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It has been shown that the bosonic symmetry-protected-trivial (SPT) phases with pure gauge
anomalous boundary can all be realized via non-linear σ-models (NLσMs) of the symmetry group G
with various topological terms. Those SPT phases (called the pure SPT phases) can be classified by
group cohomology Hd(G,R/Z). But there are also SPT phases with mixed gauge-gravity anomalous
boundary (which will be called the mixed SPT phases). Some of the mixed SPT states were also
referred as the beyond-group-cohomology SPT states. In this paper, we show that those beyond-
group-cohomology SPT states are actually within another type of group cohomology classification.
More precisely, we show that both the pure and the mixed SPT phases can be realized by G×SO(∞)
NLσMs with various topological terms. Through the group cohomology Hd[G × SO(∞),R/Z],
we find that the set of our constructed SPT phases in d-dimensional space-time are described by
Ed(G) o ⊕d−1

k=1H
k(G, iTOd−k

L ) ⊕ Hd(G,R/Z) where G may contain time-reversal. Here iTOd
L is

the set of the topologically-ordered phases in d-dimensional space-time that have no topological
excitations, and one has iTO1

L = iTO2
L = iTO4

L = iTO6
L = 0, iTO3

L = Z, iTO5
L = Z2, iTO7

L = 2Z.
For G = U(1) o ZT

2 (charge conservation and time-reversal symmetry) , we find that the mixed
SPT phases beyond Hd[U(1) o ZT

2 ,R/Z] are described by Z2 in 3+1D, Z in 4+1D, 3Z2 in 5+1D,
and 4Z2 in 6+1D. Our construction also gives us the topological invariants that fully characterize
the corresponding SPT and iTO phases. Through several examples, we show how can the universal
physical properties of SPT phases be obtained from those topological invariants.

PACS numbers: 11.15.-q, 11.15.Yc, 02.40.Re, 71.27.+a
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I. INTRODUCTION AND RESULTS

A. Gapped quantum liquid without topological
excitations

In 2009, in a study of the Haldane phase1 of spin-1
chain using space-time tensor network,2 it was found
that, from the entanglement point of view, the Hal-
dane state is really a trivial product state. So the non-
trivialness of Haldane phase must be contained in the way
how symmetry and short-range entanglement3 get inter-
twined. This led to the notion of symmetry protected
trivial (SPT) order (also known as symmetry protected
topological order). Shortly after, the concept of SPT or-
der allowed us to classify4–6 all 1+1D gapped phases for
interacting bosons/spins and fermions.7–11 This result is
quickly generalized to higher dimensions where a large
class of SPT phases is constructed using group cohomol-
ogy theory.12–14

Such a higher-dimension construction is based on G
non-linear σ-model (NLσM)13–15

L =
1

λ
(∂g)2 + iLdtop(g−1∂g), g(x) ∈ G, (1)

with topological term Ldtop in λ → ∞ limit. Since the

topological term Ldtop is classified by the elements in

group cohomology class Hd(G,R/Z),13–15 this allows us
to show that such kind of SPT states are classified by
Hd(G,R/Z). (See Appendix A for an introduction of
group cohomology.) Later, it was realized that there also
exist time-reversal protected SPT states that are beyond
the Hd(G,R/Z) description.16–18

We like to point out that there are many other ways
to construct SPT states, which include Chern-Simons
theories,19,20 NLσMs of symmetric space,16,21–25 projec-
tive construction,26–28 domain wall decoration,29 string-
net,18 layered construction,17 higher gauge theories,30–32

etc .
SPT states are gapped quantum liquids,3,33 character-

ized by having no topological excitations,34,35 and hav-
ing no topological order.36–39 E8 bosonic quantum Hall
state19,40 described by the E8 K-matrix41–47 is also a
gapped quantum liquid with no topological excitations,
but it has a non-trivial topological order. We will re-
fer such kind of topologically ordered states as invert-
ible topologically ordered (iTO) states35,48 (see Table I).

Bosonic SPT and iTO states are simplest kind of gapped
quantum liquids. In this paper, we will try to develop a
systematic theory for those phases. The main result is
eqn. (33) which generalizes the Hd(G,R/Z) description
of the SPT phases, so that the new description also in-
clude the time-reversal protected SPT phases beyond the
Hd(G,R/Z) description. This result is derived in Section
V. Applying eqn. (33) to simple symmetry groups, we
obtain Table II for the SPT phases produced by NLσMs.

B. Probing SPT phases and topological invariants

The above is about the construction of SPT states.
But how to probe and measure different SPT orders in
the ground state of a generic system? The SPT states
have no topological order. Thus, their fixed-point parti-
tion function Zfixed(Md) on a closed space-time manifold
Md is trivial Zfixed(Md) = 1,35 and cannot be used to
probe different SPT orders. However, if we add the G-
symmetry twists49,50 to the space-time by gauging the
on-site symmetry G,51–53 we may get a non-trivial fixed-
point partition function Zfixed(Md, A) ∈ U(1) which is
a pure U(1) phase35 that depends on A. Here A is
the background non-dynamical gauge field that describes
the symmetry twist. The fixed-point partition function
Zfixed(Md, A) is robust against any smooth change of the
local Lagrangian δL that preserve the symmetry, and is a
topological invariant. Such type of topological invariants
should completely describe the SPT states that have no
topological order. In this paper, we will express such uni-
versal fixed-point partition function in terms of topolog-
ical invariant W d

top (which is a d-form, or more precisely,
a d-cocycle):

Zfixed(Md, A) = e i
∫
Md

2πWd
top(A,Γ) (2)

where Γ is the connection on Md. We will use W d
top to

characterize the SPT phases.

Even without the symmetry, the fixed-point parti-
tion function Zfixed(Md) can still be a pure U(1) phase
that depend on the topologies of space-time. In this
case, the fixed-point partition function describes an
iTO state.35 Thus, we can also use W d

top to charac-
terize the iTO phases. We believe that the function,

e i
∫
Md

2πWd
top(A,Γ), that maps various closed space-time

manifolds Md with various G-symmetry twist A to the
U(1) value, completely characterizes the iTO phases and
the SPT phases.49 So in this paper, we will often use
W d

top to label/describe iTO and SPT phases.

We like to point out that the topological invariant
W d

top(A) is given by a cocycle ωd inHd(G×SO(∞),R/Z).

Eq. (58) tells us how to calculate e i
∫
Md

2πWd
top(A), from

ωd, the space-time manifold Md, and the symmetry-twist

A. So e i
∫
Md

2πWd
top(A) is well defined.
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TABLE I. The L-type bosonic iTO phases realized by the SO(∞) NLσMs in d-dimensional space-time form an Abelian group
σiTOd

L. (The meaning of “L-type” is defined in Section I D, and one can ignore such a qualifier in the first reading.) More
general L-type bosonic iTO phases realized by the NLσMs , Chern-Simons theories etc form a bigger Abelian group iTOd

L. The
generating topological invariants W d

top(Γ) are also listed.

dim. σiTOd
L W d

top iTOd
L W d

top

d = 0 + 1 0 0

d = 1 + 1 0 0

d = 2 + 1 Z ω3 Z 1
3
ω3

d = 3 + 1 0 0

d = 4 + 1 Z2
1
2
w2w3 Z2

1
2
w2w3

d = 5 + 1 0 0

d = 6 + 1 2Z ω
p21
7 , ωp2

7 2Z
ω
p21
7 −2ω

p2
7

5
,
−2ω

p21
7 +5ω

p2
7

9

TABLE II. The L-type bosonic SPT phases realized by the G × SO(∞) NLσMs, which are described by Ed(G) o
⊕d−1

k=1H
k(BG, iTOd−k

L ) ⊕ Hd(G,R/Z). The results in black are the pure SPT phases described by Hd(G,R/Z) first discov-
ered in Ref. 13. The pure SPT states have boundaries that carry only pure “gauge” anomaly. The results in blue are the mixed
SPT phases described by ⊕d−1

k=1H
k(BG, iTOd−k

L ). The results in red are the extra mixed SPT phases described by Ed(G). The
mixed SPT states have boundaries that carry mixed gauge-gravity anomaly.

symmetry 0+1D 1+1D 2+1D 3+1D 4+1D 5+1D 6+1D

Zn Zn 0 Zn 0 Zn ⊕ Zn Z〈n,2〉 Zn ⊕ Zn ⊕ Z〈n,2〉

ZT
2 0 Z2 0 Z2 ⊕ Z2 0 Z2 ⊕ 2Z2 Z2

U(1) Z 0 Z 0 Z⊕ Z 0 Z⊕ Z⊕ Z2

U(1) o Z2 = O2 Z2 Z2 Z⊕ Z2 Z2 2Z2 ⊕ Z2 2Z2 ⊕ 2Z2 Z⊕ 2Z2 ⊕ Z⊕ 3Z2

U(1)× ZT
2 0 2Z2 0 3Z2 ⊕ Z2 0 4Z2 ⊕ 3Z2 2Z2 ⊕ Z2

U(1) o ZT
2 Z Z2 Z2 2Z2 ⊕ Z2 Z⊕ Z2 ⊕ Z 2Z2 ⊕ 2Z2 2Z2 ⊕ 3Z2 ⊕ Z2

TABLE III. The L-type U(1) SPT phases.

d = LSPTd
U(1) generators W d

top

0 + 1 Z a

1 + 1 0

2 + 1 Z ac1

3 + 1 0

4 + 1 Z⊕ Z ac21, 1
3
ap1

5 + 1 0

6 + 1 Z⊕ Z⊕ Z2 ac31, 1
3
ac1p1, 1

2
w2w3c1

C. Simple SPT phases and their physical
properties

In Tables III, IV, VI, VII, V, VIII, we list the genera-
tors W d

top(A,Γ) of those topological invariants for simple
SPT phases. The U(1)-symmetry twist on the space-
time Md is described by a vector potential one-form A
and the Zn -symmetry twist is described by a vector po-
tential one-form AZn with vanishing curl that satisfies∮
AZn = 0 mod 2π/n. However, in the tables, we use

the normalized one form a ≡ A/2π and a1 ≡ nAZn/2π.
Also in the table, c1 = da is the first Chern-Class, wi

is the Stiefel-Whitney classes and p1 the first Pontrya-
gin classes for the tangent bundle of Md. The results
in black are for the pure SPT phases (which are defined
as the SPT phases described by Hd(G,R/Z)). The re-
sults in blue are for the mixed SPT phases described
by ⊕d−1

k=1H
k(BG, iTOd−k

L ). The results in red are for

the extra mixed SPT phases described by Ed(G) (see
eqn. (33)).

Those topological invariants fully characterize the cor-
responding topological phases. All the universal physical
properties16,49,51,54–57 of the topological phases can be
derived from those topological invariants. This is the ap-
proach used in Ref. 49. In the following, we will discuss
some of the simple cases as examples. We find that the
topological invariants allow us to “see” and obtain many
universal physical properties easily.

1. U(1) SPT states in Table III

The 0+1D U(1) SPT phases are classified by k ∈ Z
with a gauge topological invariant

W 1
top(A) = k

A

2π
. (3)

It describes a U(1) symmetric ground state with charge
k. The Z class of 2+1D U(1) SPT phases are generated



4

by W 3
top = ac1, or

W 3
top(A) =

AdA

(2π)2
, (4)

where AdA is the wedge product of one-form A and two-
form dA: AdA = A ∧ dA. Those SPT states have even-
integer Hall conductances σxy = even

2π .15,19,20,58

The above are the pure U(1) SPT states whose bound-
ary has only pure U(1) anomalies. The Z class of 4+1D
U(1) SPT phases introduced in Ref. 59 are mixed SPT
states. The generating state is described by (see Ap-
pendix I)

W 5
top(A,Γ) =

1

3

Ap1

2π
= −1

3
β(A/2π)ω3 = −1

3

dA

2π
ω3 (5)

where ω3 is a gravitational Chern-Simons three-form:
dω3 = p1. Also β is the natural map β : Hd(G,R/Z) →
Hd+1(G,Z) that maps a ∈ H1(U(1),R/Z) to β(a) = c1 ∈
H2(U(1),Z). One of the physical properties of such a
state is its dimension reduction: we put the state on
space-time M5 = M2×M3 and put 2π U(1) flux through
M2. In large M3 limit, the effective theory on M3 is de-
scribed by effective Lagrangian W 3

top(Γ) = − 1
3ω3, which

is a E8 quantum Hall state with chiral central charge
c = 8. If M3 has a boundary, the boundary will carry
the gapless chiral edge state of E8 quantum Hall state.
Note that the boundary of M3 can be viewed as the core
of a U(1) monopole (which forms a loop in four spatial
dimensions). So the core of a U(1) monopole will carry
the gapless chiral edge state of E8 quantum Hall state.

Since the monopole-loop in 4D space can be viewed as
a boundary of U(1) vortex sheet in 4D space, the above
physical probe also leads to a mechanism of the U(1) SPT
states: we start with a U(1) symmetry breaking state.
We then proliferate the U(1) vortex sheets to restore the
U(1) to obtain a trivial U(1) symmetric state. However,
if we bind the E8 state to the vortex sheets, proliferate
the new U(1) vortex sheets will produce a non-trivial
U(1) SPT state. In general, a probe of SPT state will
often leads to a mechanism of the SPT state.

If the mixed U(1) SPT state is realized by a continuum
field theory, then we can have another topological invari-
ant: we can put the state on a spatial manifold of topol-
ogy CP 2 or T 4 = (S1)4. Since

∫
CP 2

1
3p1 −

∫
T 4

1
3p1 = 1,

we find that the ground state on CP 2 and on T 4 will
carry different U(1) charges (differ by one unit). We like
to stress that the above result is a field theory result,
which requires the lattice model to have a long correla-
tion length much bigger than the lattice constant.

2. Z2 SPT states in Table IV

The 2+1D Z2 SPT state described by

W 3
top(AZ2

) =
1

2
a3

1 (6)

TABLE IV. The L-type Z2 SPT phases.

d = LSPTd
Z2

generators W d
top

0 + 1 Z2
1
2
a1

1 + 1 0

2 + 1 Z2
1
2
a31

3 + 1 0

4 + 1 Z2 ⊕ Z2
1
2
a51, 1

2
a1p1

5 + 1 Z2
1
2
a1w2w3

6 + 1 Z2 ⊕ 2Z2
1
2
a71, 1

2
a31p1, 1

2
a21w2w3

is the first discovered SPT state beyond 1+1D.12 Here
a1 = AZ2

/2π is the Z2-connection that describes the Z2-
symmetry twist on space-time. However, a3

1 is not the
wedge product of three one-forms: a3

1 6= a1 ∧ a1 ∧ a1. a3
1

is the cup product a3
1 ≡ a1 ∪ a1 ∪ a1, after we view a1 as

a 1-cocycle in H1(M3,Z2). The cup-product of cocycles
generalizes the wedge product of differential forms.

But how to compute the action amplitude

e i
∫
M3 2πW 3

top(AZ2
) = e iπ

∫
M3 a

3
1 that involves cup-

products? One can use the defining relation eqn. (58)

to compute e i
∫
M3 2πW 3

top(AZ2
). First, we note that the

cocycle a1 ∈ H1(Z2,Z2) is given by

a1(1) = 1, a1(−1) = −1. (7)

where {1,−1} form the group Z2. The cocylce for the
cup-product, a3

1, is simply given by

a3
1(g0, g1, g2) = a1(g0)a1(g1)a1(g2), (8)

which is a cocycle in H3(Z2,Z2). Then ω3(g0, g1, g2) =
1
2a

3
1(g0, g1, g2) is a cocycle in H3(Z2,R/Z), that describes

our Z2 SPT state. This allows us to use eqn. (58) to

compute e i
∫
M3 2πW 3

top(AZ2
).

However, there are simpler ways to compute

e i
∫
M3 2πW 3

top(AZ2
). According to the Poincaré duality,

an i-cocycle xi in a d-dimensional manifold Md is dual
to a (d − i)-cycle (i.e. a (d − i)-dimensional closed sub-
manifold), Xd−i, in Md. In our case, a1 is dual to a 2D
closed surface N2 in M3, and the 2D closed surface is the
surface across which we perform the Z2 symmetry twist.
We will denote the Poincaré dual of xi as [xi]

∗ = Xd−i.
Under the Poincaré duality, the cup-product has a geo-
metric meaning: Let Xd−i be the dual of xi and Y d−j

be the dual of yj . Then the cup-product of xi ∪ yi is
a (i + j)-cocycle zi+j , whose dual is a (d − i − j)-cycle
Zd−i−j . We find that Zd−i−j is simply the intersection
of Xd−i and Y d−j : Zd−i−j = Xd−i ∩ Y d−j . In other
words

xi ∪ yi = zi+j ←→ [xi]
∗ ∩ [yi]

∗ = [zi+j ]
∗. (9)

So to calculate
∫
M3 a

3
1, we need to choose three different

2D surfaces N2
1 , N2

2 , N2
3 that describe the equivalent Z2



5

.

(a) (b)

.

(c)

FIG. 1. (a) a loop creation. (b) a loop annihilation. (c) a
line reconnection.

(a)
1 2

3

(b)

FIG. 2. (Color online) (a) a point is split into three points.
(b) a surface N2 is split into three surfaces N2

1 , N2
2 , N2

3 .

symmetry twists a1. Then∫
M3

a3
1 = number of the points in N2

1 ∩N2
2 ∩N2

3 mod 2.

(10)

There is another way to calculate
∫
M3 a

3
1. Let N2 be a

2D surface in space-time M3 that describe the Z2 sym-
metry twist a1. We choose the space-time M3 to have a
form M2 × S1 where S1 is the time direction. At each
time slice, the surface of symmetry twist, N2, becomes
loops in the space M2. Then (see Fig. 1)∫

M3

a3
1 = number of loop creation/annihilation +

number of line reconnection mod 2, (11)

as we go around the time loop S1. (Such a result leads
to the picture in Ref. 51.)

To show the relation between eqn. (10) and eqn. (11),
we split each point on N2 into three points 1, 2, 3 (see
Fig. 2), which split N2 into three nearby 2D surfaces N2

1 ,
N2

2 , and N2
3 . Then from Fig. 3, we can see the relation

between eqn. (10) and eqn. (11).
Eqn. (11) is consistent with the result in Ref. 50 where

we considered a space-time T 2 × I, where I = [0, 1] is an

(a) (b) (c)

FIG. 3. (Color online) Loop annihilation: (a) as we shrink
the black circle to a point, the black line sweeps across the in-
tersection of red and blue line once. This means that N2

1 , N2
2 ,

N2
3 intersect once in the loop annihilation/creation process.

Line reconnection: as we deform the black lines in process
(b), the black lines sweep across the intersection of red and
blue lines once. But in process (c), no line sweeps across the
intersection of the other two lines. This means that N2

1 , N2
2 ,

N2
3 intersect once in the line reconnection process.

(a) (b) (c)

FIG. 4. (Color online) (a) a Z2 symmetry twist on a torus.
(c) the Z2 symmetry twist obtained from (a) by double Dehn
twist. (a→b→c) contains a line reconnection.

1D line segment for time t ∈ [0, 1] = I. Then we added
a Z2 symmetry twist on a torus T 2 at t = 0 (see Fig.
4a). Next, we evolved such a Z2-twist at t = 0 to the
one described by Fig. 4c at t = 1, via the process Fig.
4a → Fig. 4b → Fig. 4c. Last, we clued the tori at
t = 0 and at t = 1 together to form a closed space-
time, after we do a double Dehn twist on one of the tori.
Ref. 50 showed that the value of the topological invariant
on such a space-time with such a Z2-twist is non-trivial:∫
M3 a

3
1 = 1 mod 2, through an explicit calculation. In

this paper, we see that the non-trivial value comes from
the fact that there is one line-reconnection in the process
Fig. 4a → Fig. 4b → Fig. 4c.

Using the result eqn. (11), we can show that the end
of the Z2-symmetry twist line (which is called the mon-
odromy defect49) must carry a fractional spin 1

4 mod 1

and a semion fractional statistics.51

Let us use
∣∣ 〉

def
to represent the many-body wave func-

tion with a monodromy defect. We first consider the
spin of such a defect to see if the spin is fractionalized or
not.60,61 Under a 360◦ rotation, the monodromy defect

(the end of Z2-twist line) is changed to
∣∣ 〉

def
. Since

∣∣ 〉
def

and
∣∣ 〉

def
are alway different even after we deform and

reconnect the Z2-twist lines,
∣∣ 〉

def
is not an eigenstate of

360◦ rotation and does not carry a definite spin.
To construct the eigenstates of 360◦ rotation, let us

make another 360◦ rotation to
∣∣ 〉

def
. To do that, we

first use the line reconnection move in Fig. 1c, to change∣∣ 〉
def
→ −

∣∣ 〉
def

. A 360◦ rotation on
∣∣ 〉

def
gives us∣∣ 〉

def
.

We see that a 360◦ rotation changes (
∣∣ 〉

def
,
∣∣ 〉

def
)

to (
∣∣ 〉

def
,−
∣∣ 〉

def
). We find that

∣∣ 〉
def

+ i
∣∣ 〉

def
is the

eigenstate of the 360◦ rotation with eigenvalue − i , and∣∣ 〉
def
− i
∣∣ 〉

def
is the other eigenstate of the 360◦ rota-

tion with eigenvalue i . So the defect
∣∣ 〉

def
+ i
∣∣ 〉

def
has

a spin −1/4, and the defect
∣∣ 〉

def
− i
∣∣ 〉

def
has a spin

1/4.
If one believes in the spin-statistics theorem, one may
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(a) (b) (c) (d) (e)

FIG. 5. (Color online) Deformation of the Z2-twist lines and
two reconnection moves, plus an exchange of two defects and
a 360◦ rotation of one of the defects, change the configuration
(a) back to itself. Note that from (a) to (b) we exchange the
two defects, and from (d) to (e) we rotate of one of the defect
by 360◦. The combination of those moves do not generate any
phase, since the number of the reconnection move is even.

guess that the defects
∣∣ 〉

def
+ i
∣∣ 〉

def
and

∣∣ 〉
def
− i
∣∣ 〉

def

are semions. This guess is indeed correct. Form Fig. 5,
we see that we can use deformation of Z2-twist lines and
two reconnection moves to generate an exchange of the
two defect and a 360◦ rotation of one of the defect. Such
operations allow us to show that Fig. 5a and Fig. 5e
have the same amplitude, which means that an exchange
of two defects followed by a 360◦ rotation of one of the
defect do not generate any phase. This is nothing but
the spin-statistics theorem.

The above understanding of geometric meaning of the
topological invariant 1

2a
3
1 in terms of Z2-twist domain

wall also leads to a mechanism of the Z2 SPT state. Con-
sider a quantum Ising model on 2D triangle lattice

H = −J
∑
〈ij〉

σzi σ
z
j − g

∑
i

σxi , (12)

where σx,y,z are the Pauli matrices and 〈ij〉 are nearest
neighbors. Such a model can be described by the path
integral of the domain walls between σz = 1 and σz = −1
in space-time. However, all domain walls in space-time
have an amplitude of +1.

In order to have the non-trivial Z2 SPT state, we need
to modify the domain wall amplitudes in the path inte-
gral to allow them to have values ±1. The ±1 is assigned
based on the following rules: as time evolves, a domain-
wall-loop creation/annihilation will contribute to a −1 to
the domain-wall amplitude. A domain-wall-line recon-
nection will also contribute to a −1 to the domain-wall
amplitude. Those additional −1’s can be implemented
through local Hamiltonian. We simply need to modify
the −

∑
i σ

x
i term which create the fluctuations of the

domain-walls:

H = −J
∑
〈ij〉

σzi σ
z
j − g

∑
i

σxi

(
− e i π4

∑6
µ=1(1−σzi,µσ

z
i,µ+1)

)
,

(13)

where
∑6
µ=1(1− σzi,µσzi,µ+1) is the sum over all six spins

neighboring the site-i. (In fact, we can set J = 0).

