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Probes that measure the local thermal properties of systems out of equilibrium are emerging as
new tools in the study of nanoscale systems. One can then measure the temperature of a probe that
is weakly coupled to a bias-driven system. By tuning the probe temperature so that the expecta-
tion value of some observable of the system is minimally perturbed, one obtains a parameter that
measures its degree of local statistical excitation, and hence its local heating. However, one antici-
pates that different observables may lead to different temperatures and thus different local heating
expectations. We propose an experimentally realizable protocol to measure such local temperatures
and apply it to bias-driven quantum dots. By means of a highly accurate open quantum system
approach, we show theoretically that the measured temperature is quite insensitive both to the
choice of observable and to the probe-system coupling. In particular, even with observables that are
distinct both physically and in their degree of locality, such as the local magnetic susceptibility of the
quantum dot and the global spin-polarized current measured at the leads, the resulting local temper-
atures are quantitatively similar for quantum dots ranging from noninteracting to Kondo-correlated
regimes, and are close to those obtained with the traditional “local equilibrium” definition.

PACS numbers: 72.20.Pa, 79.10.-n, 71.27.+a, 73.63.Kv

I. INTRODUCTION

Temperature is a thermodynamic quantity of funda-
mental importance in the description of systems at equi-
librium. However, the extension of this concept to sys-
tems far from equilibrium is not obvious. From an op-
erational point of view, temperature is defined as that
quantity measured by a thermometer coupled to the sys-
tem with which it reaches thermal equilibrium. Precisely
because the thermometer plus the system reach a state
of global equilibrium when coupled, the quantity that is
measured by the thermometer is then attributed to the
system in the limit of weak coupling and negligible heat
capacity of the thermometer. This definition is no longer
valid for a system out of equilibrium such as one driven
by a constant bias1. In this case, electron-electron inter-
actions and electron-phonon interactions are expected to
induce electronic and ionic “temperatures” different from
those of the same system at equilibrium1. The question
then is: What are these temperatures and how do we
measure them directly?
Several solutions have been proposed. For instance,

Engquist and Anderson have introduced the concept of
ideal potentiometer/thermometer2. In this case, local
chemical potential and local temperature are defined by
a “local equilibrium condition”: the net particle and heat
current flowing through the potentiometer/thermometer
are set to zero3–11. Although such a definition is ap-
pealingly intuitive and has been used extensively in the
past, we do not have means to directly measure heat cur-

rents (unlike particle currents for which ammeters are
available)12, and therefore its experimental realization is
very limited. Other theoretical definitions include the
use of approximate distribution functions13, information
compressibility14, or generalized fluctuation-dissipation
theorems15, to name just a few (for a more complete set
of definitions see, e.g., Ref. 12). All of these, however,
suffer from some limitations in their experimental real-
izations and therefore are also of limited use.

On the experimental side, methods have been devised
to determine local temperatures by monitoring proper-
ties that are sensitive to thermal fluctuations, such as
the bond rupture force16, the junction lifetime17,18, the
mechanical stretching distance19, the bias-driven current
noise20, and the surface-enhanced Raman intensities21,22.
These probes, however, provide only an indirect measure-
ment of a “local temperature” leaving the original ques-
tion still open.

There is, instead, an increasing body of experimen-
tal studies in which thermal probes are coupled directly

to driven nanoscale systems with a resolution that is
approaching hundreds of nanometers or less23–30, thus
making them ideal as local thermometers. With these
thermometers an operational definition of temperature
has been proposed by imposing a minimal perturbation

condition31, in which the temperature of the probe, Tp, is
varied, while monitoring some observable of the system,
in such a way that the expectation value of that observ-
able is minimally perturbed. The probe temperature sat-
isfying this condition is then a parameter attributed to
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the system, which characterizes its local excitations out
of equilibrium. This type of definition has been used, for
instance, in the study of the thermoelectric response of
nanoscale systems to applied thermal gradients, leading
to the prediction of temperature oscillations10,32. It is an
operational definition that is relatively straightforward
to implement experimentally. However, it leaves open
the prescription of what type of observable one should
use, and whether different observables lead to quantita-
tively different temperatures. In addition, in the original
paper31, the thermal probe was assumed to be a bosonic
system, and hence no electric current could flow between
the system and the probe. This is quite a strong limita-
tion since the experimental probes that are being devel-
oped are generally fermionic systems23–30. In this case,
an extra constraint related to the local chemical potential
of the thermal probe needs to be introduced.
In this paper, we discuss a protocol to measure the

