along
the x̂ direction. Here Px(y) is the absorbtion probability
of x̂ (ŷ) polarized light.
Fig. 2(c) shows the resulting Raman coupling - detun-

ing product, Rxy
E1E2

∆̄, detuning-independent in the large-
detuning regime [see Eq. (A1) in Appendix A], for two
ground states of different orbitals and the same spin, in
orthogonal linear polarizations (x̂-polarized control and
ŷ-polarized signal).
For quantum memory operation with a single photon

as the signal, polarization alone is usually not sufficient
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for separating the strong control from the weak signal.
Energy selective filtering is then used, and the ener-
getic separation between the control and signal fields,
tuned to the energy of the material excitation (the sep-
aration between the two ground-state levels), sets the
maximum bandwidth of the memory.5,6 As shown in
Fig. 2(a), energy splittings in excess of 50 GHz are achiev-
able with experimentally demonstrated electric fields
(∼5 V/µm)22,23,28 and/or moderate compressive uniaxial
stress (∼50 MPa).9 Thus, the bandwidth of the proposed
QOM could be as large as 20 GHz, permitting storage
of 15 ps pulses. Such large bandwidths make the NV0

system suitable for interfacing directly with parametric
down-conversion photon sources.7,32

The cross-linearly polarized selection rules induced by
the external field may additionally provide a way to sup-
press the readout noise encountered in alkali-metal va-
por Raman QOMs,6 as a polarized control field would
couple mostly to one of the ground states, considerably
suppressing the probability of creating and retrieving a
material excitation in the absence of the signal field. This
is shown in Fig. 2(d), which presents the probability
of an x̂-polarized optical field to couple to the higher
ground state, as a function of the applied external elec-
tric field. For electric field- or stress-induced splitting, S,
much larger than the zero-field splitting, S0, this prob-
ability, which is also the noise suppression factor, is ap-
proximately given by,

P ≈
λ2
‖ + 4Υ2

y

4(S − 2Υx)2
. (5)

Given a fixed value of Υ, the maximum value of P is
obtained, under the same approximation, for α=±90◦.
Therefore, for S = 50 GHz, P is at most 1/16, signifi-
cantly reducing the readout noise.
Finally, a cross-linearly polarized Λ-system enables

technically simple optical preparation and detection of
the orbital quantum state of the electrons. Optical prepa-
ration can be achieved by resonant polarized excitation,
coupled to just one of the ground states, and the con-
sequent pumping of population to the uncoupled state.
Optical detection can be achieved by resonant polarized
excitation, projecting the population of the coupled state
onto the excited state, followed by the measurement of
the resulting excited state population by, e.g., measuring
the resulting fluorescence (either at the ZPL, or at the
phonon side band).

III. QUANTUM-OPTICAL MEMORY USING
NV0S IN A (001) DIAMOND SAMPLE

For an ensemble-based quantum memory, ideally one
would like to have an ensemble of [111]-oriented NVs.
Though the growth of diamond samples with a single
NV orientation is under development, and significant ad-
vancements towards this goal have been very recently
made,33,34 such samples are not readily available yet.

Nevertheless, as will now be shown, it is possible to ob-
tain a practically noise-free ensemble quantum memory
also with the use of common, (001)-faceted samples con-
taining all NV orientations.