The factor −e i π4
∑6
µ=1(1−σzi,µσ

z
i,µ+1) contributes to a −1

when the spin flip generated by σx creates/annihilates
a small loop of domain walls or causes a reconnection

FIG. 6. (Color online) Two identical Z2 monodromy defects
on S2. The boundary across which we do the Z2 twist is
split into the red and blue curves. Note that the splitting is
identical at the two monodromy defects. The red and blue
lines crosses once, indicating that

∫
S2 a

2
1 = 1.

of the domain walls. The factor −e i π4
∑6
µ=1(1−σzi,µσ

z
i,µ+1)

contributes to a +1 when the spin flip only deform the
shape of the domain walls. This is the Hamiltonian ob-
tained in Ref. 51.

Now let us switch to the 4+1D Z2 SPT described by
(see Appendix I)

W 5
top(A) =

1

2
a1p1 = β(a1)ω3 = a2

1ω3, (14)

which is a new mixed SPT phase first discovered in this
paper. Here β is the natural map β : Hd(G,Z2) →
Hd+1(G,Z) that maps a1 ∈ H1(Z2,Z2) to β(a1) =
Sq1(a1) = a2

1 ∈ H2(Z2,Z) (see Appendix E and also
eqn. (5)). We note that

∫
M

2
3p1 = 0 mod 2. Hence we

can rewrite p1 = 1
3p1 + 2

3p1 = 1
3p1 if we concern about

mod 2 numbers. The above topological invariant can be
rewritten as

W 5
top(A) =

1

2
a1

1

3
p1 = a2

1

1

3
ω3. (15)

One of the physical properties of such a Z2 SPT state is
its dimension reduction: we put the state on space-time
M5 = S2 × M3 and choose the Z2-twist a1 to create
two identical monodromy defects on S2 (see Fig. 6).
(The physics of two identical monodromy defects was
discussed in detail in Ref. 49 and here we follow a similar
approach. Also we may embed Z2 into U(1) and view
the Z2 monodromy defect as the U(1) π-flux.) For such
a design of S2 and a1, we have

∫
S2 a

2
1 = 1 mod 2 (see

Fig. 6). We then take the large M3 limit, and examine
the induced the effective theory on M3. The induced
effective Lagrangian must have a form L = 2πk 1

3ω3 with
k = 1 mod 2, which describes a topologically ordered
state with chiral central charge 8k. IfM3 has a boundary,
the boundary will carry the gapless chiral edge state of
chiral central charge 8k.

We like to remark that adding two Z2 monodromy de-
fects to S2 is not a small perturbation. Inducing a E8

bosonic quantum Hall state on M3 by a large perturba-
tion on S2 does not imply the parent state on S2×M3 to
be non-trivial. Even when the parent state is trivial, an
large perturbation on S2 can still induce a E8 state on
M3. However, what we have shown is that two identical
Z2 monodromy defects on S2 induce an odd numbers of
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TABLE V. The L-type ZT
2 SPT phases.

d = LSPTd
ZT2

generators W d
top

0 + 1 0

1 + 1 Z2
1
2
w2

1

2 + 1 0

3 + 1 Z2 ⊕ Z2
1
2
w4

1, 1
2
p1

4 + 1 0

5 + 1 Z2 ⊕ 2Z2
1
2
w6

1, 1
2
w2

1p1
1
2
w1w2w3

6 + 1 Z2
1
2
w2

1w2w3

E8 states on M3. This can happen only when the parent
state on S2 ×M3 is non-trivial.

We may choose another dimension reduction by
putting the state on space-time M5 = S1 × M4 and
adding a Z2-twist by threading a Z2-flux line through
the S1. We then take the large M4 limit. The effective
theory on M4 will be described by effective Lagrangian
Leff = π 1

3p1. When M4 has a boundary, ∂M4 6= ∅, the

system on the M3 = ∂M4 must has chiral central charge
c = 4 mod 8. In order words, if the 4-dimensional space
has a 3-dimensional boundary S1 ×M2 and if we thread
a Z2-flux line through the S1, then the state on M2 will
have a gravitational response described by a gravitational
Chern-Simons effective Lagrangian Leff = kπ 1

3ω3, with

k = 1 mod 2. Such a state on M2 is either gapless or have
a non-trivial topological order, regardless if the symme-
try is broken on the boundary or not.

Let us assume that the Z2 SPT state has a gapped
symmetry breaking boundary. The above result implies
that if we have a symmetry breaking domain wall on
S1, then the induced boundary state on M2 must be
topologically ordered with a chiral central charge c = 4
mod 8. (The mod 8 comes from the possibility that the
modified the local Hamiltonian at the domain wall may
add several copy of E8 bosonic quantum Hall states.)
We see that a Z2 symmetry breaking domain wall on the
boundary carries a 2+1D topologically ordered state with
a chiral central charge c = 4 mod 8.

3. ZT
2 , U(1)× ZT

2 , and U(1) o ZT
2 SPT states in Tables

V, VI, and VII

The tables V, VI, and VII list the so called realizable
topological invariants, which can be produced via our
NLσM construction. The potential topological invariants
(which may or may not be realizable) for those symme-
tries have been calculated in Ref. 62 using cobordism
approach and in Ref. 48 using spectrum approach. For
the topological invariants that generate the Z2 classes,
our realizable topological invariants agree with the po-
tential topological invariants obtained in Ref. 62. For the
topological invariants that generate the Z classes, our re-

TABLE VI. The L-type U(1)× ZT
2 SPT phases.

d = LSPTd
U(1)×ZT2

generators W d
top

0 + 1 0 1
2
w1

1 + 1 2Z2
1
2
w2

1, 1
2
c1

2 + 1 0

3 + 1 3Z2 ⊕ Z2
1
2
c21, 1

2
w2

1c1, 1
2
w4

1, 1
2
p1

4 + 1 0

5 + 1 4Z2
1
2
c31, 1

2
w2

1c
2
1, 1

2
w4

1c1, 1
2
w6

1

3Z2
1
2
c1p1, 1

2
w2

1p1, 1
2
w1w2w3

6 + 1 2Z2 ⊕ Z2
1
2
c1w2w3, 1

2
w2

1w2w3, 1
2
w1c1p1

TABLE VII. The L-type U(1) o ZT
2 SPT phases.

d = LSPTd
U(1)oZT2

generators W d
top

0 + 1 Z a

1 + 1 Z2
1
2
w2

1

2 + 1 Z2
1
2
w1c1

3 + 1 2Z2 ⊕ Z2
1
2
c21, 1

2
w4

1, 1
2
p1

4 + 1 Z⊕ Z2 ⊕ Z ac21, 1
2
w3

1c1, 1
3
ap1

5 + 1 2Z2 ⊕ 2Z2
1
2
w2

1c
2
1, 1

2
w6

1, 1
2
w2

1p1, 1
2
w1w2w3

6 + 1 2Z2 ⊕ Z2
1
2
w1c

3
1, 1

2
w5

1c1, 1
2
w1c1p1

3Z2
1
2
w1c1p1, 1

2
c1w2w3, 1

2
w2

1w2w3

alizable topological invariants only form a subset of the
potential topological invariant obtained in Ref. 62 and in
Ref. 48.

In 1+1D, all those time-reversal protected SPT phases
contain one described by

W 2
top(A,Γ) =

1

2
w2

1. (16)

Here, we would like to remark that time-reversal sym-
metry and space-time mirror reflection symmetry should
be regarded as the same symmetry.62,63 If a system has
no time reversal symmetry, then we can only use ori-
entable space-time to probe it. Putting a system with
no time reversal symmetry on a non-orientable space-
time is like adding a boundary to the system. If a sys-
tem has a time reversal symmetry, then we can use non-
orientable space-time to probe it, and in this case, the
ZT2 -twist is described by a1 = w1. Since w1 6= 0 only on
non-orientable manifolds, the ZT2 -twist is non-trivial only
on non-orientable manifolds. So we should use a non-
orientable space-time to probe the above time-reversal
protected SPT phase. In fact, the above topological in-
variant can be detected on RP 2:

∫
RP 2 w2

1 = 1 mod 2 (see
Fig. 7).

In the following we will explain how the above topo-
logical invariant ensure the degenerate ground states at
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FIG. 7. (Color online) The shaded disk represents a 2-
dimensional manifold RP 2, where the opposite points on the
boundary are identified (r̂ ∼ −r̂). The blue and red lines are
two non-contractible loops in RP 2. Consider a Z2-twist a1
described by [a1]∗ = a contractible loop. Then the blue and
red lines represent the same Z2 twist a1. For such a Z2-twist,
we find that

∫
RP2 a

2
1 = 1 since the blue and red lines cross

once. The above Z2-twist is also the orientation reversing
twist. So a1 = w1 and we have

∫
RP2 w2

1 = 1.

(a) (b)

FIG. 8. (Color online) (a) The path integral of a single
boundary point of 1D space over the time loop S1. The
shaded area represents the 1+1D space-time. The two ends
of the thick line are identified to form a loop S1. The two
blue lines are also identified. (b) The loop S1 is extended to
a sphere with a hole. The identified blue line is also shown.

the boundaries of 1D space. We first consider the parti-
tion of a single boundary point over a time loop S1 (see
Fig. 8a). Such a partition function on S1 is defined by
first extending S1 into a sphere with a hole S2

hole (see Fig.
8b), and then we use the 1+1D partition function defined

on S2
hole (from the path integral of e

i
∫
S2
hole

W 2
top(A,Γ)

) to
define the partition function on S1. We find that such a
partition function on S1 is trivial Z = 1.

Now, we like to consider the partition of a single
boundary point over a time loop S1, but now with
two time-reversal transformations inserted (see Fig. 9a),
where the time-reversal is implemented as mirror reflec-
tion in the transverse direction. Next, we extend Fig.
9a into a RP 2 with a hole RP 2

hole (see Fig. 9b). Since
(after taking the small hole limit)

∫
RP 2 W

2
top(A,Γ) =

1
2

∫
RP 2 w2

1 = 1
2 mod 1, we find that the partition func-

tion on S1 with two time-reversal transformations is non-
trivial Z = −1. This implies that T 2 = −1 when acting
on the states on a single boundary point. The states
on a single boundary must form Kramers doublets, and
degenerate.

From the Tables V, VI, and VII, we also see that most
generators of 3+1D time-reversal SPT states are pure
SPT states described by H4(G,R/Z). All mixed time-
reversal SPT states are generated by a single generator

W 4
top(A,Γ) =

1

2
p1, (17)

(b)(a)

T

1

0

0
0

1 1

0

FIG. 9. (Color online) (a) The path integral of a single
boundary point over the time loop S1 with two time-reversal
transformations at point 0 and 1. The shaded area represents
the 1+1D space-time. The two ends of the thick line are
identified to form a loop S1. The two blue lines are also
identified after a horizontal reflection. The two red lines on
the two sides of the thick line are identified as well after a
horizontal reflection. (b) The shaded disk represents a 2-
dimensional manifold RP 2, where the opposite points on the
boundary are identified (r̂ ∼ −r̂). The loop S1 in (a) is
extended to the RP 2 with a hole in (b). The two red lines
and the two blue lines in (a) are also shown in (b).

TABLE VIII. The L-type O2 SPT phases.

d = LSPTd
O2

generators W d
top

0 + 1 Z2
1
2
a1

1 + 1 Z2
1
2
c1

2 + 1 Z⊕ Z2 ac1, 1
2
a31

3 + 1 Z2
1
2
a21c1

4 + 1 2Z2 ⊕ Z2
1
2
a51, 1

2
a1c

2
1, 1

2
a1p1

5 + 1 2Z2 ⊕ 2Z2
1
2
c31, 1

2
a41c1, 1

2
c1p1, 1

2
a1w2w3

6 + 1 Z⊕ 2Z2 ac31, 1
2
a71, 1

2
a31c

2
1

Z⊕ 3Z2
1
3
c21ω3, 1

2
a31p1, 1

2
a21w2w3, 1

2
c1w2w3,

which is a mixed ZT2 SPT state.16 In other words, all
mixed time-reversal SPT states can be obtained from the
pure SPT states by stacking with one copy of the above
mixed ZT2 SPT state.

4. U(1) o Z2 = O2 SPT states in Table VIII

The 1+1D O2 SPT state is characterized by the fol-
lowing topological invariant

W 2
top(A) =

1

2

dA

2π
. (18)

Let us explain how such a topological invariant ensure
the degenerate ground states at the boundaries of 1D
space. Let us consider a 1+1D space-time S2

hole which is
S2 with a small hole (see Fig. 8b). The partition func-
tion for S2

hole can be viewed as the effective theory for the
boundary S1 = ∂S2

hole, which is the partition function for
a single boundary point of 1D space over the time loop
S1 (see Fig. 8a). Since the partition function on S2

hole
changes sign as we add 2π U(1) flux to S2

hole, this means
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that a 2π U(1) rotation acting on the states on a single
boundary point will change the sign of the states. So the
states on a single boundary point must form a projective
representation of O2 where the 2π U(1) rotation is repre-
sented by −1. Such a projective representation is alway
even dimensional, and the states on a single boundary
point must have an even degeneracy.

From the 2+1D topological invariants, we see that the
2+1D O2 SPT is actually the 2+1D U(1) SPT state (by
ignoring Z2) and the 2+1D Z2 SPT state (by ignoring
U(1)).

In 3+1D, we have a pure 3+1D O2 SPT state described
by

W 4
top(A) =

1

2
a2

1c1, (19)

which is a SPT state for quantum spin systems.

To construct a physical probe for the above U(1)oZ2

SPT state, we first note that the topological invariant
(19) is invariant under time reversal (mod 2π). So the
corresponding U(1) o Z2 SPT state is compatible with
time reversal symmetry. If we assume the U(1)oZ2 SPT
state also have the time reversal symmetry, then we can
design the following probe for the U(1) o Z2 SPT state.
We choose the 3+1D space-time to be S2×M2, and put
2π U(1) flux through S2, where S2 is actually a lattice.
But such 2π flux is in a form a two identical thin π-flux
and each π-flux going through a single unite cell in S2.
Such a configuration has

∫
S2 c1 = 1 mod 2, and at the

same time, does not break the U(1) o Z2 symmetry.

In the large M2 limit, the dimension-reduced theory on
M2 is described by a topological invariant W 2

top = 1
2a

2
1.

However, due to an identity a2
1 = w1a1 in 2-dimensional

space,
∫
M2 a

2
1 =

∫
M2 w1a1 = 0 mod 2, if M2 is orientable

(since w1 = 0 iff the manifold is orientable). The topolog-
ical invariant W 2

top = 1
2a

2
1 can be detected only on non-

orientable M2. This is where we need the time reversal
symmetry: in the presence of time reversal symmetry,
we can use non-orientable M2 to probe the topological
invariant.

Let Zt2 be the symmetry group generated by the com-
bined Z2 transformation and time-reversal ZT2 trans-
formation. Let at1 be the Zt2-twist. Then we have
at1 = a1 = w1. Thus the topological invariant can be
rewritten as W 2

top = 1
2w2

1, which describes a 1+1D SPT

state protected by time reversal symmetry Zt2.

We like to remark that threading two thin π-flux lines
through S2 is not a small perturbation. Inducing a Zt2
SPT state on M2 by a large perturbation on S2 does not
imply the parent state on S2×M2 to be non-trivial. Even
when the parent state is trivial, an large perturbation on
S2 can still induce a Zt2 SPT state on M2. However,
what we have shown is that threading two identical thin
π-flux lines through S2 induces one Zt2 SPT state on M2.
This can happen only when the parent state on S2×M2

is non-trivial.

D. Realizable and potential topological invariants

After discussing the physical consequences of various
topological invariants, let us turn to study the topolog-
ical invariants themselves. It turns out that the topo-
logical invariants for iTO states satisfy many self con-
sistent conditions. Solving those conditions allow us to
obtain self consistent topological invariants, which will
be called potential gauge-gravity topological invariants.
Ref. 48, 59, 62–64 studied the topological invariants from
this angle and only the potential gauge-gravity topologi-
cal invariants are studied. For example, when there is no
symmetry, the following type of potential gauge-gravity
topological invariants were found:
(1) The 2+1D potential gravitational topological invari-
ants are described by Z,35,40,65,66 which are generated by

W 3
top(Γ) =

1

3
ω3(Γ) (20)

where ω3(Γ) is the gravitational Chern-Simons term that
is defined via dω3 = p1, with pi the ith Pontryagin class.
In Ref. 48, it was suggested that the 2+1D potential grav-
itational topological invariants are generated by

W 3
top(Γ) =

1

6
ω3(Γ). (21)

(2) The 4+1D potential gravitational topological invari-
ants are described by Z2,35,62,63 which are generated by

W 5
top(Γ) =

1

2
w2w3 (22)

where wi is the ith Stiefel-Whitney class.
(3) The 6+1D potential gravitational topological invari-
ants are described by 2Z,35 which are generated by

W 7
top(Γ) =

ω
p21
7 − 2ωp27

5

W 7
top(Γ) =

−2ω
p21
7 + 5ωp27

9
(23)

where the gravitational Chern-Simons terms are defined

by dω
p21
7 = p2

1 and dωp27 = p2.
The potential topological invariants in eqn. (20),

eqn. (22), and eqn. (23) have a close relation to the ori-
entated d-dimensional cobordism group ΩSOd ,62–64 which
are Abelian groups generated by the Stiefel-Whitney
classes wi and the Pontryagin classes pi. For example,
ΩSO4 = Z is generated by the Pontryagin class 1

3p1 and

ΩSO8 = 2Z by
ω
p21
7 −2ω

p2
7

5 and
−2ω

p21
7 +5ω

p2
7

9 . Also ΩSO5 = Z2

is generated by Stiefel-Whitney class w2w3. In this case,
the set of potential gravitational topological invariants
in d-dimensional space-time (denoted as PiTOd

L) are ex-
actly those Stiefel-Whitney classes and the Pontryagin
classes that describe the cobordism group ΩSOd :

Tor(PiTOd
L) = Tor(ΩSOd ),

Free(PiTOd
L) = Free(ΩSOd+1). (24)
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Note that PiTOd
L and ΩSOd are discrete Abelian groups.

Tor and Free are the torsion part and the free part of the
discrete Abelian groups.

However, we do not know if those potential gauge-
gravity topological invariant can all be realized or pro-
duced by local bosonic systems. In this paper, we will
study this issue. However, to address this issue, we need
to first clarify the meaning of “realizable by local bosonic
systems”.

We note that there are two types of local bosonic sys-
tems: L-type and H-type.35 L-type local bosonic systems
are systems described by local bosonic Lagrangians. L-
type systems have well defined partition functions for
space-time that can be any manifolds. H-type local
bosonic systems are systems described by local bosonic
Hamiltonians. H-type systems have well defined parti-
tion functions only for any space-time that are mapping
tori. (A mapping torus is a fiber bundle over S1.) A L-
type system always correspond to a H-type system. How-
ever, a H-type system may not correspond to a L-type
system. For example, SPT phases described by group co-
homology and the NLσMs are L-type topological phases
(and they are also H-type topological phases). The E8

bosonic quantum Hall state is defined as a H-type topo-
logical phase. However, it is not clear if it is a L-type
topological phase or not. In the following, we will argue
that any quantum Hall state is also a L-type topological
phase (i.e. realizable by space-time path integral, that is
well defined on any space-time manifold).

In this paper, we will only consider L-type bosonic
quantum systems. We will study which potential gauge-
gravity topological invariants are realizable by L-type lo-
cal bosonic systems. We will use SO(∞)×G NLσMs (1)
to try to realize those potential gauge-gravity topologi-
cal invariants. After adding the G-symmetry twist and
choose a curved space-timeMd, the “gauged” SO(∞)×G
NLσMs (1) becomes67–69

L =
1

λ
[(∂ + iA+ iΓ)g)2 + iLdtop(g−1(∂ + iA+ iΓ)g),

g(x) ∈ G× SO, SO ≡ SO(∞), (25)

where the space-time connection Γ couples to SO(∞)
and the “gauge” connection A couples to G. The induced
gauge-gravity topological term Ldtop(g−1(∂+iA+iΓ)g) is

classified by group cohomology Hd[G× SO,R/Z]. After
we integrate out the matter fields g, the above gauged
NLσM will produce a partition function that give rise to a
realizable gauge-gravity topological invariant W d

top(A,Γ)
via

Z(Md, A) = e i
∫
Md

2πWd
top(A,Γ). (26)

(See Ref. 70 for a study of gauged topological terms de-
scribed by Free[Hd(G,R/Z)] for continuous groups.)

The set of potential gauge-gravity topological terms
contain the set of realizable gauge-gravity topological
terms. More precisely, the two sets are related by a map

{Ldtop(g−1(∂ + iA+ iΓ)g)} → {W d
top(A,Γ)}. (27)

However, the map may not be one-to-one and may not
be surjective.

For example, when there is no symmetry, we find that
the following type of realizable gauge-gravity topological
invariants were generated by the above NLσM (see Table
I):
(1) Those 2+1D realizable gravitational topological in-
variants are described by Z, which are generated by

W 3
top(Γ) = ω3(Γ). (28)

The corresponding generating topological state has a chi-
ral central charge c = 24 at the edge. So the stacking of
three E8 bosonic quantum Hall states can be realized by
a well defined L-type local bosonic system. It is not clear
if a single E8 bosonic quantum Hall state can be realized
by a L-type local bosonic system or not. However, we
know that a single E8 bosonic quantum Hall state can
be realized by a H-type local bosonic system.
(2) Those 4+1D realizable gravitational topological in-
variants are described by Z2, which are generated by

W 5
top(Γ) =

1

2
w2w3. (29)

(Note that H5(SO,R/Z) is also Z2 in this case.) In fact,
we will show that all the potential gauge-gravity topolog-
ical invariants that generate a finite group are realizable
by the SO(∞) NLσMs, which are L-type local bosonic
systems.
(3) H6(SO,R/Z) = 2Z2, and there are four different
types of SO(∞) NLσMs (with four different topologi-
cal terms). However, the four different topological terms
in the NLσMs all reduce to the same trivial gravitational
topological invariant W 6

top(Γ) after we integrate out the
matter field g, suggesting that all the four NLσMs give
rise to the same topological order.
(4) Those 6+1D realizable gravitational topological in-
variants are described by 2Z, which are generated by

W 7
top(Γ) = ω

p21
7 , W 7

top(Γ) = ωp27 . (30)

We see that only part of the potential gravitational topo-
logical invariants are realizable by the SO(∞) NLσMs.

However, it is possible that SO(∞) NLσMs do not
realize all possible L-type iTO’s. In the following, we
will argue that the 2+1D E8 bosonic quantum Hall state
is a L-type iTO. SO(∞) NLσM cannot realize the E8

state since it has a central charge c = 8 and a topological
invariant 1

3ω3.
In fact, we will argue that any quantum Hall state is a

L-type topologically ordered state. Certainly, by defini-
tion, any quantum Hall state, being realizable by some in-
teracting Hamiltonians, is a H-type topologically ordered
state. The issue is if we can have a path-integral descrip-
tion that can be defined on any closed space-time mani-
fold. At first, it seems that such a path-integral descrip-
tion does not exist and a quantum Hall state cannot be a
L-type topological order. This is because quantum Hall
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state is defined with respect to a non-zero background
magnetic field – an closed two-form field (B = dA) in
2+1D space-time. This seems imply that a path-integral
description of quantum Hall state exist only on space-
time that admits a every-where non-zero closed two-form
field.

However, as stressed in Ref. 71 and 72, a quantum
Hall state of filling fraction ν = p/q always contains an n-
cluster structure. Also, the closed two-form field B = dA
in 2+1D space-time may contain “magnetic monopoles”.
If those “magnetic monopoles” are quantized as multiples
of nq, they will correspond to changing magnetic field by
nq flux quanta each time. Changing magnetic field by nq
flux quanta and changing particle number by p n-clusters
is like adding a product state to a gapped quantum liq-
uid discussed in Ref. 33, which represents a “smooth”
change of the quantum Hall state. Since every-where
non-zero closed two-form field B = dA with “magnetic
monopoles” can be defined on any 2+1D space-time, we
can have a path-integral description of any quantum Hall
state, such that the path-integral is well defined on any
space-time manifold. We conclude that quantum Hall
states, such as the E8 state, are L-type topologically or-
dered states. Therefore, the gravitational topological in-
variant

W 3
top(Γ) =

1

3
ω3 (31)

is realizable by a 2+1D L-type iTO, i.e. a E8 state (see
Table I).