local temperature of a system out of equilibrium that is
coupled to a thermal probe. We consider a fermionic
probe and allow the measurement of an observable of
the system in such a way that the minimal perturbation
condition be satisfied. We show that by appropriately
setting the chemical potential of the probe at the begin-
ning of the measurement, the choice of observables quite
distinct both physically and in their degree of locality
lead to local temperatures that are quantitatively simi-
lar even for strongly correlated systems, and very close to
those obtained with the often-used local equilibrium tem-
perature. These results lend support to the extrapolated
parameter as the “temperature” of the system.
The remainder of this paper is organized as follows.

In Sec. II we propose an experimentally realizable proto-
col to measure local temperatures for quantum dot (QD)
systems out of equilibrium. We then give a brief intro-
duction on the basic features of the hierarchical equa-
tions of motion approach, which is used to carry out
the numerical investigations in this paper. In Sec. III we
demonstrate the usefulness and practicality of the pro-
posed operational protocol by applying it to QDs in both
noninteracting and Kondo-correlated regimes. Finally,
concluding remarks are given in Sec. IV.

II. METHODOLOGY AND MODEL

A. An operational protocol for the determination

of local temperature

We consider a quantum dot in contact with two leads
as sketched in Fig. 1. Under a bias voltage or a thermal
gradient across the two leads, the temperatures (chemical
potentials) of left and right leads are TL and TR (µL and
µR), respectively. To determine the local temperature
T ∗ and local chemical potential µ∗ of the QD, the dot
is coupled to a third lead (the probe), whose chemical
potential µp and temperature Tp are tunable.
The first step of the protocol we suggest is the deter-

FIG. 1. Schematic diagram of the proposed protocol for the
measurement of local temperature in a QD connected to two
leads (L and R). A weakly coupled probe with tunable µp

and Tp is used. The expectation value of an observable, Op,
is monitored while Tp is varied.

mination of the chemical potential of the probe. Ide-
ally, at zero bias (equilibrium) the minimal perturbation
condition31 should yield exactly the background equilib-
rium temperature Teq. This can be accomplished as fol-
lows. In the presence of an applied bias voltage or a
thermal gradient33, we first determine µ∗ as

µ∗ = ζL µL + ζR µR. (1)

The weight coefficients ζL and ζR are determined by34

ζα = 1−

∣

∣

∣

∣

Ip(Tα, µα)

Ip(TL, µL)− Ip(TR, µR)

∣

∣

∣

∣

. (2)

Here, Ip(Tα, µα) is the electric current measured at the
probe, by setting the chemical potential and temperature
of the probe to be identical with those of lead-α.
We then set µp = µ∗, and monitor the change of a

given system observable O = 〈Ô〉 as Tp varies. The lo-
cal temperature T ∗ is finally determined by the minimal
perturbation condition31

T ∗ = argmin
Tp

∣

∣O0 + δOp −Op(Tp, µ
∗)
∣

∣. (3)

Here, O0 is the expectation value of Ô measured without
the probe, while Op(Tp, µ

∗) is its measured value with
the probe coupled to the dot. The nonzero probe-dot
coupling, ∆p, results in a finite perturbation to the in-
trinsic dot properties. This effect is accounted for by the
correction term δOp in Eq. (3) determined by

δOp = ζL Op(TL, µL) + ζR Op(TR, µR)−O0. (4)

Here, Op(Tα, µα) is measured by setting Tp and µp to
be identical to their counterparts of lead-α. In doing
so, the probe is deemed as part of lead-α. Since the
QD is coupled to both left and right leads, the overall
influence of the probe can be estimated as a weighted
average given by Eq. (4). There, the weight coefficients
{ζα} are assumed to be same as those used in Eq. (1).
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Note that the protocol proposed above is easily realiz-
able experimentally, and is universally applicable to any
QD system. Also, for all the QDs studied in this work,
the minimal perturbation of 〈Ô〉 searched for in Eq. (3) is
always found to be zero, i.e., Op(Tp, µ