A. Proposed experimental configuration

In order to utilize NVs of all orientations in a (001)
sample, we propose to apply the electric field along the
[100] direction, and align the optical axis along the [001]
direction. Fig. 3(a) presents all the possible orientations
of the NV center with respect to these directions. Due to
symmetry, the magnitude of the electric field projections
on the planes perpendicular to the NV ẑ axes are all the
same. Fig. 3(b) presents the energies of the NV0 states
as functions of the applied field. The solid line presents
the case of Υ=0, while the dashed, dotted, thick dotted,
and dashed-dotted lines present the case of Υ=12 GHz
for α=0◦, 90◦, −90◦, and 180◦, respectively. Due to the
equal projection magnitudes, for Υ=0, NVs of all orienta-
tions show the same energy-field dependence. This is also
true when Υx 6= 0 but only for Υy=0. For Υy 6= 0 (dot-
ted lines), in half of the orientations the cases of Υy > 0
and Υy < 0 switch (not shown).
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FIG. 3: (a) All possible orientations of the NV center. The
nitrogen atom is in the middle. The direction of the applied
field (optical axis) is denoted by a red, horizontal (black, ver-
tical) arrow. (b) NV0 energy levels vs. electric field along
[100]. The solid line presents the case of Υ=0. The dashed,
dotted, thick dotted, and dashed-dotted lines present the case
of Υ=12 GHz, for α=0◦, 90◦, −90◦, and 180◦, respectively.
(c) The allowed transitions’ [100]-[010] linear polarization de-
gree. The blue/dark gray (green/light gray) lines present the
polarization of the transition coupled to the lower (higher)
ground state. (d) Raman coupling [the higher (lower) energy
light is polarized along [100] ([010])]. (e) Relative probabil-
ity of the higher-energy light to couple to the higher energy
ground state, summed over all orientations.
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The high-field transition-dipole projection on the (001)
plane is also the same for all orientations. As shown
in Fig. 3(c), for a high-enough field, the dipole moment
of the high-energy transition (solid line), asymptotically
aligns along the projection direction of the applied field
on the x − y plane, [±2 ± 1 ± 1], and for all orienta-
tions, its linear polarization degree relative to the [100]
and [010] axes goes to 0.6. The lower-energy transition
dipole moment asymptotically aligns along [0±1 ± 1], a
direction in the x − y plane that is perpendicular to the
projection of the applied field. It therefore contains al-
most no component along the direction of the applied
field, and its linear polarization degree tends to -1. The
Raman coupling for a higher (lower) frequency control
(signal) field polarized along [100] ([010]) is presented in
Fig. 3(d). Here too, for half of the orientations, the cases
of Υy > 0 and Υy < 0 switch (not shown). Neverthe-
less, for all orientations, the Raman coupling eventually
saturates at 1/

√
3 of the asymptotical value calculated

for the case where both the NV and the optical axis are
oriented along the [111] direction [Fig. 2(c)].

Furthermore, as shown in Fig. 3(e), the total proba-
bility for readout noise, including all NV orientations, is
still considerably suppressed. For a splitting of 50 GHz,
the noise suppression factor is at most 1/20.

Finally, optical pumping and detection would still be
effective: for a [100] polarized pump, coupled only to the
lower ground state, all the NVs will be pumped to the
higher ground state, and upon [100] polarized excitation,
the resulting fluorescence or absorption would be propor-
tional to the population in the lower ground state. The
optical pumping, memory read-in, and memory readout,
are schematically illustrated in Fig. 4.

Signal photon absorption

(a) (b) (c)

Control fieldOptical pumping

Spont. emission Signal photon emission Unaffected NV

Affected NV (Start)

Affected NV (End)

FIG. 4: (a) Optical pumping, (b) memory read-in, and (c)
memory readout, for an NV oriented along [111] under electric
field along [100]. The transition dipole direction is stated
next to each ground state. The polarization directions of the
optical fields are indicated next to the relevant arrows. The
right diagram in (c) corresponds to a readout attempt where
no photon was initially stored. The control pulse couples only
to one ground state, and no noise photon is emitted. The same
external field directions induce the same effects for all other
NV orientations as well (not shown).

B. Expected memory efficiency

The efficiency of the memory can be estimated from
the relative Raman coupling strength, R, defined as,3,4

R ≈
√

π2h

ε20c
·
√
nEC · R ·∆

λC∆
, (6)

where R · ∆ is the calculated detuning-independent
product of the Raman coupling coefficient and the
detuning [in units of Hz2m2/V2, see Fig. 3(d)], EC

is the control pulse energy, λC (∆) is its wavelength
(detuning), n is the NV0 density, ε0 is the permittivity
of vacuum, h is the Plank constant, and c is the speed
of light in vacuum. It is assumed that the Rayleigh
range of the control and signal beams is matched to
the sample length. For control pulses of 10 nJ, NV0

density of 1016 cm−3, and a detuning of 100 GHz,
significantly larger than the measured low-temperature
inhomogeneous broadening (see Appendix B), R ∼1 is
calculated, which implies a ∼25% total memory effi-
ciency.3,4 The efficiency may be significantly improved
by the use of waveguides to increase the distance along
which a high control intensity can be maintained.35