E. A construction of L-type realizable pure and
mixed SPT phases

Now, let us include symmetry and discuss SPT phases
(i.e. L-type topological phases with short range entan-
glement). We like to point out that some SPT states are
characterized by boundary effective theory with anoma-
lous symmetry,69,73,74 which is commonly referred as
gauge anomaly (or ’t Hooft anomaly). Those SPT states
are classified by group cohomology Hd(G,R/Z) of the
symmetry group G. We also know that the boundaries
of topologically ordered states36–39 realize and (almost75)
classify all pure gravitational anomalies.35 So one may
wonder, the boundary of what kind of order realize mixed
gauge-gravity anomalies? The answer is SPT order. This
is because the mixed gauge-gravity anomalies are present
only if we have the symmetry. Such SPT order is also be-
yond the Hd(G,R/Z) description, since the mixed gauge-
gravity anomalies are beyond the pure gauge anomalies.
We will refer this new class of SPT states as mixed SPT
states and refer the SPT states with only the pure gauge
anomalies as pure SPT states. We would like to men-
tion that the gauge anomalies and mixed gauge-gravity
anomalies have played a key role in the classification of
free-electron topological insulators/superconductors.76,77

The main result of this paper is a classification of both
pure and mixed SPT states realized by the NLσMs:

σLSPTdG (32)

=
⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)]⊕Hd(G,R/Z)

Λd(G)
,

= Ed(G) o
[
⊕d−1
k=1 H

k(BG, σiTOd−k
L )⊕Hd(G,R/Z)

]
,

where σLSPTdG is the Abelian group formed by the L-
typeG SPT phases in d-dimensional space-time produced
by the NLσMs, and σiTOd

L is the Abelian group formed
by the L-type iTO phases in d-dimensional space-time
produced by the NLσMs. Also Λd(G) is a subgroup of

⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)]⊕Hd(G,R/Z).

Replacing σiTOd
L by iTOd

L – the Abelian group formed
by the L-type iTO phases in d-dimensional space-time,
we obtain more general SPT states described by LSPTdG:

LSPTdG (33)

= Ed(G) o
[
⊕d−1
k=1 H

k(BG, iTOd−k
L )⊕Hd(G,R/Z)

]
,

If G contains time-reversal transformation, it will have
a non-trivial action R/Z → −R/Z and iTOd−k

L →
−iTOd−k

L . Also, BG is the classifying space of G and
Hk(BG,M) is the topological cohomology class on BG.

Note that stacking two topological phases C1 and C2
together will produce another topological phase C3. We
denote such a stacking operation as C1� C2 = C3. Under
�, the topological phases form a commutative monoid.35

In general, a topological phase C may not have an in-
verse, i.e. we can not find another topological phase C′
such that C � C′ = 0 is a trivial product state. This is
why topological phases form a commutative monoid, in-
stead of an Abelian group. However, a subset of topolog-
ical phases can have inverse and form an Abelian group.
Those topological phases are called invertible.35,48 One
can show that a topological phase is invertible iff it has
no topological excitations.35,48 Therefore, all SPT phase
are invertible. Some topological orders are also invert-
ible, which are called invertible topological orders (iTO).
SPT phases and iTO phases form Abelian groups under
the stacking � operation. So for SPT states and iTO
states, we can replace � by +:

C1 � C2 = C1 + C2. (34)

So LSPTdG and iTOd
L can be viewed as modules over the

ring Z, and they can appear as the coefficients in group
cohomology.

The result (32) can be understood in two ways. It
means that the SPT states constructed from NLσMs are
all described by ⊕d−1

k=1H
k[BG,Hd−k(SO,R/Z)] ⊕

Hd(G,R/Z), but in a many-to-one fashion;

i.e. ⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)] ⊕ Hd(G,R/Z)
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contain a subgroup Λd(G) that different elements
in Λd(G) correspond to the same SPT state. It
also means that the constructed SPT states are de-
scribed by ⊕d−1

k=1H
k(BG, σiTOd−k

L ) ⊕ Hd(G,R/Z),
but in a one-to-many fashion; i.e. each element of
⊕d−1
k=1H

k(BG, σiTOd−k
L ) ⊕ Hd(G,R/Z) correspond to

several SPT states that form a group Ed(G). The group
Λd(G) and Ed(G) can be calculated but we do not have
a simple expression for them (see Section V).

In eqn. (33), LSPTdG includes both pure and mixed
SPT states. The group cohomology class Hd(G,R/Z) de-
scribes the pure SPT phases, and the group cohomology
class Ed(G)o⊕d−1

k=1H
k(BG, iTOd−k

L ) describes the mixed
SPT phases. We would like to mention that an expres-
sion of the form eqn. (33) was first proposed in Ref. 49 in
a study of topological invariants of SPT states. We see
that our NLσMs construction can produce mixed SPT
phases with and without time reversal symmetry. We
have used eqn. (33) to compute the SPT phases for some
simple symmetry groups (see Table II).

The formal group cohomology methods employed for
obtaining the result (33) directly shed light on the
physics of these phases. The SPT states described
by H1(G, iTOd−1

L ) in eqn. (33) can be constructed us-
ing the decorated domain walls proposed in Ref. 29.
Other SPT states described Hk(BG, iTOd−k

L ) can be
obtained by a generalization of the decorated-domain-
wall construction,59,78,79 which will be called the nested
construction.80 The formal methods also lead to physi-
cal/numerical probes for these phases.16,49,51,54–57 In ad-
dition, these methods are easy to generalize to fermionic
systems80,81, and provide answers for the physically im-
portant situation of continuous symmetries (like charge
conservation).

We also studied the potential SPT phases (i.e. might
not realizable) for a non-on-site symmetry – the mirror-
reflection symmetry ZM2 . The Abelian group formed by

those SPT phases is denoted as PSPTdZM2
. Following

Ref. 62–64, we find that PSPTdZM2
is given by a quotient

of the unoriented cobordism groups ΩOd

PSPTdZM2
= ΩOd /Ω̄

SO
d , (35)

where Ω̄SOd is the orientation invariant subgroup of ΩSOd
(i.e. the manifold Md and its orientation reversal −Md

belong to the same oriented cobordism class). It is inter-
esting to see

PSPTdZM2
= LSPTdZT2

(36)

(see Table V).
We want to remark that, in this paper, the time rever-

sal transformation is defined as the complex conjugation
transformation (see Section II B), without the t → −t
transformation. The mirror reflection correspond to the

t → −t transformation. The time-reversal symmetry
used in Ref. 62–64, and 82 is actually the mirror-reflection
symmetry ZM2 in this paper. The two ways to implement
time-reversal symmetry should lead to the same result as
demonstrated by eqn. (36), despite the involved math-
ematics, the cobordism approach and NLσM approach,
are very different.

F. Discrete gauge anomalies, discrete mixed
gauge-gravity anomalies, and invertible discrete

gravitational anomalies

First, let us explain the meaning of discrete anomalies.
All the commonly known anomalies are discrete in the
sense that different anomalies form a discrete set. How-
ever, there are continuous gauge/gravitational anomalies
labeled by one or more continuous parameters.35,69 In
this section, we only consider discrete anomalies.

Since the boundaries of SPT states realize all
pure gauge anomalies, as a result, group cohomology
Hd(G,R/Z) systematically describe all the perturbative
and global gauge anomalies.69,73 For topological orders,
we found that they can be systematically described by
tensor category theory3,35,83–87 and tensor network,88–90

and those theories also systematically describe all the
perturbative and global gravitational anomalies.35

Or more precisely, the discrete pure bosonic gauge
anomalies in d-dimensional space-time are described by
Hd+1(G,R/Z). The discrete invertible pure bosonic grav-
itational anomalies in d-dimensional space-time are de-
scribed iTOd+1

L 'Free(Ωd+2
SO )⊕Tor(Ωd+1

SO ). The discrete
mixed bosonic gauge-gravity anomalies are described by
Ed(G) o⊕dk=1H

k(BG, iTOd−k+1
L ).

In Table I, we list the generators of the topological in-
variants W d

top(Γ). Those topological invariants describe
various bosonic invertible gravitational anomalies in one
lower dimension. For example, W 3

top(Γ) = 1
3ω3 describes

the well known perturbative gravitational anomaly in
1+1D chiral boson theories. The topological invariant
W 4

top(Γ) = 1
2w2w3 implies a new type of bosonic global

gravitational anomaly in 4+1D bosonic theories. In Ta-
bles III, IV, VI, VII, V, VIII, we list the generators of
the topological invariants W d

top(A,Γ)/2π for some sim-
ple groups. Those topological invariants describe vari-
ous bosonic anomalies for those groups at one low di-
mensions. For example, W 3

top(Γ) = 1
(2π)2AdA describes

the well known perturbative U(1) gauge anomaly in
1+1D chiral boson theories. The topological invariant
W 4

top(AO2) = 1
2a

2
1c1 implies a new type of bosonic global

O2 gauge anomaly in 2+1D bosonic theories. In fact, all
the non-Z-type topological invariants in the Tables give
rise to new type of bosonic global gauge/gravity/mixed
anomalies in one lower dimension.

Note that the invertible anomalies are the usual
anomalies people talked about. They can be canceled by
other anomalies. The anomalies, defined by the absence
of well defined realization in the same dimension, can
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be non-invertible (i.e. cannot be canceled by any other
anomalies).35 All pure gauge and mixed gauge-gravity
anomalies are invertible, but most gravitational anoma-
lies are not invertible.35

G. The relations between the H-type and the
L-type topological phases

We have introduced the concept of potential SPT
phases PSPTdG (which may or may not be realizable), H-

type SPT phases HSPTdG (which are realizable by H-type

local quantum systems), and L-type SPT phases LSPTdG
(which are realizable by L-type local quantum systems).
Those SPT phases are related

LSPTdG ⊂ PSPTdG,

HSPTdG ⊂ PSPTdG,

LSPTdG → HSPTdG. (37)

where ⊂ represents subgroup and → is a group homo-
morphism. Similarly, we also introduced the concept of
potential iTO phases iTOd

P (which may or may not be

realizable), H-type iTO phases iTOd
H (which are realiz-

able by H-type local quantum systems), and L-type iTO

phases iTOd
L (which are realizable by L-type local quan-

tum systems). Those iTO phases are related

iTOd
L ⊂ iTOd

P ,

iTOd
H ⊂ iTOd

P ,

iTOd
L → iTOd

H . (38)

In condensed matter physics, we are interested in iTOd
H

and HSPTdG. (A study on the H-type topological phases
can be found in Ref. 35 and 48.) But in this paper, we

will mainly discuss iTOd
L and LSPTdG. The SPT states

constructed in Ref. 12–14 belong to LSPTdG (and they

also belong to HSPTdG). The SPT states constructed in

Ref. 16–18, and 31 belong to HSPTdG. In Ref. 48, 59, 62–

64 only the potential SPT states PSPTdG are studied.

H. The organization of this paper

In Section II, we review the NLσM construction of
the pure SPT states. In Section III, we generalize the
NLσM construction to cover the mixed SPT states and
iTO states. In Section IV, a construction L-type iTO
orders is discussed. Using such a construction Section
V, we proposed a construction the pure and the mixed
SPT states of the L-type. In Section VI, we discussed
the L-type SPT states protected by the mirror reflection
symmetry.

(b)(a)
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FIG. 10. (Color online) Two branched simplices with oppo-
site orientations. (a) A branched simplex with positive orien-
tation and (b) a branched simplex with negative orientation.

II. GROUP COHOMOLOGY AND THE L-TYPE
PURE SPT STATES

A L-type pure SPT state in d-dimensional space-time
Md can be realized by a NLσM with the symmetry group
G as the target space

Z =

∫
D[g]e

−
∫
Md

[
1
λ [∂g(x)]2+iLdtop(g−1∂g)

]
, g(x) ∈ G

(39)

in large λ limit. Here we treat the space-time as a (ran-
dom) lattice which can be viewed as a d-dimensional com-
plex. The space-time complex has vertices, edges, trian-
gles, tetrahedrons etc. The field g(x) live on the vertices
and ∂g(x) live on the edges. So

∫
Md is in fact a sum

over the vertices, edges, and other simplices of the lat-
tice. ∂ is the lattice difference between vertices connected
by edges. The above action S actually defines a lattice
theory.13,14

Under renormalization group transformations, λ flows
to infinity. So the fixed point action contains only the
topological term. In this section, we will describe such
a fixed-point theory on a space-time lattice.51,68,91. The
space-time lattice is a triangulation of the space-time. So
we will start by describing such a triangulation.

A. Discretize space-time

Let Md
tri be a triangulation of the d-dimensional space-

time. We will call the triangulation Md
tri as a space-

time complex, and a cell in the complex as a simplex.
In order to define a generic lattice theory on the space-
time complex Md

tri, it is important to give the vertices of
each simplex a local order. A nice local scheme to order
the vertices is given by a branching structure.13,14,92 A
branching structure is a choice of orientation of each edge
in the d-dimensional complex so that there is no oriented
loop on any triangle (see Fig. 10).

The branching structure induces a local order of the
vertices on each simplex. The first vertex of a simplex is
the vertex with no incoming edges, and the second vertex
is the vertex with only one incoming edge, etc . So the
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simplex in Fig. 10a has the following vertex ordering:
0, 1, 2, 3.

The branching structure also gives the simplex (and
its sub simplices) an orientation denoted by sij···k = 1, ∗.
Fig. 10 illustrates two 3-simplices with opposite orienta-
tions s0123 = 1 and s0123 = ∗. The red arrows indicate
the orientations of the 2-simplices which are the subsim-
plices of the 3-simplices. The black arrows on the edges
indicate the orientations of the 1-simplices.

B. G NLσM on a space-time lattice

In our lattice NLσM, the degrees of freedom live on the
vertices of the space-time complex, which are described
by gi ∈ G where i labels the vertices.

The action amplitude e−Scell for a d-cell (ij · · · k) is a
complex function of gi: Aij···k({gi}). The total action
amplitude e−S for a configuration (or a path) is given by

e−S =
∏

(ij···k)

[Aij···k({gi})]sij···k (40)

where
∏

(ij···k) is the product over all the d-cells (ij · · · k).

Note that the contribution from a d-cell (ij · · · k) is
Aij···k({gi}) or A∗ij···k({gi}) depending on the orienta-
tion sij···k of the cell. Our lattice G NLσM is defined
by following imaginary-time path integral (or partition
function)

Zgauge =
∑
{gi}

∏
(ij···k)

[Aij···k({gi})]sij···k (41)

where the action amplitude Aij···k({gi}) is invariant or
covariant under the G-symmetry transformation gi →
g′i = ggi, g ∈ G:

Aij···k({ggi}) = A
S(g)
ij···k({gi}) (42)

Note that here we allow G to contain time-reversal
symmetry. In H-type theory (i.e. in Hamiltonian quan-
tum theory) the time-reversal transformation is imple-
mented by complex conjugation without reversing the
time t→ −t (there is no time to reverse in Hamiltonian
quantum theory). Generalizing that to L-type theory,
we will also implement time-reversal transformation by
complex conjugation without reversing the time t→ −t.
This is the implementation used in Ref. 13 and 14. S(g)
in eqn. (42) describes the effect of complex conjugation.
S(g) = 1 if g contains no time-reversal transformation
and S(g) = ∗ if g contains a time-reversal transforma-
tion.

The fixed-point theory contains only the pure topo-
logical term. Such a pure topological term can be con-
structed from a group cocycle νd ∈ Hd(G,R/Z). Note
that a group cocycle νd(g0, g1, · · · , gd), gi ∈ G is a map
from Gd+1 to R/Z (see Appendix A). We can express the

action amplitude Aij···k({gi}) that correspond to a pure
topological term as13,14

A01···d({gi}) = e2π iνd(g0,g1,··· ,gd). (43)

Due to the symmetry condition (A3), the action am-
plitude Aij···k({gi}) is invariant/covariant under the G-
symmetry transformation. Due to the cocycle condition
(A5), the total action amplitude on a closed space-time
Md is always equal to 1:

e i
∫
Md

Ldtop(g−1∂g) =
∏

(ij···k)

[Aij···k({hij}, {gi})]sij···k = 1.

(44)

Also two cocycles different by a coboundary (see
eqn. (A6)) can be smoothly deformed into each other
without affecting the condition (44). In other words, the
connected components of the fixed-point theories that
satisfy the condition (44) are described by Hd(G,R/Z).
This way, we show that the fixed-points of the G NLσMs
are classified by the elements of Hd(G,R/Z).

We like to remark that for continuous group, the cocy-
cle νd(g0, g1, · · · , gd) do not need to be continuous func-
tion of gi. It can be a measurable function.

C. Adding the G-symmetry twist

The above bosonic system may be in different SPT
phases for different choices of the topological term
(i.e. for different choices of group cocycles νd ∈
Hd(G,R/Z)). But how can we be sure that the system
is indeed in different SPT phases? One way to address
such a question is to find measurable topological invari-
ants, and show that different cocycles give rise to different
values for the topological invariants.

In this section, we will assume that the symmetry
group does not contain time-reversal. In this case, the
universal topological invariants for SPT state can be con-
structed systematically by twisting (or “gauging”) the
on-site symmetry51,67,68,93 and study the gauged bosonic
model

Z(A) =

∫
D[g]e

∫
Md

[
1
λ [(∂− iA)g]2+iLdtop(g−1(∂− iA)g)

]
.

(45)

Note that the gauge field A just represents space-time
dependent coupling constants, which is not dynamical
(i.e. we do not integrate out the gauge field A in the
path integral). Since the SPT state is gapped for large
λ, in large space-time limit, the partition function has a
form

Z(A) = e−ε0Vspace-time e i
∫
Md

2πWd
top(A) (46)

where ε0 is the ground state energy density and Vspace-time

is the volume of the space-time manifold Md. The term
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Md 2πW d

top(A) represents the volume independent term
in the partition function and is conjectured to be uni-
versal (i.e. independent of any small local change of the
Lagrangian that preserve the symmetry).35 Such a term
is called the realizable gauge topological term (or topolog-
ical invariant), which is referred as the SPT invariant in
Ref. 49 and 50. The SPT invariants are the topological
invariants that are believed to be able to characterize and
distinguish any SPT phases.

The topological invariant is gauge invariant, i.e. for
any closed space-time manifold Md∫

Md

W d
top(Ag)−

∫
Md

W d
top(A) = 0 mod 1,

Ag = g−1Ag + ig−1dg, (47)

where we have treated A as the gauge field one form.
Also, as a topological invariant, W d

top(A) does not de-
pendent on the metrics of the space-time. For example
W d

top(A) can be a Chern-Simons term 2k
4πTrAdA, k ∈ Z

in 2+1D or a θ-term θ
(2π)2 dAdA in 3+1D. The pres-

ence of non-trivial topological invariant Zfixed(A) =

e i
∫
Md

2πWd
top(A) indicates the presence of non-trivial SPT

phase.
In the above, we described the symmetry twist in the

continuous field theory. On lattice, the symmetry twist
can be achieved by introducing hij ∈ G for each edge
ij in the space-time complex Md

tri. The twisted theory
(i.e. the “gauged” theory) is described by the total action
amplitude e−S

e−S =
∏

(ij···k)

[Ãij···k({hij}, {gi})]sij···k (48)

The imaginary-time path integral (or partition function)
is given by

Z({hij}) =
∑
{gi}

∏
(ij···k)

[Ãij···k({hij}, {gi})]sij···k . (49)

We see that only gi are dynamical. hij are non-dynamical
background probe fields. The above action ampli-
tude

∏
(ij···k)[Ãij···k({hij}, {gi})]sij···k on closed space-

time complex (∂Md = ∅) should be invariant under the
“gauge” transformation

hij → g′ij = hihijh
−1
j , gi → g′i = higi hi ∈ G. (50)

and covariant under the global symmetry transformation

hij → h′ij = ghijg
−1, gi → g′i = ggi g ∈ G : (51)

Ãij···k({hij}, {gi}) = Ã
S(g)
ij···k({h′ij}, {g′i}). (52)

The gauged action amplitudes Ãij···k({hij}, {gi}) is ob-
tained from the ungauged action amplitudes Aij···k({gi})

in the following way (where we assume G is discrete):

Ã01···d({hij}, {gi}) = 0, if hijhjk 6= hik,

Ã01···d({hij}, {gi}) = A01···d(h0g0, h1g1, · · · , hdgd),
(53)

where hi are given by

h0 = 1, h1 = h0h01, h2 = h1h12, h3 = h2h23, · · · .
(54)

At a fixed-point, the twisted action amplitude
Aij···k({hij}, {gi}) is given by

Ã01···d({hij}, {gi}) = e2π iνd(h0g0,h1g1,··· ,hdgd),

= e2π iωd(g−1
0 h01g1,··· ,g−1

d−1hd−1,dgd), if hijhjk = hik,

where ωd is the inhomogeneous cocycle corresponding to
νd

ωd(h01, h12, · · · , hd−1,d) = νd(h0, h1, · · · , hd). (55)

By rewriting the partition function as (see eqn. (55))

Z({hij}) =
∑
{gi}

∏
(ij···k)

[Aij···k({g−1
i hijgj}, {1})]sij···k

(56)

we find that the partition function is explicitly gauge
invariant and symmetric.

The topological invariant W d
top(A) is given by the

fixed-point partition function for the twisted theory

e i
∫
Md

2πWd
top(A) = Zfixed({hij}) = Zfixed(A). (57)

The twisted fixed-point partition function Zfixed({hij})
or Zfixed(A) is non-trivial and depend on the symmetry
twist hij (or gauge connection A). We see that differ-
ent realizable topological invariants W d

top(A) are classi-
fied and given explicitly by the elements of group coho-
mology Hd(G,R/Z):

e i
∫
Md

2πWd
top(A) =

∏
(ij···k)

[e2π iωd({hij})]sij···k (58)

where ωd(h1, · · · , hd) is an inhomogeneous cocycle in
Hd(G,R/Z), and {hij} on the edges complex Md

tri define
the symmetry twist A in space-time Md. Eq. (58) tells

us how to calculate e i
∫
Md

2πWd
top(A), given cocycle ωd,

the space-time manifold Md
tri, and the symmetry-twist

A = {hij}.
We can also see this within the field theory. The realiz-

able gauge topological invariant W d
top(A) and the NLσM

topological term Ldtop(g−1(∂− iA)g) are directly related:

Ldtop(g−1(∂ − iA)g) = 2πW d
top(A). (59)

Since the NLσM topological terms Ldtop(g−1(∂ − iA)g)

are classified by the group cohomology Hd(G,R/Z) of
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the symmetry group G. The realizable gauge topological
invariants W d

top(A) are also classified by Hd(G,R/Z).

The gauge topological term (or topological invariant)
W d

top(A) can be defined for both continuous and discrete
symmetry groups G. In general, it is a generalization of
the Chern-Simons term.67,93,94 It describes the response
of the quantum ground state. We hope that the ground
states in different quantum phases will produce different
responses, which correspond to different classes of gauge
topological terms, that cannot be smoothly deformed into
each other. So we can use such a term to study and
classify pure SPT phases.

We would like to point out that there are two kinds of
topological invariants. The topological invariants corre-
spond to Tor[Hd(G,R/Z)] are called locally-null topolog-
ical invariants. They have the following defining proper-
ties:
(1)
∫
MdW

d
top(A) are well defined for any symmetry twists

A.
(2)

∫
MdW

d
top(A) does not depend on any small smooth

change of the symmetry twist:∫
Md

W d
top(A+ δA) =

∫
Md

W d
top(A) (60)

The topological invariants correspond to
Free[Hd(G,R/Z)] are called Chern-Simons topologi-
cal invariants. The Chern-Simons topological invariants
is only well defined for some symmetry twists A. In
general, only the difference∫

M̃d

W d
top(Ã)−

∫
Md

W d
top(A) (61)

is well defined, provided that there exist an (d + 1)-

dimensional manifold Nd+1 such that ∂Nd+1 = M̃d ∪
(−Md) and the gauge connections A on Md and Ã on

M̃d can be extended to Nd+1 (see Appendix B).