∗) = O0 + δOp can
always be satisfied at a certain Tp. This indicates that
the chosen observable Op changes monotonically and sen-
sitively as Tp varies in the vicinity of T ∗.
It is important to verify that at exactly zero bias the

local temperature measured by the minimal perturbation
condition is exactly the physical equilibrium temperature
Teq. This can be seen from Eqs. (1)–(4). At zero bias,
we find that from Eq. (1) the local chemical potential is
just the equilibrium Fermi energy. Then Eq. (3) reduces
to the simple form Op(Tp) = Op(Teq), with the trivial
solution Tp = Teq.

B. Hierarchical equations of motion approach for

quantum impurity systems

We now apply Eqs. (1)–(4) to QD systems described by
a single-impurity Anderson model (SIAM)35,36. The to-
tal Hamiltonian of the QD system is H = Hdot+Hlead+
Hcoupling. The dot is described by Hdot = ǫd n̂d+Un̂↑n̂↓.
Here, n̂d =

∑

s n̂s =
∑

s â
†
s âs, where â†s (âs) creates

(annihilates) a spin-s electron on the dot energy level
ǫd, and U is the on-dot electron-electron interaction

strength. Hlead =
∑

αks ǫαk d̂
†
αks d̂αks and Hcoupling =

∑

αks tαk â
†
s d̂αks+H.c. represent the noninteracting leads

and dot-lead couplings, respectively. Here, d̂†αks (d̂αks)
creates (annihilates) an electron on the orbital |k〉 of lead-
α (α = L,R or p); and tαk is the coupling strength be-
tween the dot level and lead orbital |k〉.
We employ a hierarchical equations of motion (HEOM)

approach to compute the reduced density matrix ρ
of open fermionic systems37,38, so as to characterize
the equilibrium and nonequilibrium properties of the
SIAM39,40. The HEOM approach has been used to study
static and dynamic Kondo effects in QDs41–45, and it is
in principle exact if all orders of the hierarchy expansion
were included. In practice, the numerical results con-
verge to the exact values rapidly and uniformly with the
increasing truncation level of the hierarchy. Once the
convergence is achieved, the results are guaranteed to be
quantitatively accurate38.
The derivation of the HEOM formalism for fermionic

environment has been detailed in Refs. 37, 41, 43, and
46. Here, we only introduce some of its basic features.
The final form of the HEOM can be cast into a compact
form as follows37

ρ̇
(n)
j1···jn

= −
(

iL+

n
∑

r=1

γjr

)

ρ
(n)
j1···jn

− i
∑

j

Aj̄ ρ
(n+1)
j1···jnj

− i

n
∑

r=1

(−)n−r Cjr ρ
(n−1)
j1···jr−1jr+1···jn

. (5)

Here, ρ(0)(t) = ρ(t) ≡ trenv ρtotal(t) is the reduced den-

sity matrix, and {ρ
(n)
j1···jn

(t);n = 1, · · · , L} are the aux-
iliary density matrices, with L denoting the truncation
level. Usually a relatively low L (say, L = 4 or 5) is often
sufficient to yield quantitatively converged results.
In Eq. (5) the multi-component index j ≡ (σαµνm)

characterizes the transfer of an electron from/to (σ =
+/−) the impurity level-µ to/from level-ν via the αth
lead and associated with a characteristic memory time
γ−1
m . The Grassmann superoperators Aj̄ ≡ Aσ̄

µ and
Cj ≡ Cσ

µνm are defined via their fermionic/bosonic ac-

tions on an operator Ô as Aσ̄
µÔ ≡ [âσ̄µ, Ô]∓ and Cσ

µνmÔ ≡

ησµνmâσν Ô ± (ησ̄µνm)∗Ôâσν , respectively, with σ̄ being the
opposite sign of σ. The on-dot electron interactions are
contained in the Liouvillian of impurities, L · ≡ [Hdot, · ].
In the framework of the HEOM, the effect of the

leads is captured by the hybridization functions ∆α(ω) ≡
π
∑

k |tαk|
2δ(ω − ǫαk). For numerical convenience, a

Lorentzian form ∆α(ω) = ∆αW
2/[(ω − µα)