In this case, in Eq. (6) the wavelength, λC , should
be replaced by the geometric ratio d2/L, where d is
the width of the waveguide, and L is its length. For
a 1 µm × 1 µm × 1 mm waveguide, R > 50 is calcu-
lated even for a control pulse energy as low as 0.1 nJ,
indicating a total memory efficiency that exceeds 99%.3,4

IV. DECOHERENCE MECHANISMS

The use of a same-spin, orbital two-level system in the
solid state as a quantum bit comes with the cost of in-
creased sensitivity of the system to lattice distortions and
vibrations compared to a same-orbital, different-spin sys-
tem. The orbital states might also be influenced by spin
fluctuations, through the SO coupling. Furthermore, the
system might be driven into optically inactive, “dark”
states. In this section we analyze the influence of these
effects on the life and coherence times of the NV0 ground-
state manifold.

A. Random local strain

1. Inhomogeneous broadening

Random local strain will inhomogeneously broaden the
energy levels in the NV0 system. The broadening of the
optical energy difference is not a major limiting factor
since the FORC in this system does not vanish, and one
could detune away from the broadened transition energy
with little reduction in Raman coupling. The ground-
state splitting will also be broadened, leading to increased
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dephasing of ground-state orbital coherence. In principle,
if the broadening is smaller than the splitting, this deco-
herence can be counteracted by spin-echo techniques.36

In order to estimate the relative magnitudes of the
strain broadening on the different energy levels and their
dependence on the applied external electric field, we write
down the linear strain Hamiltonian, which has a similar
form to that of the electric field Hamiltonian. For the
excited states it reads,9

H(e)
es = (ǫA1eA1 + ǫ′A1

e′A1
)I2, (7)

where eA1 = ezz and e′A1
= exx + eyy are the two

possible A1 deformation modes that are linear in the
strain tensor components, eij (where i, j ∈ {x, y, z}), and
ǫA1 ≈ 192 THz and ǫ′A1

≈ −483 THz are the correspond-

ing strain energies.9

For the ground states, the strain Hamiltonian reads,9

H
(e)
gs = (ǫEeEx

+ ǫ′Ee
′
Ex

)

(
I2 02
02 −I2

)

+(ǫEeEy
+ ǫ′Ee

′
Ey

)

(
02 I2
I2 02

)
,

(8)

where {eEx
, eEy

} = {exx − eyy, 2exy} and
{e′Ex

, e′Ey
} = {2exz, 2eyz} are the two possible E

deformation-mode pairs that are linear in the strain,
and ǫE ≈ −600 THz and ǫ′E ≈ 360 THz are the corre-
sponding strain energies.9

Diagonalizing the total Hamiltonian, including strain,
the eigen-energies of the ground-states with respect to
the excited states take the form,

ε1,2 = A±
√
B2 + C2 +D2, (9)

where,

A = −εes + d‖Fz − ǫA1eA1 − ǫ′A1
e′A1

,
B = Υx − d⊥Fx + ǫEeEx

+ ǫ′Ee
′
Ex

,
C = Υy − d⊥Fy + ǫEeEy

+ ǫ′Ee
′
Ey

,

D =
λ‖

2 .

(10)

In the following, we analyze the simple case of an exter-
nal field applied along the x̂-direction, as in Sect. II. The
same analysis can also be applied for the case presented
in Sect. III, yielding similar conclusions.
For a large field applied along the x̂-direction, inducing

a ground-state splitting much larger than any zero-field
splitting, the energies are approximately ε1,2 ≈ A ± B,
and in the presence of random strain, the distribution of
ground-state energy splittings would be related mostly
to the distributions of Ex type strains,

δS ≡ δ(ε1 − ε2) ≈ 2δB

≈ 2
√
ǫ2Eδe

2
Ex

+ ǫ′2Eδe
′2
Ex

≈ 2δe
√
ǫ2E + ǫ′2E ,

(11)

where in the last step we assumed an isotropic random
strain distribution with a standard deviation of δe.