Now two questions naturally arise:
(1) how to write down the most general topological in-
variants W d

top(A) (i.e. the most general topological in-
variants) which are self consistent? We will call such
topological invariants as potential topological invariants.
(2) can we show that every potential topological invariant
can be induced by some symmetric local bosonic model,
after we gauge the on-site symmetry?
In Appendix B, we will address these two questions.
We find that the potential gauge topological invariants
W d

top(A) are described by Hd+1(BG,Z), which are all

realizable since Hd(G,R/Z) = Hd+1(BG,Z).

D. G×G′ pure SPT states

In this section, we will study G×G′ pure SPT states
described by group cohomology Hd(G × G′,R/Z). This
result will be useful for later discussions. First, we can

use the following version of Künneth formula49,69

Hd(G×G′,R/Z) ' Hd(G,R/Z)⊕Hd(G′,R/Z)⊕
⊕d−1
k=1 H

k[BG,Hd−k(G′,R/Z)] (62)

to compute Hd(G × G′,R/Z). In addition, the above
Künneth formula can help us to construct topological
invariants to probe the G×G′ SPT order.49

For example, a G SPT order in d-dimensional space-
time can be probed by a map W d

top, that maps a closed

space-time Md with a G-symmetry twist A to a number
in R/Z: ∫

Md

W d
top(A) ∈ R/Z. (63)

Such a map is nothing but the topological invariant that
we discussed before. At the same time, the topological
invariant can also be viewed as a cocycle in Hd[BG,R/Z],
since it is a map for the G-bundles (i.e. the G-symmetry
twists) on Md to R/Z, and the G-bundles on Md is clas-
sified by the embedding of Md into the classifying space.
Different SPT states will lead to different maps. We be-
lieve that the map W d

top fully characterizes the G SPT

states described by Hd[G,R/Z] (see Appendix B).49,50

Similarly, for the G × G′ pure SPT states described
by Hk[BG,Hd−k(G′,R/Z)], they can also be probed
by a map W d

Hk , that maps a closed space-time Mk

with a G-symmetry twist AG on Mk to an element in
Hd−k(G′,R/Z). This is simply a dimension reduction:
we consider a pace-time of the form Mk ×Md−k, add
a G-symmetry twist AG on Mk, and then take a large
Md−k limit. The system can be viewed as a (d − k)-
dimensional G′ SPT state on Md−k, which is described
by an element in Hd−k(G′,R/Z). Such a dimension re-
duction can be formally written as∫

Mk

W d
Hk(AG) ∈ Hd−k(G′,R/Z). (64)

which has the same structure as eqn. (63). The map W d
Hk

can be viewed as a cocycle in Hk[BG,Hd−k(G′,R/Z)].
Such a map fully characterizes the G × G′ pure SPT
states described by Hk[BG,Hd−k(G′,R/Z)].

The dimension reduction discussed above reveals the
physical meaning of the Künneth formula. We will use
such a physical picture to obtain the key result of this
paper.

III. CONSTRUCTING PURE AND MIXED SPT
STATES, AS WELL AS iTO STATES

A. SPT states, gauge anomalies and mixed
gauge-gravity anomalies

So far, we have reviewed the group cohomology ap-
proach to pure SPT states. It was pointed out in Ref. 69
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that (a) the SPT orders (described by Hd(G,R/Z))
and pure gauge anomalies in one lower dimension are
directly related and (b) the topological orders and
gravitational anomalies in one lower dimension are di-
rectly related. This suggests that the SPT orders be-
yond Hd(G,R/Z)16–18,31,59,62,63 and mixed gauge-gravity
anomalies are closely related.59 This line of thinking gives
us a deeper understanding of generic SPT states. In this
section, we are going to construct local bosonic models
that systematically realize iTO’s, pure SPT orders (asso-
ciated with pure gauge anomaly), and mixed SPT orders
(associated with mixed gauge-gravity anomaly).

B. Realizable L-type SPT and iTO phases

One of the key properties of SPT states is that they do
not contain any non-trivial topological excitations.12–14

In Ref. 35 it was conjectured that a gapped quantum
liquid state has no non-trivial topological excitations iff
its fixed-point partition function is a pure U(1) phase.

However, when we study the pure SPT orders de-
scribed by Hd(G,R/Z) using G NLσMs, we only add
the symmetry twists, which are associated with the G-
bundles on the space-time, to induce the non-trivial U(1)-
phase-valued partition function. This is why we only
get pure gauge anomalies in such an approach. To get
the gravitational anomalies and the mixed gauge-gravity
anomalies, we must include the space-time twist, de-
scribed by the non-trivial tangent bundle of the space-
time as well. The tangent bundle is a SOd ≡ SO(d) bun-
dle. Thus to include the gravitational anomalies and the
mixed gauge-gravity anomalies, as well as the pure gauge
anomalies, we simply need to consider a SOd×G NLσM
with topological term Ldtop(g−1∂g) where g(x) ∈ SOd×G.
We can gauge the G symmetry to probe the SPT states
and the pure gauge anomalies as before. We can also
choose non-flat space-time to probe the SPT states (and
the gravitational anomalies), that corresponds to couple
the SOd part of the NLσM to the connection of the tan-
gent bundle of the space-time. We will see that using
G × SOd NLσMs, we can obtain a topological invariant
W d

top(A,Γ) that contains both the gauge G-connection
A and the gravitational SOd-connection Γ. Such kind
of bosonic NLσM is capable of producing the pure SPT
states that are associated with pure gauge anomalies, as
well as the mixed SPT states that are associated with
mixed gauge-gravity anomalies. It can also produce iTO
states, if we choose a trivial symmetry group G.

Here we would like to remark that we can also use an
G × SOn NLσM with n > d to produce the SPT states
and iTO states. The stability consideration suggests the
we should take n =∞. So we will use G×SO NLσM to
study the new topological states, where SO ≡ SO∞.

Repeating the discussion in Section II B, we find
that the realizable gauge-gravity topological invariants
W d

top(A,Γ) in the G × SO NLσM can be constructed

from each element in the group cohomology class Hd(G×

SO,R/Z). However, because of the restrictive relation
between the gravitational connection Γ and the topology
of the space-time (see Appendix C), the correspondence
is not one-to-one: different elements in Hd(G×SO,R/Z)
may produce the same realizable gauge-gravity topologi-
cal invariant W d

top(A,Γ) after integrating out the matter
field g. The reason is the following. For two topological
invariants W d

top(A,Γ) and W̃ d
top(A,Γ) obtained from two

cocycles νd and ν̃d in Hd(G×SO,R/Z), it is possible that

e i
∫
Md

2πWd
top(A,Γ) = e i

∫
Md

2πW̃d
top(A,Γ) (65)

on any closed space-time Md. In this case, we should
view W d

top(A,Γ) and W̃ d
top(A,Γ) as the same topological

invariant. (Note that the above two topological invari-
ants can be distinguished if the SO connection Γ is not re-
stricted to be the connection of the tangent bundle of the
space-time Md.) Thus, Hd(G×SO,R/Z) contains a sub-
group Λd(G) such that the realizable gauge-gravity topo-
logical invariants W d

top(A,Γ) have an one-to-one corre-

spondence with the elements inHd(G×SO,R/Z)/Λd(G).
Those different NLσMs, that produce different the re-
alizable gauge-gravity topological invariants W d

top(A,Γ),
realize different L-type topological phases with no topo-
logical excitations.

In Appendix C, we will discuss potential gauge-
gravity topological invariants W d

top(A,Γ). We find that
the locally-null potential gauge-gravity topological in-
variants W d

top(A,Γ) are described by a subgroup of

Hd(G × SO,R/Z), which are all realizable. We also
find that Chern-Simons potential gauge-gravity topolog-
ical invariants W d

top(A,Γ) are described by a subgroup of

Hd+1[B(SO × G),Z( 1
n )]. NLσMs can only realize those

that are also in Hd+1[B(G× SO),Z].

IV. iTO STATES

Using Pontryagin class and Stiefel-Whitney class, one
can show that different L-type potential iTO phases
(i.e. may not be realizable) are described by Z in 3-
dimensions,40 Z2 in 4-dimensions,35,62 and 2Z in 7-
dimensions, where the dimensions d are the space-time
dimensions. In this section, we will reexamine those re-
sults using the approaches discussed above, and try to
understand which L-type potential iTO can be realized
by SO NLσMs. We will show that the above poten-
tial topologically ordered phases described by Stiefel-
Whitney class are always realizable, while only a subset
of those described by Pontryagin classes are realizable by
SO NLσMs. The result is summarized in Table I.

A. Classification of SO NLσMs

Since we do not have any symmetry, the realizable
gauge-gravity topological invariants produced by the
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NLσMs are covered by Hd(SO,R/Z) = Hd+1(BSO,Z),
d > 1. In Appendix D, we calculated the ring
H∗(BSO,Z). In low dimensions, we have

H0(BSO,Z) = Z,

H1(BSO,Z) = 0,

H2(BSO,Z) = 0,

H3(BSO,Z) = Z2, basis β(w2),

H4(BSO,Z) = Z, basis p1,

H5(BSO,Z) = Z2, basis β(w4), (66)

H6(BSO,Z) = Z2, basis β(w2)β(w2),

H7(BSO,Z) = 2Z2, basis β(w6),w2
2β(w2),

H8(BSO,Z) = 2Z⊕ Z2, basis p2
1, p2, β(w2)β(w4).

We note that due to the relation Hd(SO,R/Z) =
Hd+1(BSO,Z), the d-dimensional gauge-gravity topo-
logical invariants W d

top(A,Γ) (with values in R/Z) is
promoted to (d + 1)-dimensional topological invariants
Kd+1(A,Γ) (with values in Z). In the above, we also
listed the basis of those topological invariants, so that a
generic topological invariant Kd+1(A,Γ) is a superposi-
tion of those basis. In the following, we list Hd(SO,R/Z)
and the basis of their topological invariants W d

top(A,Γ):

H0(SO,R/Z) = 0,

H1(SO,R/Z) = 0,

H2(SO,R/Z) = Z2, basis
1

2
w2,

H3(SO,R/Z) = Z, basis ω3,

H4(SO,R/Z) = Z2, basis
1

2
w4, (67)

H5(SO,R/Z) = Z2, basis
1

2
w2(w1w2 + w3),

H6(SO,R/Z) = 2Z2, basis
1

2
w6,

1

2
w3

2,

H7(SO,R/Z) = 2Z⊕ Z2, basis ω
p21
7 , ωp27 ,

1

2
(w1w2 + w3)w4.

The above basis give rise to the basis in eqn. (66) through

the natural map β̃: Hd(G,R/Z)→ Hd+1(G,Z) (see Ap-
pendix E).

We see that H2(SO,R/Z) = Z2, which implies that
a realizable gauge-gravity topological invariant exist in
1+1D, provided that we probe the SO NLσM by an ar-
bitrary SO bundle on an oriented 1+1D space-time man-
ifold M2:∫

M2

W 2
top(ΓSO) =

∫
M2

m

2
wSO2 , m = 0, 1. (68)

where ΓSO is the connection of the SO bundle on M2 and
wSOi are the Stiefel-Whitney classes for the SO bundle.
However, the SO bundle on M2 is restricted: it must be
the tangent bundle of M2. So we actually have∫

M2

W 2
top(Γ) =

∫
M2

m

2
w2, m = 0, 1. (69)

where Γ is the connection of the tangent bundle on M2

and wi are the Stiefel-Whitney classes for the tangent
bundle. The Stiefel-Whitney classes for the tangent bun-
dle have some special relations. In fact, we have
(1) a manifold is orientable iff w1 = 0.
(2) a manifold admits a spin structure iff w2 = 0.
Since all closed orientable 2-dimensional manifold is spin,
thus both w1 and w2 vanish for tangent bundles of
M2. The realizable gauge-gravity topological invari-
ant cannot be probed by any oriented space-time M2.
Thus, the above realizable gauge-gravity topological in-
variants described by H2(SO,R/Z) collapse to zero in
1+1D. There is no iTO in 1+1D (or in other words,
σiTO2

L = H2(SO,R/Z)/Λ2 = 0).

B. Relations between Stiefel-Whitney classes

We see that to understand the realizable gauge-gravity
topological invariants, whether they collapse to zero or
not, it is important to understand all relations that the
Stiefel-Whitney classes must satisfy, when the Stiefel-
Whitney classes come from a tangent bundle. To ob-
tain such relations, let us first consider the Stiefel-
Whitney classes for an arbitrary O vector bundle on a
d-dimensional space.

We note that the total Stiefel-Whitney class w = 1 +
w1 + w2 + · · · is related to the total Wu class u = 1 +
u1 + u2 + · · · through the total Steenrod square:

w = Sq(u), Sq = 1 + Sq1 + Sq2 + · · · . (70)

Therefore,

wn =

n∑
i=0

Sqiun−i. (71)

The Steenrod squares have the following properties:

Sqi(xj) = 0, i > j, Sqj(xj) = xjxj , Sq0 = 1, (72)

for any xj ∈ Hj(Xd,Z2). Thus

un = wn +
∑

i=1,2i≤n

Sqiun−i. (73)

This allows us to compute un iteratively, using Wu for-
mula

Sqi(wj) = 0, i > j, Sqi(wi) = wiwi, (74)

Sqi(wj) = wiwj +

i∑
k=1

(j − i− 1 + k)!

(j − i− 1)!k!
wi−kwj+k, i < j,

and the Steenrod relation

Sqn(xy) =

n∑
i=0

Sqi(x)Sqn−i(y). (75)
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We find

u0 = 1,

u1 = w1,

u2 = w2
1 + w2,

u3 = w1w2,

u4 = w4
1 + w2

2 + w1w3 + w4, (76)

u5 = w3
1w2 + w1w2

2 + w2
1w3 + w1w4,

u6 = w2
1w2

2 + w3
1w3 + w1w2w3 + w2

3 + w2
1w4 + w2w4,

u7 = w2
1w2w3 + w1w2

3 + w1w2w4,

u8 = w8
1 + w4

2 + w2
1w2

3 + w2
1w2w4 + w1w3w4 + w2

4

+ w3
1w5 + w3w5 + w2

1w6 + w2w6 + w1w7 + w8.

We note that the Steenrod squares form an algebra:

SqaSqb =

[a/2]∑
j=0

(b− j − 1)!

(a− 2j)!(b− a+ j − 1)!
Sqa+b−jSqj ,

0 < a < 2b, (77)

which leads to the relation Sq1Sq1 = 0 used in the last
section.

If the O vector bundle on d-dimensional space, Md,
happen to be the tangent bundle of Md, then the Steen-
rod square and the Wu class satisfy

Sqd−j(xj) = ud−jxj , for any xj ∈ Hj(Xd,Z2). (78)

(1) If we choose xj to be a combination of Stiefel-Whitney
classes, the above will generate many relations between
Stiefel-Whitney classes.
(2) Since Sqi(xj) = 0 if i > j, therefore uixd−i = 0
for any xd−i ∈ Hd−i(Xd,Z2) if i > d − i. Thus, for
d-dimensional manifold, the Wu class ui = 0 if 2i > d.
Also Sqn · · ·Sqm(ui) = 0 if 2i > d. This also gives us
relations among Stiefel-Whitney classes.
(3) Last, there is another type of relation. In 4n-
dimension, the mod 2 reduction of Pontryagin classes
pi1pi2 · · · , n = i1 + i2 + · · · , should be regarded as zero.
The reason is explained below the eqn. (84). This lead
to the relations for d-dimensional manifold

w2
2i1w2

2i2 · · · = 0, if 2i1 + 2i2 + · · · = d. (79)

σiTOd
L is given by Hd+1(BSO,Z) after quotient out all

those relations.

C. iTO phases in low dimensions

In 2-dimensional space-time H2(SO,R/Z) =
H3(BSO,Z) = Z2 which is generated by W 2

top = 1
2w2.

So σiTO2
L may be non-trivial. The relations u2 = u3 = 0

give us

w2
1 + w2 = 0. (80)

Since M2 is oriented, w1 = 0. We see that w2 = 0.
W 2

top vanishes, and there is no realizable gauge-gravity

topological invariant in 1+1D. So σiTO2
L = 0.

In 2+1D space-time, the corresponding
H3(SO,R/Z) = Z is generated by W 3

top = ω3. There is

no relation involving ω3. So σiTO3
L = Z. The generating

topological invariant W 3
top(Γ) = ω3 describes an iTO

state with chiral central charge c = 24.
In 3+1D space-time, the corresponding
H4(SO,R/Z) = Z2 is generated by the gauge-gravity
topological invariant W 4

top = 1
2w4. The Wu classes

u3 = u4 = 0 can lead to relations between the
Stiefel-Whitney classes, which give us

w1w2 = w4
1 + w1w3 + w2

2 + w4 = 0. (81)

Other relations can be obtained by applying the Steenrod
squares to the above:

Sq1(w1w3) = w1w3 = 0. (82)

Additional relations can be obtained from eqn. (78)

Sq1(w3) = u1w3 → w1w3 = w1w3 (83)

Sq2(w2) = u2w2 → w2
2 = w2

1w2 + w2
2.

We see that w4 = w2
2, but nothing restricts w2

2. Naively,
this suggests that w2

2 ∈ H4(M4,Z2) is a realizable gauge-
gravity topological invariant in 3+1D:

W 4
top(Γ) =

1

2
w2

2. (84)

However, there is a relation between Pontryagin classes
and Stiefel-Whitney classes (see Appendix F):

w2
2i = pi mod 2. (85)

on any closed oriented manifolds M4i of dimension 4i.
Thus w2

2 is part of Pontryagin class p1. The topolog-
ical invariant W 4

top(Γ) = 1
2w2

2 = 1
2p1 is realizable, but

also smoothly connect to the trivial case via the Pon-
tryagin class: W 4

top(Γ) = θ
2πp1, where θ can go from π to

0 smoothly. There is no realizable gauge-gravity topolog-
ical invariant in 3+1D that cannot connect to zero. Thus
σiTO4

L = 0. In general, such kind of reasoning give rise
to eqn. (79).

In 4+1D space-time, the corresponding
H5(SO,R/Z) = Z2 is generated by the gauge-gravity
topological invariant W 4

top = 1
2w2(w1w2 + w3). The Wu

classes u3 = u4 = u5 = 0 can lead to relations between
the Stiefel-Whitney classes, which give us

w4 + w2
2 = 0. (86)

w4 +w2
2 = 0 is just a generator of the relations. Other re-

lations can be obtained by applying the Steenrod squares:

Sq1(w4 + w2
2) = w1w4 + w5 = 0. (87)
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Additional relations can be obtained from eqn. (78)

Sq1(w4) = u1w4 → w1w4 + w5 = w1w4 (88)

Sq2(w3) = u2w3 → w2w3 + w1w4 + w5 = w2
1w3 + w2w3.

We see that w5 must vanishes, but nothing restricts
w2w3. So we have an realizable gauge-gravity topological
invariant in 4+1D:

W 5
top(Γ) =

1

2
w2w3. (89)

Thus σiTO5
L = Z2.

In 5+1D space-time, the corresponding
H6(SO,R/Z) = 2Z2 is generated by the gauge-
gravity topological invariant W 4

top = 1
2w6,

1
2w3

2. The Wu
classes u4 = u5 = u6 = 0 give us

w4 + w2
2 = w2w4 + w2

3 = 0. (90)

Other relations can be obtained by applying the Steenrod
squares:

Sq1(w4 + w2
2) = w1w4 + w5 = 0.

Sq2(w4 + w2
2) = w2

1w2
2 + w2

3 + w2w4 + w6 = 0.

Sq1Sq1(w4 + w2
2) = 0. (91)

We see that w6 must vanishes, and w2w4 = w3
2 = w2

3.
Additional relations can be obtained from eqn. (78)

Sq1(w5) = u1w5 → w1w5 = w1w5 (92)

Sq2(w4) = u2w4 → w2w4 + w6 = w2
1w4 + w2w4,

Sq3(w3) = u3w3 → w3w3 = w1w2w3.

We see that w2w4 = w3
2 = w2

3 = 0. So σiTO6
L = 0.

In 6+1D space-time, the corresponding
H8(SO,R/Z) = 2Z⊕Z2 is generated by the gauge-gravity

topological invariant W 4
top = ω

p21
7 , ωp27 , 1

2 (w1w2 + w3)w4.
The Wu classes u4 = u5 = u6 = u7 = 0 give us

w4 + w2
2 = w2w4 + w2

3 = 0. (93)

Other relations can be obtained by applying the Steenrod
squares (setting w1 = 0):

Sq1(w4 + w2
2) = w1w4 + w5 = 0,

Sq2(w4 + w2
2) = w2

1w2
2 + w2

3 + w2w4 + w6 = 0,

Sq1(w2w4 + w2
3) = w3w4 + w2w5 = 0. (94)

Additional relations can be obtained from eqn. (78) (set-
ting w1 = 0):

Sq1(w6) = u1w6 → w7 = 0 (95)

Sq1(w3
2) = u1w3

2 → w2
2w3 = 0,

Sq2(w2w3) = u3w2w3 → w2
2w3 + w2w5.

We see that w2w5 = w3w4 = w2
2w3 = w7 = 0. So

σiTO7
L = 2Z.

D. Relation to cobordism groups

Two oriented smooth n-dimensional manifolds M and
N are said to be equivalent if M ∪ (−N) is a boundary
of another manifold, where −N is the N manifold with
a reversed orientation. With the multiplication given
by the disjoint union, the corresponding equivalence
classes has a structure of an Abelian group ΩSOn , which
is called the cobordism group of closed oriented smooth
manifolds. For low dimensions, we have95

ΩSO0 = Z, generated by a point.
ΩSO1 = 0, since circles bound disks.
ΩSO2 = 0, since all oriented surfaces bound handlebodies.
ΩSO3 = 0.
ΩSO4 = Z, generated by CP 2, detected by 1

3

∫
M
p1.

ΩSO5 = Z2, generated by the Wu manifold SU(3)/SO(3),
. detected by the deRham invariant or
. Stiefel-Whitney number

∫
M

w2w3.

ΩSO6 = 0.
ΩSO7 = 0.
ΩSO8 = 2Z generated by CP 4 and CP 2 × CP 2.

The potential gravitational topological invariants
give us a map from closed space-time Md to U(1):

Zfixed(Md) = e i
∫
Md

2πWd
top(Γ) ∈ U(1). For locally-null

topological invariants, such a map reduces to a map from

ΩSOd to U(1). In fact, e i
∫
Md

2πWd
top(Γ) is an 1D repre-

sentation of group ΩSOd . So the locally-null potential
gravitational topological invariants are described by 1D
representations of the cobordism group ΩSOd . Since the
locally-null potential gravitational topological invariants
are discrete, so they are actually described by 1D repre-
sentation of Tor(ΩSOd ). Since, for an Abelian group GA,
the set of its 1D representations also form an Abelian
group, which is GA itself. Therefore, the discrete locally-
null potential gravitational topological invariants in d-
dimensional space-time are described by Tor(ΩSOd ). Since
all the locally-null potential gravitational topological in-
variants are realizable, we find

Tor(σiTOd
L) = Tor(ΩSOd ). (96)

The Chern-Simons potential gravitational topological
invariants in d-dimensional space-time are described
by Free(ΩSOd+1), since Free(ΩSOd+1) is a subgroup of

FreeHd+1(BSO,Z( 1
n )). So the Chern-Simons realiz-

able gravitational topological invariants, described by
FreeHd(SO,R/Z) =FreeHd+1(BSO,Z), form a sub-
group of Free(ΩSOd ):

Free(σiTOd
L) ⊂ Free(ΩSOd ). (97)
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V. PURE AND MIXED SPT STATES

A. A generic result

In this section, we are going to consider L-type SPT
states protected by G symmetry (which may contain time
reversal symmetry) in d-dimensional space-time. Those

SPT states form an Abelian group LSPTdG. We only con-
sider SPT states that are realized byG×SO NLσMs. The
different G×SO NLσMs are characterized by their topo-
logical terms which are classified by Hd(G × SO,R/Z).
Those topological terms induced the realizable gauge-
gravity topological invariants W d

top(A,Γ) that are also

“classified” by Hd(G×SO,R/Z). Therefore, L-type SPT
states from NLσMs are “classified” by Hd(G×SO,R/Z),
but in a many-to-one fashion; i.e. different elements in
Hd(G × SO,R/Z) may correspond to the same gauge-
gravity topological invariant W d

top(A,Γ) and the same
SPT phase.