2 + W 2] is
adopted, where ∆α is the coupling strength between the
dot and lead-α, and W is the lead band width. Hereafter,
∆ = ∆L +∆R is taken as the unit of energy.
The expectation value of any system observable Ô

is computed via O = tr(ρÔ). The energy distribu-
tion of electric and heat currents flowing into lead-α
as required to determine T ∗ with the “local equilibrium
condition”47–50 are calculated as

jkα(ω) = (−1)k+1

(

i

π

)

(ω − µα)
k∆α(ω)

×
{

G<(ω) + 2 ifβ(ω − µα) Im[Gr(ω)]
}

. (6)

Here, we have set e = ~ = 1; k = 0 and 1 correspond
to the electric and heat currents, respectively; fβ(ω) is
the Fermi function; and the lesser and retarded Green’s
functions G< and Gr are computed from correlation func-
tions. The global electric and heat currents flowing into
lead-α are Iα =

∫

dω j0α(ω) and JH
α =

∫

dω j1α(ω), respec-
tively. Note that the electron-phonon interactions and
the phonon contribution to heat current have been ne-
glected, since their effects are negligibly small in QDs at
low temperatures51.
To have an accurate measurement of T ∗ and thus test

its robustness with respect to the choice of observables,
the probed observable O must vary sensitively with Tp.
We then choose some spin-related properties, because
spin polarization processes require low excitation ener-
gies. A promising candidate is the local magnetic suscep-
tibility

χm(ω) = i

∫ ∞

0

dt eiωt 〈[m̂z(t), m̂z(0)]〉. (7)

Here, m̂z = gµB(n̂↑−n̂↓)/2 is the local magnetic moment
due to on-dot spin polarization, g is the gyromagnetic ra-
tio and µB is the Bohr magneton. In this work, we focus
only on the zero-frequency (static) component of χm(ω),

i.e., χm ≡ χm(ω = 0) = i
∫ t

0
dt 〈[m̂z(t), m̂z(0)]〉 =
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FIG. 2. (a) Local temperature T ∗ of a noninteracting QD
determined by different protocols versus background T . The
dashed line is a guide to eyes.(b) Variation of the local mag-
netic susceptibility χm and total spin current ImL with Tp

at a background T = 0.133∆. The parameters adopted are
(in units of ∆): ǫd = −2.67, U = 0, ∆L = 2∆R = 0.67,
µR = −µL = 0.53, and W = 40.

limHz→0〈m̂z〉/Hz, with Hz being the applied magnetic
field. It has been demonstrated that the HEOM approach
is capable of yielding highly accurate χm for strongly cor-
related QDs; see Fig. 4 of Ref. 40. Another choice is the
global spin-polarized current

Imα = 〈Îα↑〉 − 〈Îα↓〉, (8)

with Îαs = i
∑

k[n̂αks, Hcoupling]. The different degree of
locality of these quantities provides an even stronger test
for our operational protocol.

III. RESULTS AND DISCUSSIONS

A. Local temperature of a noninteracting QD

We consider first a noninteracting QD (U = 0) un-
der a bias voltage µR = −µL = 1

2V . The HEOM
method has the virtue that, for noninteracting systems
the hierarchy terminates automatically at L = 2 with-
out any approximation37. Figure 2(a) plots T ∗ deter-
mined by Eqs. (1)–(4) versus the background tempera-
ture T = TL = TR. We have set the dot-lead couplings
to be asymmetric with ∆L = 2∆R. The weight coeffi-
cients in Eq. (1) are then ζα = ∆α/∆

34, and the local
chemical potential is thus µ∗ = 1

3 µL = − 1
6V .