One simple way to estimate the random strain in a
given sample is by measuring the broadening of the NV0

zero-phonon line in the absence of external fields and at
low temperature (where the broadening due to dynamical
distortions is quenched – see Sect. IVB below). In this
case, for Υ 6= 0, the width of the distribution of transition
energies could be approximated by,

δε =
√
δA2 + δS2

0

≈ δe
√
ǫ2A1

+ ǫ′2A1
+ (ǫ2E + ǫ′2E)

8Υ2

4Υ2+λ2
‖

,
(12)

where S0 is the zero-field splitting, and the variation in
the SO coupling was neglected. Solving for δe and sub-
stituting in Eq. (11) yields,

δS ≈ κ√
1 + 8κ2Υ2

4Υ2+λ2
‖

δε, (13)

where κ ≡
√
(ǫ2E + ǫ′2E)/(ǫ

2
A1

+ ǫ′2A1
) = 1.34. In the case

where the 4Υ2 ≫ λ2, this expression can be further sim-
plified,

δS ≈ κ√
1 + 2κ2

δε. (14)

We have measured the low temperature (5.7 K) inhomo-
geneous broadening in an as grown optical grade CVD di-
amond sample (Element Six) to be δε ≈ 16 GHz (see Ap-
pendix B). According to Eq. (14), this sets δS ≈ 10 GHz.
As this is significantly lower than a reasonably achiev-

able field-induced ground-state splitting (S ≈ 50 GHz,
see Sect. II above), spin-echo pulse sequences could in-
deed be used to counteract the dephasing caused by this
broadening. These pulses could be either picosecond
millimeter-wave pulses,37,38 or picosecond optical pulses
utilizing two-photon transitions.39,40

2. Effect on polarization selection rules

Random local strain may also affect the polarization
selection rules through its effect on the ground-state
wavefunctions. This may weaken the noise suppression
effect induced by the cross-linear polarization selection
rules achieved with the application of external electric
field [Eq. (5), Fig. 2(d)]. Using the eigenstates of the to-
tal Hamiltonian, including strain, one can re-derive the
noise suppression factor. In the limit of an electric-field
induced splitting much larger than S0 and any random-
strain energy, this probability now reads,

P ≈ C2 +D2

4B2
. (15)

For Υy 6= 0, the width of the distribution of this value
induced by random strain is (to first order),

δP ≈ CδC

2B2
=

ΥyδS

S2
, (16)
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where the variation of the SO energy was neglected. Sub-
stituting S = 50 GHz and δS = 10 GHz, one obtains that
the maximum upper standard deviation value of the noise
suppression factor, P + δP , is still about 1/10. That
is, even in the presence of random strain on top of the
DJT interaction, the suppression of noise through cross-
polarization selection rules remains effective.

B. Dynamic distortions: memory lifetime

Dynamical strain, i.e. vibrations, can also couple to
the energy levels via the strain Hamiltonian [Eq. (8)].
This will induce transitions between the ground-states,
limiting their lifetime. Since this limitation cannot be
circumvented using pulse sequences, it is most impor-
tant to estimate the expected lifetime due to dynamical
distortions. In order to do so, one quantizes the strain
in the Hamiltonian of Eq. (8), and uses standard time-
dependent perturbation theory to derive the transition
rate.41 As two-phonon processes are quenched with re-
spect to the single-phonon process at a temperature of a
few Kelvin,41 we focus on the single-phonon process. For
this process, the rate is given by,41

γ =
2

τ
≈ 2π

~
ρχS3[2N(T, S) + 1], (17)

where ρ is related to the density of states of acous-
tic phonons in diamond (inversely proportional to the
cube of the speed of sound in diamond), χ is propor-
tional to ǫ2E + ǫ′2E , S is the ground-state splitting, and
N(T, S) = [exp(S/kBT )− 1]−1, where kB is the Boltz-
mann constant, is the average acoustic phonon number
at energy S and temperature T . Note that both upwards
and downwards transitions were included. In Ref. 42, the
coherence time of the excited Ex and Ey states of the
NV− is measured at various temperatures for an Ex–Ey

splitting of SNV − = 3.9 GHz. From a global fit to the
data, the authors concluded that at the lowest temper-
ature they could measure at, TNV − = 5.8 K, the decay
rate is consistent with 0 (-0.34±1.87 MHz, 95% confi-
dence interval). In order to obtain a lower bound on the
life time of the NV0 ground states, we take the upper
value of the rate measured in Ref. 42, 1.53 MHz, which
yields a minimal life time of τmin

NV − ≈ 1.3 µs. Given this
value, the expected lifetime of the NV0 ground states,
τNV 0 , can be bounded by,

τNV 0 > τmin
NV −

χNV −S3
NV − [2N(TNV − , SNV −) + 1]

χNV 0S3
NV 0 [2N(TNV 0 , SNV 0) + 1]

.