To understand this many-to-one correspondence,
we note that the gauge-gravity topological invariants
W d

top(A,Γ) should be fully detectable in the follow-
ing sense. The gauge-gravity topological invariants
W d

top(A,Γ) can be regarded as map from a pair (Md, A)
to R/Z: ∫

Md

W d
top(A,Γ) =

θ

2π
mod 1. (98)

where Md is a close space-time manifold with vari-
ous topologies and A is a G symmetry twist on Md.
Two topological invariants are said to be different if
they produce different maps (Md, A) → R/Z that can-
not be smoothly connected to each other. However,
there indeed exist gauge-gravity topological invariants
ZW d

top(A,Γ) whose induced map (Md, A) → R/Z can
smoothly connected to 0 (see Appendix C). Then any
two topological invariants differ by ZW d

top(A,Γ) should
correspond to the same SPT phase and should be identi-
fied. We call ZW d

top(A,Γ) = 0 a relation between topo-

logical invariants. ZW d
top(A,Γ) generate a subgroup of

Hd(G × SO,R/Z) which will be called Λd(G). We see
that the distinct SPT phases, plus the iTO phases that
are also produced by the NLσMs, are classified by the
quotient

LSPTdG ⊕ σiTOd
L = Hd(G× SO,R/Z)/Λd(G). (99)

In the next subsection, we will discuss how to compute
the subgroup Λd(G).

Using the Künneth formula (62), we find that

Hd(G× SO,R/Z) ' Hd(G,R/Z)⊕Hd(SO,R/Z)⊕
⊕d−1
k=1 H

k[BG,Hd−k(SO,R/Z)] (100)

Clearly, the termHd(SO,R/Z) describes iTO phases that
do not require any symmetry G. So

⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)]⊕Hd(G,R/Z) (101)

should cover all the SPT states, i.e. every cocycle in
⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)]⊕Hd(G,R/Z) is realizable
and describes a SPT state. In other words

LSPTdG =
⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)]⊕Hd(G,R/Z)

Λd(G)
(102)

For example the term Hd(G,R/Z) describes pure SPT
states. Each element in Hd(G,R/Z) correspond to dis-
tinct realizable SPT states (quotient is not needed).

Similarly, the term Hk[BG,Hd−k(SO,R/Z)] de-
scribes mixed SPT states. Every cocycle in
Hk[BG,Hd−k(SO,R/Z)] describes a mixed SPT state.
But different cocycles may correspond to the same SPT
state. This can be seen from the dimension reduc-
tion discussed in Section II D. We put a G × SO SPT
state on Mk × Md−k which is described by a cocy-
cle νd in ⊕d−1

k=1H
k[BG,Hd−k(SO,R/Z)] ⊕Hd(G,R/Z) ⊕

Hd(SO,R/Z). The cocycle νd can be viewed as a gauge-
gravity topological invariant W d

top and vise versa. Here

we will consider a mixed SPT states described by W d,k
top ∈

Hk[BG,Hd−k(SO,R/Z)] in more detail.
Let us put a G-symmetry twist AG on Mk, but for the

time being not any SO-symmetry twist on Mk. The de-
composition ⊕d−1

k=1H
k[BG,Hd−k(SO,R/Z)] implies that,

in the large Md−k limit, we get an (d − k)-dimensional
topological state on Md−k, described by a cocycle νd−k
in Hd−k(SO,R/Z). Formally, we can express the above
dimension reduction as∫

Mk,AG

W d,k
top = νSOd−k ∈ Hd−k(SO,R/Z), (103)

where AG represent the G-symmetry twist on Md.

In particular, if we choose Md, AG and W d,k
top ∈

Hk[BG,Hd−k(SO,R/Z)] arbitrarily, we can produce any
elements in Hd−k(SO,R/Z).

However, due to the restrictive relation between the
SO connection and the topology of Md−k, different co-
cycles in Hd−k(SO,R/Z) may correspond to the same
topological state. So the distinct topological states are
described by a quotient Hd−k(SO,R/Z)/Λd−k. As we
have discussed before, the distinct topological states from
Hd−k(SO,R/Z) are nothing but the (d− k)-dimensional

iTO states that form σiTOd−k
L . Therefore, the distinct

iTO states on Md−k imply that the parent SPT states
on Md before the dimension reduction are distinct. How-
ever, it is still possible that different parent SPT states
on Md lead to the same iTO state on Md−k. So the SPT
states are described by Hk[BG, σiTOd−k

L ] plus something
extra. This way, we conclude that the L-type realizable
SPT states are described by

σLSPTdG (104)

=
[
Ed(G) o⊕d−1

k=1H
k(BG, σiTOd−k

L )
]
⊕Hd(G,R/Z),
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which is one of the main results of this paper. We like
to point out that if G contains time-reversal transforma-
tion, it will have a non-trivial action R/Z → −R/Z and

σiTOd−k
L → −σiTOd−k

L . In the next subsection, we will
compute this extra group Ed(G).

However, there is a mistake in the above derivation of
eqn. (104). Due to the restrictive relation between the
SO connection and the topology of Mk, we cannot set
the SO-symmetry twist on Mk to zero. So the dimension
reduction is actually given by∫

Mk,AG,Γ

W d,k
top = νiTO

d−k ∈ σiTOd−k
L , (105)

where Γ represent the SO-symmetry twist on Md. Due
to the restrictive relation between (Md, AG) and Γ, it

is not clear that if we choose Md, AG and W d,k
top ∈

Hk[BG,Hd−k(SO,R/Z)] arbitrarily, we can still produce

any elements in σiTOd−k
L .

In the following, we will show that we can indeed pro-
duce any elements in σiTOd−k

L .
(1) We note that the SO tangent bundle of Mk ×Md−k

splits into an SO′′ tangent bundle on Md−k and a SO′

tangent bundle on Mk. So we can rewrite eqn. (105) as∫
Mk,AG,Γ′

W d,k
top = νSOd−k ∈ Hd−k(SO,R/Z). (106)

where AG,Γ
′ is the G × SO′ symmetry twist on Mk

and we put the SO′′ symmetry twist on Md−k. This
motivates us consider a G × SO′ × SO′′ NLσM and its
topological terms.
(2) The natural group homomorphism G×SO′×SO′′ →
G × SO via embedding SO′ × SO′′ into SO leads
to a ring homomorphism H∗[B(G × SO),Z] →
H∗[B(G× SO′ × SO′′),Z].
(3) Due to the isomorphism Hn(G,R/Z) '
Hn+1(BG,Z), W d,k

top in Hk[BG,Hd−k(SO,R/Z)] can

be viewed as an element in Hk[BG,Hd−k+1(BSO,Z)].

As a result, we can express W d,k
top as a characteristic

class in Hk[BG,Hd−k+1(BSO,Z)]. For example,

W d,k
top = FGk F

SO
l FSOd−k−l+1, where FGk is a characteristic

class in Hk(BG,Z), and FSOn is a characteristic class in
Hn(BSO,Z).
(4) Using the above ring homomorphism, we can map

W d,k
top into an element in Hk[BG,Hd−k+1(B(SO′ ×

SO′′),Z)]:

W d,k
top = FGk F

SO
l FSOd−k−l+1

→ FGk (FSO
′

l + FSO
′′

l )(FSO
′

d−k−l+1 + FSO
′′

d−k−l+1)

∈ Hk[BG,Hd−k+1(B(SO′ × SO′′),Z)]. (107)

(5) Since the SO′-twist is only on Mk and the SO′′-twist
is only on Md−k, the above expression allows us to con-
clude that only the term FGk F

SO′′

l FSO
′′

d−k−l+1 contribute to

∫
Mk,AG,Γ′

W d,k
top . Thus

∫
Mk,AG,Γ′

W d,k
top =

∫
Mk,AG,0

W d,k
top . (108)

which reduces eqn. (105) to eqn. (103) that leads to
eqn. (104). This completes our proof.

B. A calculation of Λd(G) and Ed(G)

The subgroup Λd(G) is generated by a set of

relations in Hd(SO,R/Z) ⊕ Hd(G,R/Z) ⊕d−1
k=1

Hk[BG,Hd−k(SO,R/Z)] = Hd+1(G × SO,Z). To
compute such a set of the relations, we can choose a
homomorphism G → O, which will lead to a homomor-
phism H∗(BO,Z2) → H∗(BG,Z2) as rings. We know
that H∗(BO,Z2) is generated by the Stiefel-Whitney
classes w1,w2, · · · . wi will map into wGi ∈ Hi(BG,Z2).
Then we can treat wGi as the Stiefel-Whitney classes and
use the Wu formula eqn. (74) to compute Sqi(wGj ). The
Wu formula and the following defining properties of the
Wu classes:

Sqd−i(wGi ) = ud−iw
G
i ,

Sqd−i−j(wiw
G
j ) = ud−i−jwiw

G
j , · · · (109)

will generate the relations (denoted as ZW d
top(A,Γ))

Sqd−i(wGi ) + ud−iw
G
i ,

Sqd−i−j(wGi w
G
j ) + ud−i−jw

G
i w

G
j , · · · (110)

in ⊕d−1
k=1H

k[BG,Hd−k(O,R/Z)] ⊕ Hd(O,R/Z) ⊕
Hd(G,R/Z). Those relations become the relations

in ⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)] ⊕ Hd(SO,R/Z) ⊕
Hd(G,R/Z) = Hd+1[B(G× SO),Z] through the natural
map β : Hd[B(G × SO),Z2] → Hd+1[B(G × SO),Z],
after we set w1 = 0.

Λd(G) also contain another type of relations: if a ∈
Hd(G×SO,R/Z) can be expressed as a mod 2 reduction
of ā ∈ FreeHd(G×SO,Z), then a is in Λd(G). The reason
for such type of relations is discussed below eqn. (120).

The relations will generate Λd(G) which also allow
us to compute Ed(G). Certainly, the subgroup of

⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)], ⊕d−1
k=1H

k(BG, σiTOd−k
L ),

will survive the quotient by Λd(G). Ed(G) is the sub-

group not in ⊕d−1
k=1H

k(BG, σiTOd−k
L ) that also survive

the quotient. Thus Ed(G)o⊕d−1
k=1H

k(BG, σiTOd−k
L ) de-

scribes the distinct SPT phases. Next, we will demon-
strate the above approach by computing the pure and
mixed SPT states for some simple symmetry groups.
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C. U(1) SPT states

From13

Hd(BU(1),Z) = 0 if d = odd;

Hd(BU(1),Z) = Z if d = even; (111)

we can obtain

Hd(BU(1),Z2) = 0 if d = odd;

Hd(BU(1),Z2) = Z2 if d = even; (112)

using universal coefficient theorem.49,69 The ring
H∗[BU(1),Z] is generated by the first Chern class c1.

This allows us to calculate the U(1) mixed SPT

described by ⊕d−1
k=1H

k[BU(1),Hd−k(O,R/Z)]. We ob-
tain U(1) mixed SPT states in 4+1D described by
the group-cohomology H2(BU(1), σiTO3

L) = Z. We
also obtain mixed SPT states in 6+1D described by
H4(BU(1), σiTO3

L)⊕H2(BU(1), σiTO5
L) = Z⊕ Z2.

The well known 2+1D U(1) pure SPT states have the
following Chern-Simons topological invariants

W 3
top(A,Γ) =

k

(2π)2
AdA, k ∈ Z. (113)

where A is the U(1) gauge connection one form. Their
Hall conductances are given by σxy = 2k

2π .
The 4+1D U(1) mixed SPT states described by

H2(U(1), σiTO3
L) has been discussed in Ref. 59. Its

gauge-gravity topological invariant is given by (see a dis-
cussion in Appendix I)

W 5
top(A,Γ) = ω3

dA

2π
=

A

2π
p1, (114)

In 4 spatial dimensions, the U(1) monopole is a 1D loop.
In this SPT state, such a 1D loop will carry the gapless
edge state of 2+1D (E8)3 bosonic quantum Hall state.

The 6+1D U(1) mixed SPT states described by
H4(U(1), σiTO3

L) = Z have the following topological in-
variants

W 7
top(A,Γ) =

k

(2π)2
ω3 dAdA, k ∈ Z. (115)

The 6+1D U(1) mixed SPT state described by
H2(U(1), σiTO5

L) = Z2 has

W 7
top(A,Γ) =

1

2
w2w3

dA

2π
. (116)

To see if there are extra mixed U(1) SPT phases, let
us first note that the ring H∗[BU(1),Z2] is generated by
f2, which is the mod 2 reduction (denoted as ρ2) of the
first Chern class c1: f2 = ρ2c1. If we choose the natural
embedding U(1)→ O, we find that

w
U(1)
2 = f2, w

U(1)
i = 0, i = 1, or i > 2. (117)

In 3+1D, the potential extra mixed SPT phases are
described by H2[BU(1),H2(SO,R/Z)] = Z2. We note
that H2(SO,R/Z) is generated by the w2 (see eqn. (67)).
Therefore, the extra U(1) SPT phases described by
H2[BU(1),H2(SO,R/Z)] = Z2 are generated by f2w2,
In 3+1D, we have a relation

Sq2(w
U(1)
2 ) = u2w

U(1)
2 ,

Sq2(w
U(1)
2 ) = u

U(1)
2 w

U(1)
2 , (118)

which gives us

w
U(1)
2 w

U(1)
2 = (w2

1 + w2)w
U(1)
2 , (119)

In 3+1D, we also have a relation f2
2 = w

U(1)
2 w

U(1)
2 = 0

mod 2. For oriented space-time w1 = 0, so f2w2 vanishes.
There is no extra 3+1D U(1) SPT phase.

Here is another way to rephrase the above reasoning.
In 3+1D, there is a potential topological invariant

W 4
top(A,Γ) =

1

2
w2

dA

2π
=

1

2
w2ρ2c1, (120)

where the Chern class c1 = dA/2π and ρ2 is the mod
2 reduction. Using the relation Sq2(ρ2c1) = u2ρ2c1
and Sq2(ρ2c1) = (ρ2c1)2, we find that (w2

1 + w2)ρ2c1 =
(ρ2c1)2. Therefore on oriented manifold, we have62

W 4
top(A,Γ) =

1

2
w2

dA

2π
=

1

2
(f2)2 =

1

2
c21 =

1

2(2π)2
dAdA.

(121)

Such a topological invariant is not quantized. It can con-
tinuously deform into zero via θ

(2π)2 dAdA as θ goes from

π to 0. This is why there is no U(1) SPT phase in 3+1D.
We note that on space-time M4 with spin structure,

w2 = 0. The above result implies that all the U(1) bun-
dles on such M4 satisfy∫

M4

c21 = even. (122)

Or in other words, the Z2 reduction of c21 cannot be
probed by any M4 with spin structure, no mater what
U(1)-symmetry twists we add.

In 4+1D, the potential extra SPT phases
are described by H2[BU(1),H3(SO,R/Z)] ⊕
H4[BU(1),H1(SO,R/Z)] = Z. But
H2[BU(1),H3(SO,R/Z)] is H2[BU(1), σiTO3

L]
which has been included before. Thus the po-
tential extra mixed SPT phases are described by
H4[BU(1),H1(SO,R/Z)] = 0, i.e. there is no extra U(1)
SPT phase in 4+1D.

It has been pointed out that the following gauge-
gravity topological invariant may exist

W 5
top(A,Γ) =

1

2
w3

dA

2π
. (123)
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It may suggest that there is an extra U(1) SPT phase
in 4+1D. Here we would like to show that such a term
always vanishes. We start with the relation (78):

Sq1(w2w
U(1)
2 ) = u1w2w

U(1)
2 . (124)

The left-hand-side gives us

Sq1(w2)w
U(1)
2 + w2Sq

1(w
U(1)
2 )

= (w1w2 + w3)w
U(1)
2 + w2Sq

1(w
U(1)
2 ). (125)

Since w
U(1)
2 is a Stiefel-Whitney class of a O vector bun-

dle over M5 (which is not the tangent bundle that gives
rise to Stiefel-Whitney classes wi), we can use the Wu

formula (74) to calculate Sq1(w
U(1)
2 ) = w

U(1)
1 w

U(1)
2 +

w
U(1)
3 = 0. Thus we have

Sq1(w2w
U(1)
2 ) = (w1w2 + w3)w

U(1)
2

= u1w2w
U(1)
2 = w1w2w

U(1)
2 , (126)

which gives us w3f2 = w3c1 = 0 mod 2 for any U(1)
bundle on M5 which can even be unorientable. This
leads to the vanishing of eqn. (123).

In 5+1D, we may have extra mixed U(1) SPT
phases described by H4[U(1),H2(SO,R/Z)] ⊕
H2[U(1),H4(SO,R/Z)] = 2Z2, generated by
w2f

2
2 , w4f2. We have the following relations

Sq1(w3w
U(1)
2 ) = u1w3w

U(1)
2

→ 0 = 0

Sq2(w
U(1)
2 w

U(1)
2 ) = u2w

U(1)
2 w

U(1)
2

→ (w2
1 + w2)w

U(1)
2 w

U(1)
2 = 0

Sq2(w2w
U(1)
2 ) = u2w2w

U(1)
2

→ w3
2 + w2

1w2w
U(1)
2 = 0 (127)

and w2
2 = w4. Since w1 = w3

2 = 0 for 6-dimensional
orientable manifold (see Section IV C), we only have one
relation w2f

2
2 = 0. However, w4f2 = w2

2f2 = p1f2 mod
2 (see Appendix F). So, the Z2 class w4f2 is part of an
integer class p1c1, and the topological invariant from an
integer class does not have a quantized coefficient (see
the discussion below eqn. (120)). So the term w4f2 can
smoothly connect to zero, and there is no extra mixed
U(1) SPT phases in 5+1D.

In 6+1D, we may have extra U(1) SPT
phases described by H4[BU(1),H3(SO,R/Z)] ⊕
H2[BU(1),H5(SO,R/Z)] = Z ⊕ Z2, but they are
discussed before since H4[BU(1),H3(SO,R/Z)] ⊕
H2[BU(1),H5(SO,R/Z)] = H4[BU(1), σiTO3

L] ⊕
H2[BU(1), σiTO5

L]. So, there is no extra U(1) SPT
phase in 6+1D.

D. Zn SPT states

From13,49,69

Hd(BZn,Z) = 0 if d = odd;

Hd(BZn,Z) = Zn if d = even; (128)

we obtain

Hd(BZn,Z2) = Z2 if d = 0,

Hd(BZn,Z2) = Z〈n,2〉, if d > 0, (129)

where 〈m,n〉 is the greatest common divisor of m, , n.
This allows us to obtain Zn mixed SPT states described
by ⊕d−1

k=1H
k[BZn,Hd−k(O,R/Z)]. There are no such

Zn mixed SPT states in 3+1D. The 4+1D Zn mixed
SPT states are described by the group-cohomology
H2(BZn, σiTO3

L) = Zn. We also obtain mixed SPT
states
in 5+1D described by H1(BZn, σiTO5

L) = Z〈n,2〉,
in 6+1D described by H4(BZn, σiTO3

L) ⊕
H2(BZn, σiTO5

L) = Zn ⊕ Z〈n,2〉,
in 7+1D described by H3(BZn, σiTO5

L) = Z〈n,2〉.
H2(BZn, σiTO3

L) = Zn is generated by W 5
top =

β(AZn/2π)ω3 where AZn/2π is the generator of
H1(Zn,R/Z) = Zn (or

∮
AZn/2π = 1

n mod 1. According

the Appendix I, H2(BZn, σiTO3
L) = Zn is generated by

W 5
top =

AZn
2π

p1. (130)

The structure of above results also lead to a physi-
cal probe of the corresponding SPT states by dimension
reduction.49,59 We put the system on a 4D space of a
form S2×D2 and put n identical monodromy defects on
S2. In the small S2 limit, the effective 2+1D state on
D2 will be an (E8)3 bosonic quantum Hall state, with
gapless excitations on the boundary of D2. We may also
replace S2 by D̃2 and break the Zn symmetry on the
boundary of D̃2. We then create n identical Zn domain
walls on the boundary of D̃2. This will have the same
effect as n identical monodromy defects on S2. We get
an (E8)3 bosonic quantum Hall state on D2 in the small

D̃2 limit. In fact, all the mixed SPT states described by
H2(BG, σiTOd−2

L ) and all the G1 ×G2 pure SPT states
described by H2[BG1,Hd−2(G2,R/Z)] can be probed in
this way.

In the following, we will consider if there are extra
mixed Zn SPT phases. We find that there is no extra
mixed Zn SPT phase if n = odd. So in the following,
we will assume n = even. We first note that the ring
H∗[BZn,Z2] is generated by a1. If we choose the natural
embedding Zn → O via Zn/Zn/2 → O/SO, we find that

wZn1 = a1, wZni = 0, i > 1. (131)

In 2+1D, the potential extra mixed Zn SPT phases are
described by H1[BZn,H2(SO,R/Z)] = Z〈n,2〉. We note
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that H2(SO,R/Z) is generated by the w2 (see eqn. (67)).
Therefore, the potential extra Zn SPT phases described
by H1[BZn,H2(SO,R/Z)] are generated by a1w2. In
2+1D, we have the following relations

Sq1[(wZn1 )2] = u1(wZn1 )2 → w1(wZn1 )2 = 0;

u2 = w2
1 + w2 = 0. (132)

We see that w2 = 0 for orientable 2+1D space-time and
a1w2 vanishes. Thus there is no extra Zn SPT phase in
2+1D.

In 3+1D, the potential extra mixed Zn SPT phases
are described by H2[BZn,H2(SO,R/Z)] = Z〈n,2〉, which

are generated by a2
1w2. In 3+1D, we have the following

relations (setting w1 = 0)

w2
2 + w4 = 0,

a2
1w2 + a1w3 = a4

1 = a4
1 + a2

1w2 = 0. (133)

We see that a2
1w2 = 0 and there is no extra Zn SPT

phase in 3+1D.
In the above, we also see that a4

1 = 0. What is the
physical meaning of this relation? In fact, in 1+1D, we
have a2

1 = 0. Let us discuss this simpler 1+1D situation.
The relation a2

1 = 0 comes from

Sq1(a1) = u1a1 → a2
1 = w1a1. (134)

We see that on non-orientable M2, a2
1 do not have to

be zero. This means that
∫
M2 a

2
1 can be non-zero if

M2 is non-orientable. But
∫
M2 a

2
1 must be zero mod 2

if M2 is orientable. For Zn SPT state without time-
reversal symmetry, we cannot use the non-orientable M2

to probe it. So a2
1 cannot produce any measurable topo-

logical invariant, and should be quotient out. This is why
H2(BZn,R/Z) is trivial, since its potential generator a2

1

is not measurable on any orientable space-time for any
symmetry twist.

In 4+1D, the potential extra mixed Zn SPT
phases are described by H3[BZn,H2(SO,R/Z)] ⊕
H1[BZn,H4(SO,R/Z)] = 2Z〈n,2〉, which are generated

by a3
1w2, a1w4. In 4+1D, we have the follow relations

(setting w1 = 0)

w2
2 + w4 = w5 = 0,

a2
1w3 = a5

1 + a3
1w2 = 0. (135)

We see that a3
1w2 = a5

1 which is already included by
H5(Zn,R/Z). But nothing restricts a1w4 (except w4 =
w2

2). So there is an Zn SPT phase in 4+1D generated by
a1w2

2 for n = even. Its topological invariant is given by

W 5
top(A,Γ) =

n

2

AZn
2π

p1, (136)

where AZn is the flat connection that describe the Zn
twist59 ∮

AZn = 0 mod 2π/n. (137)

But the above topological invariant has been included
by Zn SPT phases described by H2(BZn, σiTO3

L) (see
eqn. (130)). So there is no extra Zn SPT phase in 4+1D.