Figure 2(b) depicts the relative change of observable
O = χm or ImL , [Op(Tp, µ

∗) − (O0 + δOp)]/(O0 + δOp),
versus the temperature of probe Tp. Clearly, Op(Tp, µ

∗)
varies monotonically with the increasing Tp, and it
crosses the reference value (O0 + δOp) at a certain Tp,
where the minimal (zero) perturbation condition is ful-
filled, and we have Op(Tp, µ

∗) = O0 + δOp. The pertur-
bations of the two observables by the probe reduce to
zero at roughly the same Tp ≃ 0.28∆. Therefore, from
Eq. (3) we have T ∗ = 0.28∆ at T = 0.133∆.
In Fig. 2(a) we also compare T ∗ obtained by differ-

ent protocols over a large range of T . It is shown that
T ∗ determined by the minimal (zero) perturbation of χm
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FIG. 3. Panels (a) and (b) depict the energy distribution of
electric and heat currents flowing into α-lead (α = L,R),
respectively. Panels (c) and (d) plot the energy distribu-
tion of electric and heat currents flowing into the probe
when the local equilibrium condition Ip = JH

p = 0 is sat-
isfied, respectively. The parameters adopted are (in units
of ∆): ǫd = −2.67, U = 0, ∆L = 2∆R = 100∆p = 0.67,
µR = −µL = 0.53, W = 40, and TL = TR = 0.133.

and ImL agree remarkably well with each other (with a
relative error less than 0.1%). They also agree closely
and consistently with that obtained with the local equi-
librium condition (with a relative error less than 4.5%).
A closer look at both the electric and heat currents that
flow between the probe and the system when the minimal
perturbation is satisfied reveals that they are both close
to zero (see Tables I and II), thus explaining the agree-
ment between the two protocols. It is also found that,
under a bias voltage, T ∗ is always higher than T , and
their deviation increases as T decreases. In particular,
T ∗ maintains a finite value (0.25∆) even as T → 0. This
indicates that the local heating feature becomes more
visible at a lower background T 1.
Thermodynamically, the dot can be deemed as a re-

versed heat engine, and the leads act as heat baths as
well as electron reservoirs. The internal energy of the
dot is

U = Q+W + µ∗〈n̂d〉, (9)

with Q and W being the heat and work gained by the
dot, respectively. Taking the time derivatives of both
sides of Eq. (9) leads to

JE
d = JH

d + P + µ∗ d〈n̂d〉

dt
. (10)

Here, JE
d (JH

d ) is the energy (heat) current flowing into
the dot, and P is the electric power. In a stationary state,
U is a constant, and thus JE

d = d〈n̂d〉/dt = 0. Therefore,
P = −JH

d =
∑

α JH
α .

Figure 3(a) and (b) depict the energy distribution of
bias driven electric and heat currents [j0α(ω) and j1α(ω)]
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FIG. 4. (a) Local temperature T ∗ of an interacting QD de-
termined by different protocols versus background T . The
dashed line is a guide to eyes. The inset shows the Kondo
spectral peak of the dot at various T . (b) Variation of system
observables χm and ImL with Tp, at a background T = 0.1∆
lower than the Kondo temperature TK = 0.82∆. The pa-
rameters adopted are (in units of ∆): ǫd = −1.2, U = 2.4,
∆L = ∆R = 0.5, µR = −µL = 0.25, and W = 5.

in the noninteracting QD system studied in Fig. 2, re-
spectively. In the absence of the probe, j0L(ω) = −j0R(ω)
holds for any ω, which ensures the conservation of elec-
tric current (

∑

α Iα = 0). In contrast, the heat currents
flowing through left and right leads do not cancel out
(
∑

α JH
α 6= 0) – the dot behaves as a hot spot and dissi-

pates heat into both leads.
To utilize the local equilibrium condition, the chemical

potential µp and temperature Tp of the probe are tuned
until the electric and heat currents flowing into the probe,
Ip =

∫

dω j0p(ω) and JH
p =

∫

dω j1p(ω), are both zero.

Figure 3(c) and (d) display j0p(ω) and j1p(ω) when local

equilibrium is reached (Ip = JH
p = 0), respectively.