(18)
The ratio χNV −/χNV 0 can be estimated using the strain
energies of the NV0 and NV− to be ∼0.5.9,29 With this
ratio, for SNV 0 of 50 GHz, one obtains τNV 0 > 6 ns for
4.2 K, and τNV 0 > 17 ns for 1 K. Indeed, optical transi-
tion line-widths as low as a few hundred MHz, compara-
ble to the radiative line-width (∼100 MHz31), have been
recently measured for the ZPL of a single NV0 at 2 K.43

This estimated minimal lifetime is also quite similar to
the ground-state lifetime of 40 ns recently measured at
4.5 K and zero external fields for the negatively charged
silicon-vacancy center, a diamond defect with E symme-
try ground states and zero-field splitting of ∼ 50 GHz.41

C. Spin fluctuations

Since the initial spin-state is spatially random, it may
be possible that due to an effective transverse SO interac-
tion [see Eq. (1)], possibly induced by mixing with other
orbitals,18,19 the energy difference between the two mem-
ory states will spatially fluctuate. However, as this trans-
verse SO interaction must be less than the transverse SO
matrix element, estimated to be on the order of a few
GHz,18,19 these spatial fluctuations will be a small addi-
tion to those induced by random local strain (Sect. IVA),
and could therefore be dealt with in the same way, using
spin-echo techniques. Such spin-induced random energy
changes may also fluctuate with time, due to fluctuat-
ing magnetic fields. However, as the time-scale of such
fluctuations, due mostly to nuclear spin fluctuations, is
on the order of at least microseconds,13 slower than the
phonon-induced decay rate discussed in Sect. IVB above,
they would still be amenable to spin-echo techniques.

D. Intersystem crossing and charge fluctuations:
the effect of “dark states”

Upon resonant excitation, either to the ZPL, or to the
phonon side band, the NV0 may change its charge state
into NV−.23 It also has some branching ratio for inter-
system crossing to the 4A2 low-lying excited states.10,11

Both of these two effects transform the state of the sys-
tem into a “dark state”. That is, they quench the opti-
cal activity of the NV center at and near the NV0 ZPL,
and may therefore limit the memory time. A fluctuat-
ing local charge environment may also cause the ground-
state energies of the NV0s to fluctuate, and contribute
to decoherence. However, as the control and signal fields
are nonresonant, they will not transfer population to the
NV0 excited states, and will not be able to induce either
charge fluctuation or intersystem crossing. These effects
may be induced only during optical pumping. However,
since the time-scales related to these effects11,23 are much
longer than the time scale of optical pumping (the ra-
diative lifetime), they should not considerably interfere
with that process as well. Furthermore, optical charging
may be counteracted by resonant excitation at the NV−

ZPL,23 thereby improving the efficiency of the optical
pumping.
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V. CONCLUSION

The use of the orbital ground states of the neutral NV
center in diamond as the storage states in a quantum
optical memory has been proposed and discussed. It
was shown that an ensemble such centers could serve as
an efficient, low-noise, ultra-broadband quantum-optical
memory. The main feature that enables these capabilities
is the direct coupling of both ground states to a third,
excited level, in orthogonal polarizations. The factors
that affect the lifetime of the ground states, namely, ran-
dom local strain, lattice vibrations, spin fluctuations, and
charge fluctuations, have been analyzed. A lifetime of at
least a few nanoseconds, long enough to allow for elec-
tronic coordination and feed-forward, therefore enabling
scalability, is estimated for existing diamond samples at
liquid helium temperatures, with the application of spin-
echo pulse-trains. The implementation of this proposal
may therefore open the way to ultrafast quantum opto-
electronic networks in the solid state.
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Appendix A: Raman coupling mediated by multiple
excited states