In 5+1D, the potential extra mixed Zn SPT
phases are described by H4[BZn,H2(SO,R/Z)] ⊕
H2[BZn,H4(SO,R/Z)] = 2Z〈n,2〉, which are generated

by a4
1w2, a

2
1w4. In 5+1D, we have the follow relations

(setting w1 = 0)

w2
2 + w4 = w5 = w2

3 + w2w4 = w2
3 = w6 = 0,

a2
1w4 = a4

1w2 = a3
1w3 = a6

1 = 0. (138)

We see that a2
1w4 = a4

1w2 = 0. So there is no extra Zn
SPT phase in 5+1D.

In 6+1D, the potential extra mixed Zn SPT
phases are described by H5[BZn,H2(SO,R/Z)] ⊕
H3[BZn,H4(SO,R/Z)] ⊕ H1[BZn,H6(SO,R/Z)] =
4Z〈n,2〉, which are generated by a5

1w2, a
3
1w4, a1w6, a1w3

2.
In 6+1D, we have the following relations (setting w1 = 0)

w2
2 + w4 = w5 = w2

3 + w2w4 = w6 = 0,

a2
1w2w3 + a1w2

3 = a5
1w2 = a4

1w3 = 0. (139)

We see that a5
1w2 = a1w6 = 0, but nothing restricts

a2
1w2w3 = a1w2

3 and a3
1w4. However, a2

1w2w3 is already
included by H2(BZn, σiTO5

L). So there is an Zn SPT
phase in 6+1D generated by a3

1w2
2 for n = even. Its

topological invariant is given by

W 7
top(A,Γ) =

1

2π3
A3
Znp1. (140)

But the above topological invariant has been included
by Zn SPT phases described by H4(BZn, σiTO3

L) '
H3(Zn,R/Z) (see Appendix I). So there is no extra Zn
SPT phase in 6+1D.

E. U(1) o Z2 = O(2) SPT states

In Ref. 13, it was shown that

Hd[BO2,Z] ⊂


Z⊕ d

4 Z2, d = 0 mod 4,

d−1
4 Z2, d = 1 mod 4,

d+2
4 Z2, d = 2 mod 4,

d+1
4 Z2, d = 3 mod 4.

(141)

In Ref. 96 and 97, it was shown that

H [BO2,Z] = Z[x2, x3, x4]/(2x2, 2x3, x
2
3 − x2x4), (142)

where x2 = βwO2
1 , x3 = βwO2

2 , and x4 = pO2
1

is the Pontryagin class. Here β is the natural map
Hd(BG,Z2) → Hd+1(G,Z). In other words, we have
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a relation (βwO2
2 )2 = βwO2

1 pO2
1 . We find that

H0(BO2,Z) = Z,

H1(BO2,Z) = 0, (143)

H2(BO2,Z) = Z2, basis [βwO2
1 ],

H3(BO2,Z) = Z2, basis [βwO2
2 ],

H4(BO2,Z) = Z⊕ Z2, basis [(βwO2
1 )2, pO2

1 ],

H5(BO2,Z) = Z2, basis [βwO2
1 βwO2

2 ],

H6(BO2,Z) = 2Z2, basis [βwO2
1 pO2

1 , (βwO2
1 )3],

H7(BO2,Z) = 2Z2, basis [βwO2
2 pO2

1 , (βwO2
1 )2βwO2

2 ],

H8(BO2,Z) = Z⊕ 2Z2, basis [(pO2
1 )2, (βwO2

1 )2pO2
1 , (βwO2

1 )4],

which agrees with eqn. (141) with ⊂ replaced by =. So
we actually have

Hd[BO2,Z] =


Z⊕ d

4 Z2, d = 0 mod 4,

d−1
4 Z2, d = 1 mod 4,

d+2
4 Z2, d = 2 mod 4,

d+1
4 Z2, d = 3 mod 4.

(144)

which allow us to get49,69

Hd[BO2,Z2] =

d+2
2 Z2, d = 0 mod 2,

d+1
2 Z2, d = 1 mod 2,

(145)

We also have

H0(O2,R/Z) = R/Z, (146)

H1(O2,R/Z) = Z2, basis [
1

2
wO2

1 ],

H2(O2,R/Z) = Z2, basis [
1

2
wO2

2 ],

H3(O2,R/Z) = Z⊕ Z2, basis [
1

2
(wO2

1 )3,
1

2π
AdA],

H4(O2,R/Z) = Z2, basis [
1

2
(wO2

1 )2wO2
2 ],

H5(O2,R/Z) = 2Z2, basis [
1

2
wO2

1 (wO2
2 )2,

1

2
(wO2

1 )5],

H6(O2,R/Z) = 2Z2, basis [
1

2
(wO2

2 )3,
1

2
(wO2

1 )4wO2
2 ],

H7(O2,R/Z) = Z⊕ 2Z2,

basis [
A(dA)3

(2π)3
,

(wO2
1 )3(wO2

2 )2

2
,

(wO2
1 )7

2
],

The above basis give rise to the basis in eqn. (143) after

the natural map β̃: Hd(G,R/Z)→ Hd+1(BG,Z), which

becomes the Steenrod square Sq1 when acting on wO2
i ’s.

One can use the properties in eqn. (E1) to do the calcu-
lation (see Appendix E).

This allows us to obtain O2 mixed SPT states which
are given by

in 3+1D: H1(BO2, σiTO3
L) = 0,

in 4+1D: H2(BO2, σiTO3
L) = Z2,

in 5+1D: H3(BO2, σiTO3
L)⊕H1(BO2, σiTO5

L) = 2Z2,
in 6+1D: H4(BO2, σiTO3

L) ⊕ H2(BO2, σiTO5
L) = Z ⊕

3Z2,
in 7+1D: H5(BO2, σiTO3

L) ⊕ H3(BO2, σiTO5
L) ⊕

H1(BO2, σiTO7
L) = 3Z2.

In the following, we will consider if there are extra
mixed O2 SPT phases. We first note that the ring
H∗[BO2,Z2] is generated by a1, f2. If we choose the nat-
ural embedding O2 → O via O(2)→ O, we find that

wO2
1 = a1, wO2

2 = f2, wO2
i = 0, i > 2. (147)

In 2+1D, the potential extra mixed O2 SPT phases are
described by H1[BO2,H2(SO,R/Z)] = Z2. Therefore,
the potential extraO2 SPT phases are generated by a1w2.
In 2+1D, we have the following relations

Sq1[(wO2
1 )2] = u1(wO2

2 )2 → w1(wO2
1 )2 = 0;

u2 = w2
1 + w2 = 0. (148)

We see that w1 = w2 = 0 for orientable 2+1D space-time
and a1w2 vanishes. Thus there is no extra O2 SPT phase
in 2+1D.

In 3+1D, the potential extra mixed O2 SPT phases are
described by H2[BO2,H2(SO,R/Z)] = 2Z2 generated by
f2w2, a

2
1w2. In 3+1D, we have the following relations

(setting w1 = 0)

w2
2 + w4 = 0,

a4
1 = w3a1 = w2a

2
1 = f2

2 + w2f2 = 0. (149)

We see that w2a
2
1 = 0 and w2f2 = f2

2 = c21 mod 2. So
w2f2, as part of c21, can be smoothly deformed to zero.
Thus there is no extra O2 SPT phase in 3+1D.

In 4+1D, the potential extra mixed O2 SPT
phases are described by H3[BO2,H2(SO,R/Z)] ⊕
H1[BO2,H4(SO,R/Z)] = 3Z2 generated by
w2a1f2, w2a

3
1, w4a1. In 4+1D, we have the following

relations (setting w1 = 0)

w2
2 + w4 = w5 = 0,

a3
1f2 = w3a

2
1 = w3f2 + w2a1f2

= a1f
2
2 + a1f2w2 = 0. (150)

We see that w2a
3
1 = 0, w2a1f2 = w3f2 = w3f2, and

a1f
2
2 = a1f2w2. But a1f

2
2 = wO2

1 (wO2
2 )2 is already in-

cluded in H5(BO2,R/Z) (see eqn. (146)). So a1w4 =
a1w2

2 = a1p1 is not restricted to zero. There is an O2

SPT phase in 4+1D with topological invariant

W 5
top(A,Γ) =

AZ2

2π
p1, (151)

where AZ2
is the flat connection that describe the Z2

twist59 ∮
AZ2

= 0 mod π. (152)
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But the above topological invariant has been included
by O2 SPT phases described by H2(BO2, σiTO3

L) '
H1(O2,R/Z) (see Appendix I). So there is no extra O2

SPT phase in 4+1D.
In 5+1D, the potential extra mixed O2 SPT

phases are described by H4[BO2,H2(SO,R/Z)] ⊕
H2[BO2,H4(SO,R/Z)] = 5Z2 generated by
w2a

2
1f2, w2f

2
2 , w2a

4
1, w4a

2
1, w4f2. In 5+1D, we

have the following relations (setting w1 = 0)

w2
2 + w4 = w2

3 + w2w4 = w2
3 = w5 = w6 = 0, (153)

w4a
2
1 = w2a

4
1 = w2f

2
2 = w2a

2
1f2 + a4

1f2 = 0.

We see that w2a
4
1 = w4a

2
1 = w2f

2
2 = 0 and w2a

2
1f2 =

a4
1f2. But w2a

2
1f2 = a4

1f2 = (wO2
1 )4wO2

2 is already in-
cluded in H6(BO2,R/Z) (see eqn. (146)). Also w4f2 =
w2

2f2 = p1c1 mod 2 is connected to zero. There are no
extra O2 SPT phase in 5+1D.

In 6+1D, the potential extra mixed
O2 SPT phases are described by
H5[BO2,H2(SO,R/Z)] ⊕ H3[BO2,H4(SO,R/Z)] ⊕
H1[BO2,H6(SO,R/Z)] = 7Z2 generated by
w2a

5
1, w2a

3
1f2, w2a1f

2
2 , w4a

3
1, w4a1f2, w6a1, w2

3a1. In
6+1D, we have the following relations (setting w1 = 0)

w2
2 + w4 = w2

3 + w2w4 = w5 = w6 = 0, (154)

w2w3a
2
1 + w2

3a1 = w4a1f2 = w2a
5
1 = w2a

3
1f2 + w2a1f

2
2

= a3
1f

2
2 + w2a1f

2
2 = a3

1f
2
2 + w3a

2
1f2 = a5

1f2 = a1f
3
2 = 0.

We see that w2a
5
1 = w4a1f2 = 0 and w2w3a

2
1 = w2

3a1,
w2a1f

2
2 = w2a

3
1f2 = w3a

2
1f2 = a3

1f
2
2 . But w2

3a1 =
w2w3a

2
1 is already included in H2(BO2, σiTO5

L), and
w2a1f

2
2 = w2a

3
1f2 = w3a

2
1f2 = a3

1f
2
2 are already in-

cluded in H7(BO2,R/Z) (see eqn. (146)). However,
a3

1w4 = a3
1w2

2 = a3
1p1 mod 2 is not restricted. There

is an O2 SPT phase in 6+1D described by a topological
invariant

W 7
top(A,Γ) =

1

2π3
A3
Z2
p1. (155)

But the above topological invariant has been included
by O2 SPT phases described by H4(BO2, σiTO3

L) '
H3(O2,R/Z) (see Appendix I). So there is no extra O2

SPT phase in 6+1D.

F. ZT
2 SPT states

Note that13,49,69

Hd(BZT2 ,Z) = 0 if d = even;

Hd(BZT2 ,Z) = Z2 if d = odd; (156)

Hd(BZT2 ,Z2) = Z2 if d = 0,

Hd(BZT2 ,Z2) = Z2, if d > 0, (157)

where the time-reversal has a non-trivial action Z→ −Z.
This allows us to obtain, in 3+1D, ZT2 pure SPT states
described by the group-cohomology H4(ZT2 ,R/Z) = Z2,
and ZT2 mixed SPT states described by the group-
cohomology H1(BZT2 , σiTO3

L) = Z2. We also obtain
mixed SPT states
in 5+1D described by H3(BZT2 , σiTO3

L) ⊕
H1(BZT2 , σiTO5

L) = 2Z2,
in 6+1D described by H2(BZT2 , σiTO5

L) = Z2,
in 7+1D described by H5(BZT2 , σiTO3

L) ⊕
H2(BZT2 , σiTO5

L)⊕H1(BZT2 , σiTO7
L) = 4Z2.

The 3+1D ZT2 mixed SPT state described by
H1(BZT2 , σiTO3

L) may be produced in the following
way:29,59,78 We start with a system with ZT2 symme-
try whose ground state break the ZT2 symmetry. Then,
we allow the fluctuations of the domain walls of the
ZT2 order parameter, to restore a ZT2 symmetry. We
may bound an 2+1D (E8)3 bosonic quantum Hall state
to such domain wall. In this case, the restored ZT2
symmetric state is the mixed SPT state described by
H1(BZT2 , σiTO3

L). In fact, all the mixed SPT states de-

scribed by H1(BG, σiTOd−2
L ) and all the G1 × G2 pure

SPT states described by H1[BG1,Hd−2(G2,R/Z)] can be
constructed in this way.29

Such a ZT2 mixed SPT state can be probed by sur-
face symmetry breaking.16 The ZT2 symmetry break-
ing domain wall on the boundary will carry the gap-
less edge state of 2+1D (E8)3 bosonic quantum Hall
state. In fact, all the mixed SPT states described by
H1(BG, σiTOd−2

L ) and all the G1 ×G2 pure SPT states
described by H1[BG1,Hd−2(G2,R/Z)] can be probed in
this way.

In the following, we will consider if there are extra
mixed ZT2 SPT phases. Let a1 be the generator of the
ring H∗(BZT2 ,Z2). Let we choose the natural embedding
ZT2 → O via ZT2 → O/SO, we find that

w
ZT2
1 = a1, w

ZT2
i = 0, i > 1. (158)

However, since the ZT2 twist can only be implemented by
reversing the space-time orientation, we need to identify

w1 → w
ZT2
1 . (159)

In 7+1D and below, we did not find any extra mixed ZT2
SPT phases.

G. U(1)× ZT
2 SPT states

In Ref. 13, we obtained

Hd[B(U(1)× ZT2 ),Z] =

0, d = 0 mod 2,

d+1
2 Z2, d = 1 mod 2,

(160)
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which allows us to get49,69

Hd[B(U(1)× ZT2 ),Z2] =

d+2
2 Z2, d = 0 mod 2,

d+1
2 Z2, d = 1 mod 2,

(161)

This allows us to obtain U(1) × ZT2 mixed SPT states
which are given by
in 3+1D: H1[B(U(1)× ZT2 ), σiTO3

L] = Z2,
in 4+1D: H2[B(U(1)× ZT2 ), σiTO3

L] = 0,
in 5+1D: H3[B(U(1) × ZT2 ), σiTO3

L] ⊕ H1[B(U(1) ×
ZT2 ), σiTO5

L] = 3Z2,
in 6+1D: H4[B(U(1) × ZT2 ), σiTO3

L] ⊕ H2[B(U(1) ×
ZT2 ], σiTO5

L) = 2Z2,
in 7+1D: H5[B(U(1) × ZT2 ), σiTO3

L] ⊕ H2[B(U(1) ×
ZT2 ), σiTO5

L]⊕H1[B(U(1)× ZT2 ), σiTO7
L] = 6Z2.

In the following, we will consider if there are extra
mixed U(1)×ZT2 SPT phases. We first note that the ring
H∗[B(U(1)×ZT2 ),Z2] is generated by a1, f2 (the same as
H∗[B(U(1) × Z2),Z2] and H∗[B(U(1) o Z2),Z2]). Note
that Hd[B(U(1) × ZT2 ),Z] for d = odd is generated by

a1c
d−1
2

1 , a3
1c

d−3
2

1 , etc . Or Hd[B(U(1)×ZT2 ),R/Z] for d =

even is generated by 1
2c

d
2
1 , 1

2a
2
1c

d−2
2

1 , etc .

If we choose the natural embedding U(1) × ZT2 → O
via U(1)× Z2 → SO(3) which map U(1) to the rotation
in x-y plane and Z2 to the z → −z reflection, we find
that

wO2
1 = a1, wO2

2 = f2, wO2
i = 0, i > 2. (162)

Also since the time-reversal twist is implemented by the
orientation reversal, we need to set w1 = a1.

In 2+1D, the potential extra mixed U(1) ×
ZT2 SPT phases are described by H1[B(U(1) ×
ZT2 ),H2(SO,R/Z)] = Z2 generated by a1w2. In 2+1D,
we have the following relations (setting w1 = a1)

w2
1 + w2 = w1w2 = 0, (163)

We see that w2w1 = 0, and there is no extra U(1)× ZT2
SPT phase in 2+1D.

In 3+1D, the potential extra mixed U(1) ×
ZT2 SPT phases are described by H2[B(U(1) ×
ZT2 ),H2(SO,R/Z)] = 2Z2 generated by a2

1w2, f2w2. In
3+1D, we have the following relations (setting w1 = a1)

w1w2 = w1w3 = w4
1 + w2

2 + w1w3 + w4 = 0,

w2
1f2 = w2

1f2 + f2
2 + f2w2 = 0. (164)

We see that w2
1w2 = 0 and f2w2 = f2

2 . But f2w2 = f2
2

can be deformed to zero smoothly. Thus there is no extra
U(1)× ZT2 SPT phase in 3+1D.

In 4+1D, the potential extra mixed U(1) ×
ZT2 SPT phases are described by H3[B(U(1) ×
ZT2 ),H2(SO,R/Z)]⊕H1[B(U(1)×ZT2 ),H4(SO,R/Z)] =
3Z2 generated by w2w1f2, w2w3

1, w4w1. In 4+1D,

we have the following complete set of relations (setting
w1 = a1)

w5
1 = w1f

2
2 = w3

1w2 = w1f2w2 = w1w2
2 = w2

1w3

= f2w3 = w1w4 = w5 = 0 (165)

There is no extra U(1)× ZT2 SPT phase in 4+1D.
In 5+1D, the potential extra mixed U(1) ×

ZT2 SPT phases are described by H4[B(U(1) ×
ZT2 ),H2(SO,R/Z)]⊕H2[B(U(1)×ZT2 ),H4(SO,R/Z)] =
5Z2 generated by w2a

2
1f2, w2f

2
2 , w2a

4
1, w4a

2
1, w4f2. In

5+1D, we have the following complete set of relations
(setting w1 = a1)

w4
1f2 = w6

1 + w4
1w2 = w2

1f
2
2 + w2

1f2w2 = f2
2 w2

= w1f2w3 = w1w3w2 + w3
2 = w3

2 + w2
3 = w6

1 + w2w4

= w2
1w2

2 + w2
1w4 = f2w2

2 + f2w4 = w2
1w2

2 + w1w5

= w2
1w2

2 + w6 = 0 (166)

We see that f2
2 w2 = 0. Also w4

1w2 = w6
1 and w2

1f2w2 =
w2

1f
2
2 are already included in H6(U(1) × ZT2 ,R/Z).

f2w4 = f2w2
2 = f2p1 mod 2 is a part of integer class

c1p1 and can be smoothly deformed to zero. However,
w2

1w4 = w2
1w2

2 = w2
1p1 mod 2 is not restricted. There is

an U(1)× ZT2 SPT phase in 5+1D described by

W 6
top(A,Γ) =

1

2
w2

1p1. (167)

But the above topological invariant has been included
by U(1) × ZT2 SPT phases described by H3[B(U(1) ×
ZT2 ), σiTO3

L] ' H2(U(1) × ZT2 ,R/Z) (see Appendix I).
So there is no extra U(1)× ZT2 SPT phase in 5+1D.

In 6+1D, the potential extra mixed U(1) ×
ZT2 SPT phases are described by H5[B(U(1) ×
ZT2 ),H2(SO,R/Z)]⊕H3[B(U(1)×ZT2 ),H4(SO,R/Z)]⊕
H1[B(U(1) × ZT2 ),H6(SO,R/Z)] = 7Z2 generated by
w2a

5
1, w2a

3
1f2, w2a1f

2
2 , w4a

3
1, w4a1f2, w6a1, w2

3a1. In
6+1D, we have the following complete set of relations
(setting w1 = a1)

w7
1 = w3

1f
2
2 = w5

1w2 = w5
1f2 + w3

1f2w2 = w1f
2
2 w2

= w3
1w2

2 = w1w3
2 = w4

1w3 = w5
1f2 + w2

1f2w3 = f2
2 w3

= w2
2w3 = w1w2

3 = w3
1w4 = w1f2w2

2 + w1f2w4

= w2
1w2w3 + w1w2w4 = w3w4 = w1f2w2

2 + f2w5

= w2
1w5 = w2

1w2w3 + w2w5 = w1w6 = w7 = 0. (168)

We see that w2w5
1 = w1f

2
2 w2 = w4w3

1 = w1w6 = w1w2
3 =

0 and w3
1f2w2 = w5

1f2, w1f2w4 = w1f2w2
2 = f2w5.

But w3
1f2w2 = w5

1f2 is already included in H7(U(1) ×
ZT2 ,R/Z). Only w1f2w2

2 is not restricted. Thus there is
an extra U(1) × ZT2 SPT phase in 6+1D described by a
topological invariant

W 7
top(A,Γ) =

1

2
w1p1

dA

2π
. (169)
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H. U(1) o ZT
2 SPT states

In Ref. 13, we also obtained

Hd[B(U(1) o ZT2 ),Z] ⊂



d
4 Z2, d = 0 mod 4,

d+3
4 Z2, d = 1 mod 4,

Z⊕ d−2
4 Z2, d = 2 mod 4,

d+1
4 Z2, d = 3 mod 4,

(170)

If we assume

Hd[B(U(1) o ZT2 ),Z] =



d
4 Z2, d = 0 mod 4,

d+3
4 Z2, d = 1 mod 4,

Z⊕ d−2
4 Z2, d = 2 mod 4,

d+1
4 Z2, d = 3 mod 4,

(171)

then, we will obtain49,69

Hd[B(U(1) o ZT2 ),Z2] =

d+2
2 Z2, d = 0 mod 2,

d+1
2 Z2, d = 1 mod 2,

(172)

which should agree with eqn. (145). Indeed, it agrees,
implying that eqn. (171) is correct.

Eqns. (171) and (172) allow us to obtain U(1) o ZT2
mixed SPT states which are given by
in 3+1D: H1[B(U(1) o ZT2 ), σiTO3

L] = Z2,
in 4+1D: H2[B(U(1) o ZT2 ), σiTO3

L] = Z,
in 5+1D: H3[B(U(1) o ZT2 ), σiTO3

L] ⊕ H1[B(U(1) o
ZT2 ), σiTO5

L] = 2Z2,
in 6+1D: H4[B(U(1) o ZT2 ), σiTO3

L] ⊕ H2[B(U(1) o
ZT2 ), σiTO5

L] = 3Z2,
in 7+1D: H5[B(U(1) o ZT2 ), σiTO3

L] ⊕ H2[B(U(1) o
ZT2 ), σiTO5

L]⊕H1[B(U(1) o ZT2 ), σiTO7
L] = 6Z2.

In the following, we will consider if there are extra
mixed U(1) o ZT2 SPT phases. We first note that the
ring H∗[B(U(1) o ZT2 ),Z2] is generated by a1, f2 (the
same as H∗[B(U(1)×Z2),Z2] and H∗[B(U(1)oZ2),Z2]),
where f2 is c1 mod 2. As discussed in Appendix H,
Hd[U(1) o ZT2 ,R/Z] is generated by the subgroup of the
factor group of Hk[ZT2 ,Hd−k(U(1),R/Z)]. We find that
in our case here, Hd[U(1) o ZT2 ,R/Z] is generated by
the fullHk[ZT2 ,Hd−k(U(1),R/Z)]. Hn(U(1),R/Z) = Z is

generated by the Chern-Simons term ac
n−1
2

1 . ZT2 acts on
Hn(U(1),R/Z) by Hn(U(1),R/Z) → Hn(U(1),R/Z) if
n−1

2 = even, and by Hn(U(1),R/Z) → −Hn(U(1),R/Z)

if n−1
2 = odd. So Hd[U(1) o ZT2 ,R/Z] is generated by

am1 ac
n
1 , with m+ 2n+ 1 = d and (m,n) = (even,even) or

(m,n) = (odd,odd). As discussed in Appendix I, am1 ac
n
1

can be viewed as am−1
1 cn+1

1 . This allows us to obtain the
generators of Hd[U(1) o ZT2 ,R/Z].