B. Local temperature of a Kondo QD

We now investigate interacting QDs under an anti-
symmetric bias voltage. We choose to examine a half-
filling dot with U = −2ǫd = 2.4∆. It has been shown
(through the temperature-dependent conductance) that
this QD exhibits prominent Kondo features at T <
TK

38, with TK = 0.82∆ being the characteristic Kondo
temperature52. This is evident from the inset of Fig. 4(a)
where the dot spectral function A(ω) = − 1

π
Im[Gr(ω)]

is plotted for various background temperatures showing
that the QD exhibits more prominent Kondo features as
T lowers, as confirmed by the higher and sharper Kondo
spectral peak centered at ω = µ∗. The chemical poten-
tials of the leads are µR = −µL = 0.25∆. With the sym-
metric dot-lead couplings (∆L = ∆R), the local chemical
potential on the dot is µ∗ = 0 by Eq. (1).
Figure 4(a) compares T ∗ determined by different pro-

tocols. Limited by computational resources at our dis-
posal, the HEOM calculations are done at L = 4 for
the interacting QD53. The results are considered to be
highly accurate within the explored range of tempera-
tures, since the computed conductance well reproduces

1E-3 0.01 0.1 1
0.27

0.28

0.29

0.30

0.31

 minimal perturbation of m

 minimal perturbation of I m
L

 local equilibrium

T* /

p/ L

FIG. 5. Local temperature T ∗ of a noninteracting QD de-
termined by different protocols versus the system-probe cou-
pling strength ∆p. The background temperature is fixed at
T = 0.133∆. The parameters adopted are (in units of ∆):
ǫd = −2.67, U = 0, ∆L = 2∆R = 0.67, µR = −µL = 0.53,
and W = 40.

the Kondo scaling relation38,45. As shown in Fig. 4(a),
the local temperatures T ∗ determined by the minimal
(zero) perturbation of χm and ImL agree remarkably well
with each other (with a relative error less than 2%), as
well as with the local equilibrium temperature (with a
relative error less than 0.6%). This is again because the
electric and heat currents flowing into the probe are both
close to zero when the minimal perturbation is satisfied;
see Tables I and II.
Similar to the noninteracting QD, the local tempera-

ture T ∗ on the interacting dot is always higher than the
background T , and it approaches a finite value (T ∗ ≃
0.15∆) as T → 0. As clearly indicated by Fig. 4(b),
both the relative changes of χm and ImL vary monotoni-
cally with Tp, while the latter has a much more sensitive
temperature dependence. More importantly, the pertur-
bations of both χm and ImL reduce to zero at almost the
same Tp, which highlights again the generality of our op-
erational definition.

C. The influence of probe-dot coupling strength ∆p

We then investigate the influence of the coupling
strength between the probe and the system. For numeri-
cal convenience we choose to examine the noninteracting
QD explored in Fig. 2. Figure 5 shows T ∗ determined by
using the minimal perturbation as well as the local equi-
librium conditions. As the probe-dot coupling reduces to
zero, all these temperatures approach a constant value as
expected. More telling though is the fact that, even with
a relatively large probe-dot coupling strength (compara-
ble with the dot-lead couplings) the resulting T ∗ shows
only a minor change of∼ 7%, indicating again the robust-
ness of the proposed protocol. We thus conclude that the
measured local temperature depends rather insensitively
on the probe-dot coupling ∆p, which is favorable for ex-
perimental realizations.
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scaled electric current (e/h) scaled heat current (∆/h)

T/∆ Ip/∆p IL/∆L IR/∆R JH

p /∆p JH

L /∆L JH

R/∆R (JH

L + JH

R )/∆

0.133 2.9× 10−3 -0.37 0.74 −9.8× 10−3 0.16 0.47 0.26

0.667 −5.5× 10−2 -0.54 1.08 -0.17 -0.25 1.65 0.39

TABLE I. Electric and heat currents flowing into leads coupled to a noninteracting QD when the minimal (zero) perturbation
condition is satisfied. The parameters adopted are (in units of ∆): ǫd = −2.67, U = 0, ∆L = 2∆R = 100∆p = 0.67,
µR = −µL = 0.53, and W = 40.

scaled electric current (e/h) scaled heat current (∆/h)

T/∆ Ip/∆p IL/∆L IR/∆R JH

p /∆p JH

L /∆L JH

R/∆R (JH

L + JH

R )/∆

0.4 −1.3× 10−9 -1.32 1.32 −6.9× 10−3 1.33 1.33 2.66

0.8 −4.9× 10−11 -1.01 1.01 −3.9× 10−3 1.02 1.02 2.04

TABLE II. Electric and heat currents flowing into leads coupled to an interacting QD when the minimal (zero) perturbation
condition is satisfied. The parameters adopted are (in units of ∆): ǫd = −1.2, U = 2.4, ∆L = ∆R = 100∆p = 0.5,
µR = −µL = 0.25, and W = 5.