1. General considerations

Here we formulate a condition for the first-order Ra-
man coupling (FORC) to vanish identically by destruc-
tive interference of contributions from multiple excited
states.
Defined using second-order perturbation theory valid

for a detuning much larger than the spontaneous decay
rate, the Raman coupling coefficient between two differ-
ent ground-states i and f reads,

Rβα
fi =

∑

k

Dβ
fkD

α∗
ik

∆k

≈
∑

k D
β
fkD

α∗
ik

∆
−
∑

k D
β
fkD

α∗
ik ςk

∆
2 ,

(A1)

whereDα
ik (Dβ

fk) is the transition dipole moment between

excited state k and ground state i (f) in polarization α
(β), ∆k is the detuning of the carrier frequencies of the
two coupling optical fields from single-photon resonances

with the i ↔ k and f ↔ k transitions, ∆ is ∆k averaged
over all excited states, and ςk = ∆k −∆. The approxi-
mation on the right hand side holds for detunings larger

than all values of ςk for which Dβ
fkD

α∗
ik 6= 0.

The leading term of this approximation, proportional
to 1/∆, is the FORC. It is generally the dominant term,
and in the case of a single excited state, it is the only
term. However, since its numerator is a scalar product of
two different rows of the dipole transition matrices Dα

and Dβ , it will completely vanish if at least one of these
rows is all zeros, or if the two rows are orthogonal.
If, additionally, the row product in the FORC numer-

ator is zero for every two different rows (ground states)
for all polarizations, while the same-row products assume
the same value for a given pair of polarizations, {β, α},
that is, if

DβDα† = aβαI, (A2)

where I is a unit matrix and aβα are constants, the FORC
will vanish identically.
That is, in that case the following two statements

apply: (a) From linearity, Dβ′

Dα′† = a′β′α′I, for any

polarizations α′ and β′. (b) From unitarity, for any

D̃α(β) = UDα(β)V †, where U (V ) is a unitary ma-
trix operating in the ground (excited) state manifold,

D̃βD̃α† = aβαI.
This means that if Eq. (A2) holds in some state and po-

larization bases, and therefore the FORC vanishes in that
case, the FORC will vanish for any other state and po-
larization bases, as long as ground and excited states are
not mixed. Since fields weaker than the ground-excited
energy difference transform the ground and excited state
manifolds under separate unitary transformations, such
fields will not be able to restore FORC in cases where
Eq. (A2) holds.
In cases where the FORC vanishes, the Raman cou-

pling would decay as the average detuning squared, and
would rapidly become ineffective for detunings larger
than the relevant excited state splittings.

2. Coupling between states of different spins

One important set of cases in which Eq. (A2) holds and
the FORC vanishes identically, involves ground states
with different spins (in the term “spin” we refer here
to both electronic and nuclear spin) and the same or-
bital function, and excited states that can be unitarily
transformed into states that are products of an orbital
function and a spin function (SO-products). This is be-
cause the transition dipole moments in the SO-product
basis are composed of a product of some orbital function
and a spin delta-function,

D
α(β)
i(f)k = dα(β)ogok

δsi(f)sk , (A3)

where og (ok) denotes the orbital of the ground states
(kth excited state), si(f) denotes the spin of the initial
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(final), ground state, and sk denotes the spin of the kth

excited state. The product of two rows of the dipole
matrices would then be given by,

∑

k

Dβ
fkD

α∗
ik =

(
∑

ok

dβogokd
α∗
ogok

)
δsisf = aβαδif . (A4)

One can clearly see that this satisfies Eq. (A2).
The excited states that should be included are those

that are closest to resonance with the coupling light, and
are separated from one another by less than the detun-
ing. The FORC may therefore not vanish if spin mixing
interactions (SMIs), which mix SO-products of different
spins and energetically separate them, are larger than the
detuning.
One prominent example is the D-lines of Alkali atoms,

which stem from transitions between a ground s mani-
fold, and two excited p manifolds mixed and separated
by the SO interaction. There, FORC between ground
states with different spins vanishes for detunings larger
than the SO interaction (∼7 THz in Rb; ∼17 THz in Cs),
but exists for smaller detunings, e.g. when each SO-split
p manifold, where the states cannot be transformed into
SO-products, can be considered separately.
Another example where the FORC vanishes in this way

is the charged exciton in a quantum dot, where without
external magnetic fields there is no SMI at all, and all
the states can be transformed into SO-products. Indeed,
nonresonant optical control, based on stimulated Raman
transitions, could be demonstrated only when the trans-
verse external magnetic field used for inducing SMI was
high enough to force the level splitting to be on the order
of the detuning.39