If we choose the natural embedding U(1) o ZT2 → O
via U(1) o Z2 = O(2)→ O, we find that

wO2
1 = a1, wO2

2 = f2, wO2
i = 0, i > 2. (173)

Since the time-reversal twist is implemented by the ori-
entation reversal, we need to set w1 = a1. We also note
that Hk[B(U(1) o ZT2 ),Z2] = Hk[B(U(1) × ZT2 ),Z2],
since when the coefficient is Z2, there is no distinction
between U(1) o ZT2 and U(1) × ZT2 . The above results
implies that the extra mixed U(1) o ZT2 SPT phases are
the same as the extra mixed U(1)× ZT2 SPT phases, So
we can used the results from the last section.

VI. SPT STATES PROTECTED BY MIRROR
REFLECTION SYMMETRY

In this section, we are going to consider SPT state pro-
tected by mirror reflection symmetry ZM2 , which can be
probed by the fixed-point partition function on space-
time Md with symmetry twist. However, here, the sym-
metry twists make the space-time unoriented.62–64,82 So
the ZM2 SPT states are described by the gravitational
topological invariants W d

top(Γ), which take non-trivial
values for unoriented space-times.

Here we would like to remark that the symmetry twists
of the time reversal ZT2 can be implemented by unori-
ented space-time, since the action amplitude for cells with
opposite orientation differ by a complex conjugation (see
eqn. (40)). This suggest that the L-type ZT2 SPT states
and the L-type ZM2 SPT states are the same.

To study the potential ZM2 SPT states, we note that
the ring of the cobordism group ΩOd of closed unoriented
smooth manifolds is98

ΩO =
∑
d

ΩOd = Z2[{xd}], d > 1, d 6= 2i − 1, (174)

where M[{xd}] is the polynomial ring generated by xd’s
with M as coefficient. Also x2i = RP 2i. In lower dimen-
sions, we have
ΩO1 = 0, since circles bound disks.
ΩO2 = Z2, generated by x2.
ΩO3 = 0.
ΩO4 = 2Z2, generated by x4 and x2

2.
ΩO5 = Z2, generated by x5 = H2,4.
ΩO6 = 3Z2, generated by x6, x2x4, and x3

2.
ΩO7 = Z2, generated by x2x5 = H2,4 × RP 2.
ΩO8 = 5Z2, generated by x8, x2x6, x4

2x4, x2
4, x4

2.
Hm,n is a manifold of dimension m+n−1 defined as the
subset of RPm × RPn of points satisfying the homoge-
neous equation x0y0 + · · ·+ xmym = 0.

The potential gravitational topological invariants for
ZM2 SPT phases have been obtained in Ref. 62 and 63.
However, their realizations have not been discussed sys-
tematically. In this paper, we show that all the ZM2 po-
tential gravitational topological invariants are realizable
by the O(∞) NLσMs. This is because the unoriented
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cobordism group has no free parts. Thus there is no
Chern-Simon potential gravitational topological invari-
ants. As discussed in Section C, the locally-null potential
gravitational topological invariants are all realizable.

In the following, we will calculate the corresponding
locally-null gravitational topological invariants for those
ZM2 SPT phases. Many results have been obtained in
Ref. 62 and 63.

In 1+1D, the gravitational topological invariants
W d

top(Γ) are generated by πw2
1 = πw2, since the condi-

tion u2 = 0 requires w2
1 = w2. In 3+1D, the gravitational

topological invariants W d
top(Γ) are generated by πw3

1 and
πw3, since the condition u3 = 0 requires w1w2 = 0.

In 4+1D, there are seven Stiefel-Whitney classes w5
1,

w3
1w2, w2

1w3, w1w2
2, w1w4, w2w3, w5. The Wu classes

u3 = u4 = u5 = 0 give us

w1w2 = w4
1 + w2

2 + w1w3 + w4

= w3
1w2 + w1w2

2 + w2
1w3 + w1w4 = 0 (175)

Other relations can be obtained by applying the Steenrod
squares:

Sq1(u3) = w1w3 = 0.

Sq1(u4) = w1w4 + w5 = 0.

Sq2(u3) = w2
1w2 + w1w2

2 + w2
1w3 = 0. (176)

Additional relations can be obtained from eqn. (78)

Sq1(w4
1) + u1w4

1 = w5
1 = 0

Sq1(w4) + u1w4 = w5 = 0 (177)

Sq2(w3) + u2w3 = w1w4 + w5 + w2
1w3 = 0.

We find that w5
1 = w1w2 = w1w3 = w1w4 = w5 = 0. So

we have an realizable gauge-gravity topological invariant
in 4+1D:

W 5
top(Γ) =

1

2
w2w3. (178)

But such a topological invariant can exist even if we break
the time-reversal symmetry (see (89)). So it actually
describes a topologically ordered phase. There is no L-
type time-reversal SPT in 4+1D. In general, the L-type
realizable ZM2 SPT phases in d-dimensional space-time
are not described by ΩOd , but by a quotient of ΩOd

PSPTdZM2
= ΩOd /Ω̄

SO
d , (179)

where Ω̄SOd is the orientation invariant subgroup of ΩSOd
(i.e. the manifold Md and its orientation reversal −Md

belong to the same oriented cobordism class).

VII. SUMMARY

In this paper, we use G × SO(∞) non-linear NLσMs
to construct pure SPT and mixed SPT states, as

well as iTO states. We find that those topological
states are classified by a quotient of Hd(G × SO,R/Z).
For example, the quotient of Hd(SO,R/Z) give rise

to iTO phases: Hd(SO,R/Z)/Λd = σiTOd
L. Writ-

ing Hd(G × SO,R/Z) as Hd(G,R/Z) ⊕ Hd(SO,R/Z) ⊕
⊕d−1
k=1H

k[BG,Hd−k(SO,R/Z)] and use the quotient to

reduce Hd(SO,R/Z) to σiTOd
L, we find that L-type

realizable G SPT phases are classified by Ed(G) o
⊕d−1
k=1H

k(BG, σiTOd−k
L ) ⊕ Hd(G,R/Z). This classi-

fication include both the pure states [classified by
Hd(G,R/Z)] and the mixed SPT states [classified by

Ed(G) o ⊕d−1
k=1H

k(BG, σiTOd−k
L )]. (Some of the mixed

SPT states were also referred as the beyond-group-
cohomology SPT states. In this paper, we see that
those beyond-group-cohomology SPT states are actually
within another type of group cohomology classification.)

More general SPT states exist, which cannot be ob-
tained from G× SO(∞) non-linear NLσMs. Those SPT

states are described by Ed(G) o ⊕d−1
k=1H

k(BG, iTOd−k
L ).

We note that, as Abelian groups, σiTOd
L is isomorphic

to iTOd
L, although σiTOd

L ⊂ iTOd
L (see Table I). As a

result, Ed(G) o ⊕d−1
k=1H

k(BG, iTOd−k
L ) is isomorphic to

Ed(G) o⊕d−1
k=1H

k(BG, σiTOd−k
L ), as Abelian groups.
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Appendix A: Group cohomology theory

1. Homogeneous group cocycle

In this section, we will briefly introduce group co-
homology. The group cohomology class Hd(G,M) is
an Abelian group constructed from a group G and an
Abelian group M. We will use “+” to represent the mul-
tiplication of the Abelian groups. Each elements of G
also induce a mapping M→ M, which is denoted as

g ·m = m′, g ∈ G, m,m′ ∈ M. (A1)

The map g· is a group homomorphism:

g · (m1 +m2) = g ·m1 + g ·m2. (A2)

The Abelian group M with such a G-group homomor-
phism, is call a G-module.

A homogeneous d-cochain is a function νd : Gd+1 → M,
that satisfies

νd(g0, · · · , gd) = g · νd(gg0, · · · , ggd), g, gi ∈ G. (A3)
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We denote the set of d-cochains as Cd(G,M). Clearly
Cd(G,M) is an Abelian group. homogeneous group cocy-
cle

Let us define a mapping d (group homomorphism)
from Cd(G,M) to Cd+1(G,M):

(dνd)(g0, · · · , gd+1) =

d+1∑
i=0

(−)iνd(g0, · · · , ĝi, · · · , gd+1)

(A4)

where g0, · · · , ĝi, · · · , gd+1 is the sequence
g0, · · · , gi, · · · , gd+1 with gi removed. One can check
that d2 = 0. The homogeneous d-cocycles are then the
homogeneous d-cochains that also satisfy the cocycle
condition

dνd = 0. (A5)

We denote the set of d-cocycles as Zd(G,M). Clearly
Zd(G,M) is an Abelian subgroup of Cd(G,M).

Let us denote Bd(G,M) as the image of the map
d : Cd−1(G,M)→ Cd(G,M) and B0(G,M) = {0}. The ele-
ments in Bd(G,M) are called d-coboundary. Since d2 = 0,
Bd(G,M) is a subgroup of Zd(G,M):

Bd(G,M) = {dνd−1|νd−1 ∈ Cd−1(G,M)} ⊂ Zd(G,M).(A6)

The group cohomology class Hd(G,M) is then defined as

Hd(G,M) = Zd(G,M)/Bd(G,M). (A7)

We note that the d operator and the cochains Cd(G,M)
(for all values of d) form a so called cochain complex,

· · · d→ Cd(G,M)
d→ Cd+1(G,M)

d→ · · · (A8)

which is denoted as C(G,M). So we may also write the
group cohomology Hd(G,M) as the standard cohomology
of the cochain complex Hd[C(G,M)].

2. Inhomogeneous group cocycle

The above definition of group cohomology class
can be rewritten in terms of inhomogeneous group
cochains/cocycles. An inhomogeneous group d-cochain
is a function ωd : Gd → M . All ωd(g1, · · · , gd) form
Cd(G,M). The inhomogeneous group cochains and the
homogeneous group cochains are related as

νd(g0, g1, · · · , gd) = ωd(g01, · · · , gd−1,d), (A9)

with

g0 = 1, g1 = g0g01, g2 = g1g12, · · · gd = gd−1gd−1,d.
(A10)

Now the d map has a form on ωd:

(dωd)(g01, · · · , gd,d+1) = g01 · ωd(g12, · · · , gd,d+1)

+

d∑
i=1

(−)iωd(g01, · · · , gi−1,igi,i+1, · · · , gd,d+1)

+ (−)d+1ωd(g01, · · · , g̃d−1,d) (A11)

This allows us to define the inhomogeneous group d-
cocycles which satisfy dωd = 0 and the inhomogeneous
group d-coboundaries which have a form ωd = dµd−1. In
the following, we are going to use inhomogeneous group
cocycles to study group cohomology. Geometrically, we
may view gi as living on the vertex i, while gij as living
on the edge connecting the two vertices i to j.

Appendix B: L-type potential gauge topological
invariants

In Section II, we introduced the gauge topological in-
variant W d

top(A). In fact, the gauge invariance (47) put
a strong constrain on the quantized class of the gauge
topological invariant W d

top(A). In this section, we will
solve those self consistent conditions and obtain the po-
tential gauge topological invariants directly without go-
ing through the NLσM (i.e. we do not concern about if
a gauge topological invariant can be generated/realized
by a well defined local bosonic model or not).

First, it appears that all gauge topological invariants
are trivial, since we can always rescale them W d

top(A) ∈ R

to W̃ d
top(A) = λW d

top(A) and send λ → 0. The new

rescaled topological invariant W̃ d
top(A) will vanish. This

way, we showed that there is no non-trivial gauge topo-
logical invariant that does not smoothly connect to zero.

There are two related ways to see the mistake in the
above argument. First, we note that gauge topological
invariantsW d

top(A) can be gauge invariant only up to a 2π

phase. If we scale W d
top(A) by an arbitrary real number,

it will not be gauge invariant.
So different non-trivial gauge topological invariants

that do not smoothly connect to zero are classified by
their quantized changes under gauge transformations:∫

Md

W d
top(Ag)−

∫
Md

W d
top(A) = 0 mod 1. (B1)

We note that the change of the gauge topological invari-
ant,

∫
Md [W d

top(A+δA)−W d
top(A)], can be expressed as94∫

Md

[W d
top(A+ δA)−W d

top(A)] =

∫
Ñd+1

Ptop(FN )

Ptop(FN ) = dW d
top(A), (B2)

where Md is closed ∂Md = ∅, Ñd+1 = Md × I and
the gauge connection AN on Ñd+1 satisfies that on one
boundary of Ñd+1 AN = A and on the other boundary
AN = A+ δA. We call AN an extension of A,A+ δA on
the boundary Md∪(−Md) = ∂Ñd+1 to Ñd+1. Therefore,
eqn. (B1) can be rewritten as∫

Nd+1

Ptop(FN ) = 0 mod 1, Nd+1 = Md × S1, (B3)

where G-bundle on Nd+1 = Md×S1 has a twist generate
by g around S1. We note that Ptop(FN ) is a closed form
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(or a cocycle) dPtop(FN ) = 0. Its change under a gauge
transformation on Nd+1 is given by∫

Nd+1×S1

dPtop = 0. (B4)

Thus
∫
Nd+1 Ptop(FN ) is gauge invariant. So we can ex-

press Ptop(FN ) as a function of the field strength. Also,
a smooth change of the local bosonic Lagrangian will
change W d

top(A) by an gauge invariant term ∆W (FN )

and change Ptop(FN ) by an exact form Ptop(FN ) →
P ′top(FN ) = Ptop(FN ) + d∆W (FN ).

Also, when g is trivial on Md or when the G-bundle
on Nd+1 = Md × S1 can be reduced to a G-bundle on
Md, we have∫

Nd+1

Ptop(FN ) = 0, Nd+1 = Md × S1, (B5)

In other words, when the G-bundle on Nd+1 = Md × S1

can be extended to a G-bundle on D̃d+2 = Md × D2,
where D2 is a disk, we have∫

∂(Md×D2)

Ptop(FN ) = 0. (B6)

The above also implies that∫
∂Dd+2

Ptop(FN ) = 0, (B7)

where Dd+2 is a (d+ 2)-dimensional disk.
To see the second mistake, we note that W d

top(A) is
only required to be well defined when A is deformable to
A = 0. In general, only the difference

∫
Md [W d

top(Ã) −
W d

top(A)] is well defined, and only up to a 2π phase. If

we scale W d
top(A) by an arbitrary real number, it will not

be well defined. In this case, we need to use eqn. (B2) to
define the difference. More generally, if we want to define
the difference of the topological invariant on spaces with
different geometry, we need to generalize eqn. (B2) to∫

M̃d

W d
top(Ã)−

∫
Md

W d
top(A) =

∫
Nd+1

Ptop(FN )

Ptop(FN ) = dW d
top(A), (B8)

where ∂Nd+1 = M̃d ∪ (−Md) and the gauge connection
AN on Nd+1 satisfies that on one boundary −Md, AN =
A, and on the other boundary M̃d, AN = Ã. In order for
the above difference to be well defined, we require that∫

Nd+1

Ptop(FN ) = 0 mod 1, for any closed Nd+1.

(B9)

where is a stronger quantization condition on Ptop(FN ).
Now, we would like to retell the above story in terms

of classifying space, and following Ref. 94, try to un-
derstand the different quantized topological invariants

Ptop(F ) from the classifying space point of view.99 We
first note that all the gauge configurations on Nd+1 can
be understood through classifying space BG and uni-
versal bundles EG (with a connection): all G-bundles
on Nd+1 with all the possible connections can be ob-
tained by choosing a suitable map of Nd+1 into BG,
γ : Nd+1 → BG.94 BG is a very large space, often infi-
nite dimensional. If we pick a connection in the universal
bundle EG, even the different connections in the same
G-bundle on Md can be obtained by different maps γ.
Therefore, we can express Ptop(F ) as∫

Nd+1

Ptop(F ) = Qd+1
top (γ) (B10)

We will further assume that we can express Ptop(F ) as∫
Nd+1

Ptop(F ) = Qd+1
top (Nd+1

γ ) (B11)

where Nd+1
γ is the image of Nd+1 in the classifying space

BG under the map γ. We will come back to this point
later. Here we use the superscript d + 1 to stress that
Qd+1

top (·) is function of (d+ 1)-dimensional manifolds.
We see that once we specify a connection on BG, every

map γ : Md → BG will define a connection F on Nd+1.
Thus we can view the function of Nd+1

γ , Qd+1
top (Nd+1

γ ), as
a function of the connection, Ptop(F ). Therefore, we can
study the properties (such the quantization condition)
of gauge topological invariant Ptop(F ) via the function

Qd+1
top (Nd+1

γ ) in the classifying space BG.

The function Qd+1
top (Nd+1) has the following defining

properties (see eqn. (B6)):

Qd+1
top (Nd+1) ∈ R,

Qd+1
top (Nd+1

1 ) +Qd+1
top (Nd+1

2 ) = Qd+1
top (Nd+1

1 ∪Nd+1
2 ),

Qd+1
top (Nd+1) = 0, if Nd+1 = ∂(Md ×D2). (B12)

Here Nd+1
1 ∪ Nd+1

2 is an algebraic union of Nd+1
1 and

Nd+1
2 . For example, if Nd+1

2 is Nd+1
1 with an opposite

orientation, then Nd+1
1 ∪ Nd+1

2 = ∅. (More precisely,

Nd+1
1 and Nd+1

2 should be viewed as chains, and Nd+1
1 ∪

Nd+1
2 as the addition of chains in homological theory.)

The above also implies that

Qd+1
top (Nd+1) = 0, if Nd+1 = ∂(Dd+2). (B13)

Then using the additive property of Qd+1
top , we can show

that

Qd+1
top (Nd+1) ∈ R,

Qd+1
top (Nd+1

1 ) +Qd+1
top (Nd+1

2 ) = Qd+1
top (Nd+1

1 ∪Nd+1
2 ),

Qd+1
top (Nd+1) = 0, if Nd+1 = ∂Od+2, (B14)

Also, from eqn. (B9), we obtain

Qd+1
top (Nd+1) = 0 mod 1, if ∂Nd+1 = ∅. (B15)
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From the condition eqn. (B14), we see that the func-

tion Qd+1
top (Nd+1) can be described by a cocycle ωd+1 ∈

Zd+1(BG,R), where Zd+1(BG,R) is the space of all co-
cycles on the classifying space BG with coefficient R:

Qd+1
top (Nd+1) = 〈ωd+1, N

d+1〉. (B16)

Certainly not every cocycle in Cd+1(BG,R) satisfies
the quantization condition eqn. (B15). Let us use

Zd+1
Z (BG,R) to denote the set of cocycles that satisfy the

quantization condition eqn. (B15), and use Bd+1(BG,R)
to denote the set coboundaries. Since the coboundaries
are all connected and represent local smooth changes of
the bosonic Lagrangian, Zd+1

Z (BG,R)/Bd+1(BG,R) de-
scribes the quantized topological invariants, which are
not smoothly connect to each other by the local smooth
changes of the bosonic Lagrangian. It turns out that

Free[Hd+1(BG,Z)] ≡ Zd+1
Z (BG,R)/Bd+1(BG,R).

(B17)

Thus Free[Hd+1(BG,Z)] describes a set of the quantized
potential topological invariants.

But Free[Hd+1(BG,Z)] does not describe all the po-
tential topological invariants. Free[Hd+1(BG,Z)] only
describe a type of topological invariants that change
their value under a smooth change of the gauge con-
figuration

∫
Md [W d

top(A + δA) −W d
top(A)] 6= 0. We will

call such type of topological invariants as Chern-Simons
topological invariants. However, there are another type
of topological invariants that do not change under a
smooth change of the gauge configuration

∫
Md [W d

top(A+

δA) − W d
top(A)] = 0. We will call such type of topo-

logical invariants as locally-null topological invariants.
The locally-null topological invariants correspond to
P (FN ) = 0. So it is missed by our discussion above.
In the classifying space approach, the locally-null topo-

logical invariants e
∫
Md

Wd
top(A) is described by cocycles in

Hd(BG,R/Z).67–69 However, Hd(BG,R/Z) may contain
continuous part, such as R/Z. So the quantized poten-
tial locally-null topological invariants are described by
Dis[Hd(BG,R/Z)], the discrete part of Hd(BG,R/Z).

This way, we show that

the potential gauge topological invariants that cannot
connect to zero and cannot connect to each other are
described by Free[Hd+1(BG,Z)] ⊕ Dis[Hd(BG,R/Z)].
Since Dis[Hd(BG,R/Z)] = Tor[Hd+1(BG,Z)], we may
say that the potential gauge topological invariants are
described by Hd+1(BG,Z).

Since the different gauge transformation properties

2π

∫
Md

W d
top(Ag)−W d

top(A) =
∣∣∣
A=0

∫
Md

Ldtop(g−1∂g)

(B18)

are classified by group cohomology Hd(G,R/Z) (where
Ldtop(g) is a cocycle in Hd(G,R/Z)) and since

Hd+1(BG,Z) = HdB(G,R) (see, for example, Ref. 69), we
find that the L-type potential gauge topological invari-
ants coincide with the realizable L-type gauge topological
invariants produced by the NLσM. This means that

the L-type potential gauge topological invariants de-
scribed by Hd+1(BG,Z) can all be produced by L-type
local bosonic models (i.e. the NLσMs with fields in G),
if we “gauge” the symmetry G. In other words, all the
L-type potential gauge topological invariants described
by Hd+1(BG,Z) are realizable by L-type local bosonic
systems.

For example, when G = U(1), H4(BU(1),Z) = Z,
whose generator is c21 with c1 = 1

2πF and c21 = 1
4π2FF =

Ptop(F ). The corresponding gauge topological invari-
ant is W 3

top(A) = 1
(2π)2AF , where F is the curvature

two-form of the U(1) connection one-form A. Such a
gauge topological invariant describes a U(1) SPT state
in H3[U(1),R/Z] in 2+1D.

Appendix C: L-type potential gauge-gravity
topological invariants

In Section III B, we introduced L-type realizable gauge-
gravity topological invariants W d

top(A,Γ). In this section,
we will discuss the L-type potential gauge-gravity topo-
logical invariants W d

top(A,Γ), by repeating the discussion
in Appendix B. We can use a (d+ 1)-form Ptop to define
difference of the potential gauge-gravity topological in-
variant W d

top(A,Γ):94∫
M̃d

W d
top(Ã,Γ)−

∫
Md

W d
top(A,Γ) (C1)

=

∫
Nd+1

Ptop(FN , RN ), with ∂Nd+1 = M̃d ∪ (−Md).

In the classifying space approach, Ptop(FN , RN ) is ex-
pressed as∫

Nd+1
γ

Ptop(FN , RN ) = Qd+1
top (Nd+1

γ ) (C2)

where Nd+1
γ is the image of the map γ : Nd+1 → B(G×

SO). We find that Qd+1
top (Nd+1

γ ) satisfies

Qd+1
top (Nd+1

γ ) ∈ R,

Qd+1
top (Nd+1

γ ) +Qd+1
top (Ñd+1

γ ) = Qd+1
top (Nd+1

γ ∪ Ñd+1
γ ),

Qd+1
top (Nd+1

γ ) = 0, if Nd+1
γ = ∂O.

Qd+1
top (Nd+1

γ ) = 0 mod 1, if ∂Nd+1
γ = ∅. (C3)

However, the quantization condition Qd+1
top (Nd+1

γ ) =

0 mod 1 is required only for a subset of cycles Nd+1
γ in

B(SO × G). This is because for a closed Nd+1 with a
given topology, a generic map γ : Nd+1 → B(G × SO)
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can give rise to an arbitrary G × SO principle bundle
over Nd+1 (whose fiber is the G × SO group). The cor-
responding SO vector bundle (whose fiber is the vector
space that forms the fundamental representation of SO)
may not be the tangent bundle over Nd+1. Such a map is
not allowed. The quantization condition Qd+1

top (Nd+1
γ ) =

0 mod 1 is required only for the maps γ that give rise to
the tangent bundle over Nd+1.