As demonstrated clearly in Sec. III A and III B, the lo-
cal temperatures measured by using the minimal pertur-
bation condition agree closely and consistently with those
determined by the local equilibrium condition. This is
because both the electric and heat currents flowing into
the probe are close to zero when the minimal perturba-
tion condition is satisfied. Tables I and II verify that
when the minimal perturbation is reached the values of
both Ip and JH

p are indeed negligibly small for the nonin-
teracting and interacting QDs investigated in Sec. III, re-
spectively. It is clearly seen from the tables that, even af-
ter being scaled by the small dot-probe coupling strength
∆p, the electric and heat currents flowing through the
probe are still much smaller than the currents flowing
into the left and right leads.

D. Local temperature of a QD subjected to a

thermal gradient

Finally, we demonstrate that the proposed operational
definition of local temperature, Eqs. (1)–(4), is also appli-
cable to QDs subjected to an applied thermal gradient,
i.e., when ∆T = TR − TL 6= 0. Note that for this to be
true, the bias voltage must be zero (µR = µL), and thus
the electric current is driven only by the thermal gradient
∆T .
In the absence of bias voltage, Eq. (1) becomes trivial

since µ∗ = µL = µR. Therefore, the chemical potential
of the probe is fixed at µp = µL = µR, and we only need
to tune Tp

31. When Tp = T ∗, the electric current flowing
into the probe vanishes. We thus have

(T ∗ − TL)L
T
Lp = (TR − T ∗)LT

Rp. (11)

Here, LT
αp is the thermoelectric transmission coefficient

between lead-α and probe. Through an analysis similar
to that in Appendix , one arrives at a simple expression

0.1 1

0.1

1

 Eq.(3) with  O = m

 Eq.(3) with O = I m
L

 local equilibrium
 

L
T
L
 + 

R
T
R

T* /

TL/

FIG. 6. T ∗ of a noninteracting QD versus the temperature
of left lead TL. The parameters adopted are (in units of ∆):
ǫd = −3.33, U = 0, ∆L = 5∆R = 0.83, µR = µL = 0,
∆T = TR − TL = 0.17, and W = 50.

of T ∗ as

T ∗ = ζL TL + ζR TR. (12)

Here, the weight coefficients ζL and ζR are also given by
the last equality of Eq. (2). However, Eq. (12) turns out
to be a rather crude estimate of T ∗, as shown in Fig. 6.
The accurate measurement of T ∗ is achieved by using
Eqs. (3)–(4).
For instance, consider a general case such that dot-

lead couplings are asymmetric with ∆L = 5∆R. The
weight coefficients ζL = 5

6 and ζR = 1
6 agree well with

the “measured” values of ζL = 0.8333 and ζR = 0.1667
by Eq. (2). Figure 6 compares T ∗ obtained by different
approaches. Clearly, T ∗ determined by minimal (zero)



7

perturbation of χm and ImL agree remarkably well with
the prediction of local equilibrium condition.
It should be pointed out that, when a bias voltage and

thermal gradient are both present, the electric current
through a certain lead is driven by both V and ∆T . In
such a case, the simple relation of Eq. (A.1) no longer
holds. Therefore, the proposed operational definition is
not applicable to the scenario in which both V and ∆T
are nonzero.