3. NV− and NV0

As shown in Fig. 1(a), the ground-state manifold
of the NV− can be spanned by three SO-products,
{A2,0,A2,1,A2,−1}, all sharing the same orbital part.
The excited states can also be spanned by SO-products,
{Ex,0,Ex,1,Ex,−1,Ey,0,Ey,1,Ey,−1}. As shown above, this
is sufficient for the FORC between any two ground states
to identically vanish for detunings larger than excited
state splittings related to spin mixing. The magnitude of
such splittings is set in this case mostly by the magnitude
of transverse spin-spin interactions, and therefore would
be at most ∼1.5 GHz.21

For the NV0, on the other hand, when substituting the
transition dipole matrices, Eq. 4, into the left hand side
of Eq. A2, one can immediately see that the row-product
matrices DxDy† and DyDx† are non-diagonal: there are
pairs of different ground states (different orbitals, same
spin) for which the row-product is non-zero. For those
states, the FORC will not vanish, and, in fact, will be
the only term.

Appendix B: Line shape measurements

Here we present low temperature fluorescence spec-
troscopy measurements of the NV0 ZPL, and place up-
per limits on the inhomogeneous broadening and the zero
field splitting.
The studied sample was an optical grade, type Ib cvd

diamond, purchased from Element Six. The sample did
not go through any post-growth treatments. Neverthe-
less, fluorescence from both NV− and NV0 could be quite
easily detected upon excitation with 532 nm laser light
(Coherent Verdi V8), focused on the sample by a ×20,
NA=0.29 long working-distance objective lens (Sigma
Koki PAL-20-L). The sample was cooled to 5.7 K using
a helium flow cryostat (Oxford Instruments). The flu-
orescence was collected through the same lens and was
spectrally analyzed by a 0.48 m spectrometer (Digikröm
DK480) equipped with a 1200 groove/mm diffraction
grating, and a cooled ccd camera (Andor iXon). The
spectral resolution at the NV0 ZPL was determined to
be 24.5 GHz full width at half maximum by measuring
the spectrum of the excitation laser (which has a single
longitudinal mode), and scaling by the ratio of the ZPL
and laser wavelengths.
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FIG. 5: (a) NV0 ZPL spectrum at 5.7 K. The circles present
the measured data. The solid black line is a single Gaussian
fit convolved with the measured response function. The latter
is presented by the green dotted line. (b) Fitting quality (sum
of squared residuals, left axis) and fitted width (one standard
deviation, right axis) of a double Gaussian model, versus the
splitting between the two Gaussians. The splitting at which
the fitting quality is twice worse than the best achievable one
is marked by the dotted lines. The corresponding fit is pre-
sented in (a) by the red dashed-dotted line.

The measured spectrum, integrated for 1500 s at
28 mW excitation power, and the measured and scaled
response function are presented in Fig. 5(a) by the blue
circles and the green dotted line, respectively. The solid
black line is a fit to a single Gaussian convolved with the
response function. The standard deviation of the fitted
Gaussian is 16 GHz.
In order to estimate an upper limit on a possible zero-

field splitting of the ZPL, a two-Gaussians model was
fitted to the data. The solid blue line on the left axis of
Fig. 5(b) presents the relative sum of squared residuals
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of the fit versus the splitting between the two Gaussians.
The dashed green line on the right axis presents the best
fitted Gaussian width (one standard deviation). An up-
per limit on the splitting can be placed by the splitting
for which the sum of squared residuals doubles with re-

spect to its minimal value (achieved for zero splitting).
This occurs for a splitting of ∼24 GHz. The correspond-
ing fit is presented in Fig. 5(a) by the red dashed-dotted
line. We therefore set an upper bound of 12 GHz on the
DJT energy.
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