Let Zd+1
G [B(G × SO),R] be the space of quantized

cocycles, and let Bd+1[B(G × SO),R] be the space of
coboundaries. Then the potential gauge-gravity topolog-
ical invariants are described by

Hd+1
G [B(G× SO),R]

≡ Zd+1
G [B(G× SO),R]/Bd+1[B(G× SO),R]. (C4)

Since the quantization condition is enforced only one a
subset of (d+ 1)-cycles Nd+1

γ , Hd+1
G [B(G× SO),R] may

contain unquantized continuous part R. It may also con-
tain quantized discrete part Z. In other words,

Hd+1
G [B(G× SO),R] = (⊕n

G
R
i=1R)⊕ (⊕n

G
Z
i=1Z) (C5)

We note that the cocycles in Hd+1(BG,Z) also satisfy
all the conditions in eqn. (C3), thus we have a group
homomorphism

Free[Hd+1[B(G× SO),Z]]→ Hd+1
G [B(G× SO),R].

(C6)

The image of the map is formed by realizable gauge-
gravity topological invariants. We also note that there
is another group homomorphism (an exact sequence)

0→ Dis[Hd+1
G (BG,R)]→ Free[Hd+1(B(G× SO),Z(

1

n
))]

(C7)

for a certain n, where Z( 1
n ) is the fractional integer

{0,± 1
n ,±

2
n , · · · }. This is because all unquantized cocy-

cles are dropped, and a quantized cocycle corresponds
an element of Hd+1(B(G × SO),Z( 1

n )). Also differ-
ent quantized cocycles correspond different elements of
Hd+1(B(G× SO),Z( 1

n )). If we write

Free[Hd+1(B(G× SO),Z)] = (⊕nZ
i=1Z), (C8)

we have

nZ = nGR + nGZ . (C9)

Note that Hd+1
G (BG,R) only describe Chern-Simons

gauge-gravity topological invariants. The locally-null
gauge-gravity topological invariants are described by

Hd
G[B(G× SO),R/Z] ≡ Dis

(
Hd[B(G× SO),R/Z]/ΛdG

)
,

(C10)

where ΛdG is a subgroup of Hd[B(G×SO),R/Z] form by
cocycles ωd that satisfy

〈ωd, Nd
γ 〉 = 0, (C11)

where Nd
γ is all the close d-manifolds in B(G×SO) such

that the SO bundle on Nd
γ is smoothly connected to the

tangent bundle of Nd
γ . Since Dis(Hd[B(G×SO),R/Z]) '

Tor(Hd+1[B(G× SO),Z]), we have

Hd
G[B(G× SO),R/Z] ⊂ Tor(Hd+1[B(G× SO),Z]),

(C12)

that describes the locally-null potential gauge-gravity
topological invariants. Those locally-null gauge-gravity
topological invariants are all realizable. We also have

Dis(Hd+1
G [B(G× SO),R]) ⊂ Free(Hd+1[B(G× SO),Z(

1

n
)]),

(C13)

that describes the Chern-Simons potential gauge-gravity
topological invariants. A subset of those Chern-Simons
gauge-gravity topological invariants that are also in
Free(Hd+1[B(G× SO),Z]) are realizable.

We like to remark that, in general, the image of the
map (C6) is not the whole Hd+1

G (B(G × SO),R). This
means that some potential gauge-gravity topological in-
variants cannot be generated from NLσM construction
discussed in Section II B. However, it is not clear if there
are some other bosonic path integrals that can generate
the missing potential topological invariants.

Appendix D: The ring of H∗(BSO,Z)

According to Ref. 97, the ring H∗(BSO,Z) is a poly-
nomial ring generated by pi and β(w2i1w2i2 · · · ), 0 <
i1 < i2 < · · · , with integer coefficients. Here pi ∈
H4i(BSO,Z) is the Pontryagin class of dimension 4i and
wi ∈ Hi(BSO,Z2) is the Stiefel-Whitney class of dimen-
sion i. Since TorHd(BG,R/Z) = TorHd+1(BG,Z) (see,
for example, Ref. 69), the natural map Hd(BG,Z2) →
TorHd(BG,R/Z) induces a natural map Hd(BG,Z2)→
Hd+1(BG,Z): β : Hi(BSO,Z2) → Hi+1(BSO,Z).
Therefore, β(w2i1w2i2 · · · ) has a dimension 1+2i1 +2i2 +
· · · .

More precisely, to obtain the ring H∗(BSO,Z) from a
polynomial ring generated by pi and β(w2i1w2i2 · · · ), we
need to quotient out certain equivalence relations:

H∗(BSO,Z) = Z[{pi}, {β(w2i1w2i2 · · · )}]/ ∼, (D1)

where the equivalence relations ∼ contain

2β(w2i1w2i2 · · · ) = 0, (D2)

βw(I)βw(J) =∑
k∈I

βw2kβw[(I − k) ∪ J − (I − k) ∩ J ]p[(I − k) ∩ J ],
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where I = {i1, i2, · · · }, w(I) = w2i1w2i2 · · · . and p(I) =
pi1pi2 · · · . Here we list all the second kind of the equiva-
lence relations for low dimensions

βw2βw2 = βw2βw2,

βw2βw4 = βw2βw4,

β(w2w4)βw2 = βw2β(w2w4). (D3)

We see that those relations are identities (mod 2), and
thus there are no effective equivalence relations of the
second kind for dimensions less than 12. So for low di-
mensions,

H1(BSO,Z) = 0,

H2(BSO,Z) = 0,

H3(BSO,Z) = Z2 = {mβw2},
H4(BSO,Z) = Z = {np1},
H5(BSO,Z) = Z2 = {mβw4}, (D4)

H6(BSO,Z) = Z2 = {mβw2βw2},
H7(BSO,Z) = 2Z2 = {m1βw6 +m2βw2p1},
H8(BSO,Z) = 2Z⊕ Z2 = {n1p

2
1 + n2p2 +mβw2βw4},

where m’s are in Z2 and n’s in Z.
Also, according to Ref. 97, the ring H∗(BOn,Z2) is

given by

H∗(BOn,Z2) = Z2[w1,w2, · · · ]. (D5)

For low dimensions, we find that

H1(BO,Z2) = Z2 = {mw1},
H2(BO,Z2) = 2Z2 = {m1w2 +m2w2

1}, (D6)

H3(BO,Z2) = 3Z2 = {m1w3 +m2w1w2 +m3w3
1},

H4(BO,Z2) = 5Z2,

H5(BO,Z2) = 7Z2,

H6(BO,Z2) = 11Z2,

where m’s are in Z2.

Appendix E: Calculate the generators in eqn. (67)
and eqn. (146) from eqn. (66) and eqn. (143)

The basis in eqn. (67) and eqn. (146) give rise to
the basis in eqn. (66) and eqn. (143) after the one-to-

one natural map β̃: Hd(G,R/Z) → Hd+1(BG,Z). We
also have a natural map π : Hd(G,Z2) → Hd(G,R/Z),
such as πwi = 1

2wi. The Bockstein homomorphism

β : Hd(G,Z2) = Hd(BG,Z2) → Hd+1(BG,Z) is given

by β = β̃π, which is equal to the Steenrod square Sq1.
One can use the properties (see Section IV B)

Sq1Sq1 = 0, Sq1(xy) = Sq1(x)y + xSq1(y),

Sq1(wi) = w1wi + (i+ 1)wi+1, Sq1(w2
2) = 0; (E1)

for x, y ∈ H∗(X,Z2) to compute the action of Sq1.

Let us first calculate the generators in eqn. (67)
from those in eqn. (66). In 2-dimensional space-time
H2(SO,R/Z) = H3(BSO,Z) = Z2. H3(BSO,Z) is gen-
erated by the promoted 3-dimensional topological invari-
ant K3(Γ) = Sq1(w2) = w1w2 + w3. H2(SO,R/Z) is
generated by W 2

top(Γ) which is the pull back of K3(Γ) =

w1w2 + w3 by the natural map β̃ : H2(SO,R/Z) →
H3(BSO,Z):

β̃[W d
top(Γ)] = Kd+1(Γ). (E2)

Using β̃ = Sq1π−1, we find that W 2
top = 1

2w2, since

π−1 1
2w2 = w2 = and Sq1(w2) = w1w2 + w3. In

2+1D space-time, the corresponding H4(BSO,Z) =
Z is generated by K4(Γ) = p1. The pull back of

the promoted generator p1 by the natural map β̃ :
H3(SO,R/Z) → H4(BSO,Z) is the gauge-gravity topo-
logical invariant W 3

top = ω3. In 3+1D space-time,

the corresponding H4(SO,R/Z) = Z2 is generated by
the gauge-gravity topological invariant W 4

top = 1
2w4,

since β̃ 1
2w4 = Sq1π−1 1

2w4 = Sq1w4 = βw4. In

4+1D space-time, the corresponding H5(SO,R/Z) = Z2

is generated by the gauge-gravity topological invariant
W 4

top = 1
2w2(w1w2 + w3). This is because β̃ 1

2w2(w1w2 +

w3) = Sq1π−1 1
2w2(w1w2 + w3) = Sq1w2(w1w2 +

w3) = Sq1w2Sq
1w2 = βw2βw2, where we have used

eqn. (E1). In 5+1D space-time, again, using β̃ = Sq1π−1

and eqn. (E1), we can show that the corresponding
H6(SO,R/Z) = 2Z2 is generated by the gauge-gravity
topological invariant W 4

top = 1
2w6,

1
2w3

2. Similarly, we
can show that, in 6+1D space-time, the corresponding
H8(SO,R/Z) = 2Z⊕Z2 is generated by the gauge-gravity

topological invariant W 4
top = ω

p21
7 , ωp27 , 1

2 (w1w2 + w3)w4.

We would like to remark that β̃ maps both 1
2 (w1w2 +

w3)w4 and 1
2w2(w1w4 +w5) in H7(SO,R/Z) to the same

βw2βw4 in H8(BSO,Z), since β = Sq1 maps both
(w1w2 + w3)w4 and w2(w1w4 + w5) in H7(SO,Z2) to
the same βw2βw4. Since both β and π are many-to-one
maps, the above fact does not contradict with the facts
that β̃ is an one-to-one map and β = β̃π. Although
(w1w2 + w3)w4 and w2(w1w4 + w5) are different cocycles
in H7(SO,Z2), their images under π, 1

2 (w1w2 + w3)w4

and 1
2w2(w1w4 + w5), belong to the same cocycle in

H7(SO,R/Z) (i.e. differ only by a coboundary).

Using a similar approach, we can calculate the gener-
ators in eqn. (146) from those in eqn. (143). For ex-

ample, we can show β̃ 1
2 (wO2

1 )3(wO2
2 )2 = (βwO2

1 )2pO2
1 .

This is because β̃ 1
2 (wO2

1 )3(wO2
2 )2 = Sq1[(wO2

1 )3(wO2
2 )2] =

Sq1[(wO2
1 )3](wO2

2 )2 = Sq1[(wO2
1 )3]pO2

1 , where we have

used (wO2
2 )2 = pO2

1 mod 2. Then using Sq1[(wO2
1 )3] =

(Sq1wO2
1 )2 = (βwO2

1 )2, we find β̃ 1
2 (wO2

1 )3(wO2
2 )2 =

(βwO2
1 )2pO2

1 , where we have used Sq1wO2
1 = (wO2

1 )2.
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Appendix F: Relation between Pontryagin classes
and Stiefel-Whitney classes

There is result due to Wu that relate Pontryagin classes
and Stiefel-Whitney classes (see Ref. 100 Theorem C):
Let B be a vector bundle over a manifold X, wi be its
Stiefel-Whitney classes and pi its Pontryagin classes. Let
ρ4 be the reduction modulo 4 and θ2 be the embedding
of Z2 into Z4 (as well as their induced actions on coho-
mology groups). Then

P2(w2i) = ρ4(pi) + θ2

(
w1Sq

2i−1w2i +

i−1∑
j=0

w2jw4i−2j

)
,

(F1)

where P2 is the Pontryagin square,101 which maps x ∈
H2n(X,Z2) to P2(x) ∈ H4n(X,Z4). Let ρ2 be the reduc-
tion modulo 2. The Pontryagin square has a property
that ρ2P2(x) = x2. Therefore

ρ2P2(w2i) = w2
2i = ρ2(pi). (F2)

Appendix G: The Künneth formula

The Künneth formula is a very helpful formula that
allows us to calculate the cohomology of chain complex
X × X ′ in terms of the cohomology of chain complex
X and chain complex X ′. The Künneth formula is ex-
pressed in terms of the tensor-product operation ⊗R and
the torsion-product operation �R ≡ TorR1 , which have
the following properties:

M⊗Z M′ ' M′ ⊗Z M,

Z⊗Z M ' M⊗Z Z = M,

Zn ⊗Z M ' M⊗Z Zn = M/nM,

Zn ⊗Z R/Z ' R/Z⊗Z Zn = 0,

Zm ⊗Z Zn = Z〈m,n〉,

R/Z⊗Z R/Z = 0,

R⊗Z R/Z = 0,

R⊗Z R = R,

(M′ ⊕ M′′)⊗R M = (M′ ⊗R M)⊕ (M′′ ⊗R M),

M⊗R (M′ ⊕ M′′) = (M⊗R M′)⊕ (M⊗R M′′); (G1)

and

TorR1 (M,M′) ≡ M�R M′,

M�R M′ ' M′ �R M,

Z�Z M = M�Z Z = 0,

Zn �Z M = {m ∈ M|nm = 0},
Zn �Z R/Z = Zn,

Zm �Z Zn = Z〈m,n〉,

M′ ⊕ M′′ �R M = M′ �R M⊕ M′′ �R M,

M�R M′ ⊕ M′′ = M�R M′ ⊕ M�R B, (G2)

where 〈m,n〉 is the greatest common divisor of m and
n. These expressions allow us to compute the tensor-
product ⊗R and the torsion-product �R. Here R is a
ring and M,M′,M′′ are R-modules. A R-module is like a
vector space over R (i.e. we can “multiply” a vector by
an element of R.)

The Künneth formula itself is given by (see Ref. 102
page 247)

Hd(X ×X ′,M⊗R M′)

'
[
⊕dk=0 H

k(X,M)⊗R Hd−k(X ′,M′)
]
⊕[

⊕d+1
k=0 H

k(X,M)�R H
d−k+1(X ′,M′)

]
. (G3)

Here R is a principle ideal domain and M,M′ are R-
modules such that M�R M′ = 0. We also require either
(1) Hd(X,Z) and Hd(X

′,Z) are finitely generated, or
(2) M′ and Hd(X

′,Z) are finitely generated.
For example, M′ = Z⊕ · · · ⊕ Z⊕ Zn ⊕ · · · ⊕ Zm.

For more details on principal ideal domain and R-
module, see the corresponding Wiki articles. Note that Z
and R are principal ideal domains, while R/Z is not. Also,
R and R/Z are not finitely generate R-modules if R = Z.
The Künneth formula works for topological cohomology
where X and X ′ are treated as topological spaces. But,
it does not work for group cohomology by treating Hd

as Hd and X and X ′ as groups, X = G and X ′ = G′,
as demonstrated by the example M = M′ = R/Z and
X = X ′ = Zn. However, since Hd(G,Z) = Hd(BG,Z),
the above Künneth formula works for group cohomol-
ogy when M = M′ = Z. The above Künneth formula
also works for group cohomology when G,G′ are finite or
when G′ is finite and M′ is finitely generate (such as M′

is Z or Zn).

As the first application of Künneth formula, we like
to use it to calculate H∗(X ′,M) from H∗(X ′,Z), by
choosing R = M′ = Z. In this case, the condition
M �R M′ = M �Z Z = 0 is always satisfied. M can be
R/Z, Z, Zn etc . So we have

Hd(X ×X ′,M)

'
[
⊕dk=0 H

k(X,M)⊗Z H
d−k(X ′,Z)

]
⊕[

⊕d+1
k=0 H

k(X,M)�Z H
d−k+1(X ′,Z)

]
. (G4)

The above is valid for topological cohomology. It is also
valid for group cohomology:

Hd(G×G′,M)

'
[
⊕dk=0 Hk(G,M)⊗Z Hd−k(G′,Z)

]
⊕[

⊕d+1
k=0 H

k(G,M)�Z Hd−k+1(G′,Z)
]
. (G5)

provided that G′ is a finite group. Using eqn. (G13), we
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can rewrite the above as

Hd(G×G′,M) ' Hd(G,M)⊕[
⊕d−2
k=0 H

k(G,M)⊗Z Hd−k−1(G′,R/Z)
]
⊕[

⊕d−1
k=0 H

k(G,M)�Z Hd−k(G′,R/Z)
]
, (G6)

where we have used

H1(G′,Z) = 0. (G7)

If we further choose M = R/Z, we obtain

Hd(G×G′,R/Z)

' Hd(G,R/Z)⊕Hd(G′,R/Z)⊕[
⊕d−2
k=1 H

k(G,R/Z)⊗Z Hd−k−1(G′,R/Z)
]
⊕[

⊕d−1
k=1 H

k(G,R/Z)�Z Hd−k(G′,R/Z)
]
, (G8)

where G′ is a finite group.
We can further choose X to be the space of one point

(or the trivial group of one element) in eqn. (G4), and
use

Hd(X,M)) =

M, if d = 0,

0, if d > 0,
(G9)

to reduce eqn. (G4) to

Hd(X,M) ' M⊗Z H
d(X,Z)⊕ M�Z H

d+1(X,Z).
(G10)

where X ′ is renamed as X. The above is a form of the
universal coefficient theorem which can be used to cal-
culate H∗(X,M) from H∗(X,Z) and the module M. The
universal coefficient theorem works for topological coho-
mology where X is a topological space. The universal co-
efficient theorem also works for group cohomology when
X is a finite group.

Using the universal coefficient theorem, we can rewrite
eqn. (G4) as

Hd(X ×X ′,M) ' ⊕dk=0H
k[X,Hd−k(X ′,M)]. (G11)

The above is valid for topological cohomology. It is also
valid for group cohomology:

Hd(G×G′,M) ' ⊕dk=0Hk[G,Hd−k(G′,M)], (G12)

provided that both G and G′ are finite groups.
We may apply the above to the classifying spaces of

group G and G′. Using B(G×G′) = BG×BG′, we find

Hd[B(G×G′),M] ' ⊕dk=0H
k[BG,Hd−k(BG′,M)].

Choosing M = R/Z and using

Hd(G,R/Z) = Hd+1(G,Z) = Hd+1(BG,Z), (G13)

we have

HdB(G×G′,R/Z) = Hd+1[B(G×G′),Z]

= ⊕d+1
k=0H

k[BG,Hd+1−k(BG′,Z)]

= HdB(G,R/Z)⊕HdB(G′,R/Z)⊕
⊕d−1
k=1 H

k[BG,Hd−kB (G′,R/Z)] (G14)

where we have used H0(BG′,Z) = Z, H1
B(G′,Z) =

H1(BG′,Z), and H1
B(G′,Z) = 0 if G′ is compact (or

finite). Eqn. G14 is valid for any groups G and G′. If G
also satisfies (for example when G is finite)

Hd(BG,Z) = HdB(G,Z), Hd(BG,Zn) = HdB(G,Zn),
(G15)

we can rewrite the above as

Hd(G×G′,R/Z) = ⊕dk=0Hk[G,Hd−k(G′,R/Z)]. (G16)

Such a result is consistent with eqn. (H1) for arbitrary
G,G′.

Choosing X = BG, M = Zn, eqn. (G10) becomes

Hd(G,Zn) ' Zn ⊗Z Hd(G,Z)⊕ Zn �Z Hd+1(G,Z),
(G17)

where we have used eqn. (G15). Using eqn. (G17), we
find that

Hd[G,Hd
′
(G′,R/Z)] ' Hd

′
(G′,R/Z)⊗Z Hd−1(G,R/Z)⊕

Hd
′
(G′,R/Z)�Z Hd(G,R/Z), (G18)

Appendix H: Lyndon-Hochschild-Serre spectral
sequence

The Lyndon-Hochschild-Serre spectral sequence (see
Ref. 103 page 280,291, and Ref. 104) allows us to un-
derstand the structure of Hd(G,R/Z) to a certain de-
gree. (Here G is a group extension of SG by GG:
SG = G/GG.) We find that Hd(G,M), when viewed
as an Abelian group, contains a chain of subgroups

{0} = Hd+1 ⊂ Hd ⊂ · · · ⊂ H0 = Hd(G,M) (H1)

such that Hk/Hk+1 is a subgroup of a factor group of
Hk[SG,Hd−k(GG,M)SG], i.e. Hk[SG,Hd−k(GG,M)SG]
contains a subgroup Γk, such that

Hk/Hk+1 ⊂ Hk[SG,Hd−k(GG,R/Z)SG]/Γk,

k = 0, · · · , d. (H2)

Note that G may have a non-trivial action on M and
SG may have a non-trivial action on Hd−k(GG,M) as
determined by the structure 1 → GG → GG i SG →
SG → 1. We add the subscript SG to Hd−k(GG,R/Z)
to stress this point. We also have

H0/H1 ⊂ H0[SG,Hd(GG,R/Z)SG],

Hd/Hd+1 = Hd = Hd(SG,R/Z)/Γd. (H3)
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In other words, all the elements in Hd(GG i SG,R/Z)
can be one-to-one labeled by (x0, x1, · · · , xd) with

xk ∈ Hk/Hk+1 ⊂ Hk[SG,Hd−k(GG,R/Z)SG]/Γk.
(H4)

Note that here M can be Z,Zn,R,R/Z etc . Let xk,α,
α = 1, 2, · · · , be the generators of Hk/Hk+1. Then we
say xk,α for all k, α are the generators of Hd(G,M). We
also call Hk/Hk+1, k = 0, · · · , d, the generating sub-
factor groups of Hd(G,M).

The above result implies that we can use
(m0,m1, · · · ,md) with

mk ∈ Hk[SG,Hd−k(GG,R/Z)SG] (H5)

to label all the elements in Hd(G,R/Z). However, such
a labeling scheme may not be one-to-one, and it may
happen that only some of (m0,m1, · · · ,md) correspond
to the elements in Hd(G,R/Z). But, on the other
hand, for every element in Hd(G,R/Z), we can find a
(m0,m1, · · · ,md) that corresponds to it.

Appendix I: Generators of Hk(BG, σiTO3
L).

The Abelian group Hk(BG, σiTO3
L) is generated by

W k
top(A,Γ)/2π = xω3 where x are the generators

of Hk(BG,Z). Since σiTO3
L = H3(SO,R/Z) =

H4(BSO,Z) and since H4(BSO,Z) is generated
by the first Pontryagin class p1, we may also
say that Hk(BG, σiTO3

L) is generated by xp1 in
Hk[BG,H4(BSO,Z)]. We also know that Hk(BG,Z) '
Hk−1(G,R/Z), thus we can further say that

Hk(BG, σiTO3
L) is generated by ap1 in Hk+3[B(G ×

SO),R/Z] where a are the generators of Hk−1(G,R/Z)
and β(ap1) = xp1 under the natural map β :
Hk+3[B(G× SO),R/Z]→ Hk+4[B(G× SO),Z].

For example, when k = 2 and G = U(1),
H2[BU(1), σiTO3

L] is generated by W 5
top(A,Γ) = c1ω3.

W can also say that it is generated by W 5
top(A,Γ) = ap1

where da = c1 and a generates H1[U(1),R/Z]. So we can
write

c1ω3 = β(a)ω3 = −adω3 = −ap1. (I1)

We see that the natural map β : Hk(G,R/Z) →
Hk+1(BG,Z) behave like a derivative d. Similarly, we
can do

β(a1)ω3 = −1

2
a1β(ω3) = −1

2
a1p1. (I2)

Note that when acting on the cocycles with Z2 coefficient,
β = Sq1.
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43 J. Fröhlich and A. Zee, Nucl. Phys. B 364, 517 (1991).
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