IV. CONCLUDING REMARKS

In conclusion, we have proposed an operational def-
inition of local temperature for bias-driven QDs using
a “minimal perturbation condition”, as represented by
Eqs. (1)–(4). The same definition is also applicable to
QDs subjected to external thermal gradients. The oper-
ational definition applies equally well to systems ranging
from noninteracting to Kondo-correlated regimes. Since
this definition does not require measurements of heat
currents, its experimental realization is straightforward.
The “minimal perturbation condition” thus provides a
useful practical means to examine local electron excita-
tions in a nonequilibrium process, in which local heating
plays an important role.
The local temperature is a characterization of local

statistical excitations in the nanoscale systems. When
the QDs are tuned to different regimes, such as Kondo
regime, Coulomb blockade regime and mixed-valence
regime, different electronic structures may lead to dif-
ferent local temperatures, which remain to be further in-
vestigated. Such studies are currently underway.
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Appendix: Remarks on the weight coefficients ζL
and ζR

Suppose TL = TR. The electric current between left
and right leads is driven only by the applied bias voltage
(difference in chemical potentials). With the chemical
potential of probe µp aligned with the dot local chemi-
cal potential µ∗, the net electric current flowing into the
probe is exactly zero. This is because the electric currents
coming from the left and right leads cancel out exactly:

(µ∗ − µL)GLp = (µR − µ∗)GRp. (A.1)

Here, Gαp (α = L,R) is the electron conductance be-
tween lead-α and the probe. Rearranging Eq. (A.1), we
have

µ∗ =
GRp

GLp +GRp

µR +
GLp

GLp +GRp

µL. (A.2)

By setting µp = µα and Tp = Tα, the probe can be
deemed as a part of lead-α. Therefore, the electric cur-
rent flowing through the probe Ip amounts to

Ip(TL, µL) = GRp (µL − µR), (A.3)

Ip(TR, µR) = GLp (µR − µL), (A.4)

and hence
GRp

GLp
= −

Ip(TL,µL)
Ip(TR,µR) . Here, the two currents

have opposite signs. By comparing Eq. (A.2) and Eq. (1),
it is clear that the weight coefficient ζα should be propor-
tional to the two-terminal conductance Gαp, as follows

ζα =
Gαp

GLp +GRp

= 1−

∣

∣

∣

∣

Ip(Tα, µα)

Ip(TL, µL)− Ip(TR, µR)

∣

∣

∣

∣

.

(A.5)
Here, we have assumed that Gαp does not change signifi-
cantly with µp and Tp. Obviously, the weight coefficients
should normalize to unity, ζL + ζR = 1.
For the single-impurity Anderson model investigated in

this paper, if all leads have the same form of hybridization
function, i.e., ∆α(ω) = ∆α η(ω) (α = L, R and p), we
have

Ip(TL, µL) =

(

∆p

∆L +∆p

)

·

(

−
2

π

)

(∆L +∆p)∆R

∆L +∆R +∆p

×

∫

dω [fβL
(ω − µL)− fβR

(ω − µR)] Im[Gr(ω)],

(A.6)

Ip(TR, µR) =

(

∆p

∆R +∆p

)

·

(

−
2

π

)

(∆R +∆p)∆L

∆L +∆R +∆p

×

∫

dω [fβR
(ω − µR)− fβL

(ω − µL)] Im[Gr(ω)],

(A.7)

with βα = 1/Tα. Here, the probe is deemed as part
of lead-α, and the SIAM amounts to a two-terminal
model. Therefore, Eq. (9) of Ref. 47 can be used. Equa-
tions (A.6) and (A.7) immediately lead to the relation
of

Ip(TL, µL)

Ip(TR, µR)
= −

∆R

∆L

. (A.8)

Equation (A.8) thus offers a practical means of determin-
ing the ratio ∆R/∆L in experiments. Consequently, by
combining Eqs. (A.5) and (A.8), we have

ζα =
∆α

∆L +∆R

(A.9)

for α = L or R.
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Fig. 2 Fig. 4

ζL noninteracting QD Kondo-correlated QD

Eq. (A.5) 0.6666 0.5000

Eq. (A.9) 2

3

1

2

TABLE III. The weight coefficient ζL for the QDs studied in
Figs. 2 and 4. The numbers are obtained via Eqs. (A.5) and
(A.9), respectively.

Since the electric current flowing into the probe Ip can
be measured straightforwardly, the weight coefficients
{ζα} are obtained readily from Eq. (A.5). Table III lists
the weight coefficient ζL for the QDs studied in Figs. 2
and 4. The numbers obtained via Eq. (A.5) and (A.9)
agree precisely with each other.
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