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We show that the energy gap induced by ferromagnetically aligned magnetic impurities on the surface of a
topological insulator can be filled, due to scattering off the non-magnetic potential of the impurities. In both
a continuum surface model and a three-dimensional tight-binding lattice model, we find that the energy gap
disappears already at weak potential scattering as impurity resonances add spectral weight at the Dirac point.
This can help explain seemingly contradictory experimental results as to the existence of a gap.
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The recent discovery of topological insulators (TIs)1–4 has
led to exciting possibilities for producing electronically engi-
neered states. TIs are bulk insulators but host metallic surface
states with a Dirac-like dispersion5,6. The momentum-spin
locking in the surface states7–10 offers unique technological
capabilities, especially if an energy gap can be created.

A gap in the TI surface states can be generated by time-
reversal breaking perturbations and one of the currently
most discussed approaches for engineering a gap is magnetic
doping11–14. The idea is that ferromagnetically ordered impu-
rities will produce a net magnetic field, which then gaps the TI
surface states15,16. Beyond an energy gap, this would also give
rise to multiple other exotic phenomena, such as the anoma-
lous Hall effect recently observed17. However, despite a mul-
titude of recent experimental studies, evidence for a gap in the
TI surface states from magnetic doping remains controversial.
Both angle-resolved photoemission spectroscopy (ARPES)
and scanning tunneling spectroscopy (STS) measurements
have reported the presence of an energy gap11–14, while other
similar studies have found no gap18–22. Interestingly, several
studies have even reported no significant difference between
magnetic and non-magnetic surface impurities19,23.

The key assumption, when expecting an energy gap from
magnetic impurities, is that the TI surface electrons only see
an average Zeeman magnetic field. Here we point out that
magnetic impurities, such as Fe or Cr, also strongly scatter
electrons. Thus, in addition to an effective magnetic field,
the presence of magnetic impurities also add non-magnetic, or
potential, scattering. Potential scattering is known to induce
low-energy impurity resonances in Dirac materials24, ranging
from graphene25 and d-wave superconductors26, to TIs27–30.

In this work we investigate the effect on the TI surface
states of both the magnetic and potential scattering by mag-
netic impurities. We find that there are two effects that si-
multaneously modify the Dirac spectrum of the TI surface
states. First, the presence of magnetic scattering opens a gap
in the spectrum. The gap is generated due to the magnetic
scattering (M = JS z) modifying the energy dispersion rela-
tion E = h̄vFk →

√
(h̄vF)2k2+M2. Secondly, the potential

scattering (U) induces impurity resonance states, which adds
low-energy states to the spectrum. The relative strength of
the potential and magnetic scattering determines the net den-
sity of states (DOS). In the case of weak potential scattering

(U . M), we find a well-defined gap. On the other hand,
for stronger potential scattering (U & M), the tail of the im-
purity resonances dominates the low-energy spectrum around
the Dirac point and the gap is filled. This provides a unifying
framework that allows us to reconcile the conflicting claims
about the presence/absence of a gap at the Dirac point in mag-
netically doped TIs. More specifically, we use both a con-
tinuum surface model and a tight-binding three-dimensional
(3D) lattice model of a TI, where we introduce dilute concen-
trations of magnetic impurities. We find that these two distinct
models generate remarkably similar results and thus produce
a convincing picture regarding the role of magnetic and po-
tential contributions in magnetic impurity scattering.

Continuum surface model.—We first consider an effective
continuum model of the surface states of a TI and their cou-
pling to local magnetic impurities using the Hamiltonian

Hsurf =
∑

k
h̄vFψ

†

k(k× ẑ) ·σψk+

∫
ψ†(r)V(r)ψ(r)dr. (1)

Here h̄vF is the Fermi velocity of the surface states, σ de-
notes the vector of Pauli matrices, and ψk = (ψk↑, ψk↓)t =∫
ψ(r)e−ik·rdr is the electron annihilation spinor at momentum

k. The magnetic impurities are modeled by the total scattering
potential V(r) =

∑
m(Uσ0 − JS ·σ)δ(r− rm), which includes

both scattering off a potential U, with the identity matrix σ0,
and magnetic moment S, both acting as point defects at po-
sitions rm. For simplicity, since the quantum nature of the
spins is not crucial, we use large spin moments |S| → ∞ and
weak couplings J→ 0, requiring J|S| = constant, such that the
impurity spins can be treated as classical.

With the spin of the surface states oriented within the xy-
plane inHsurf , a magnetic field along the ẑ-direction gaps the
surface spectrum at the Dirac point, as it adds a term propor-
tional to σz

5,6,24. Single magnetic impurities with moment
along ẑ (with potential scattering ignored) and with a finite
spatial extent have also been shown to give an effective local
gap15, while a single point-like magnetic impurity results in
no incipient gap31. For finite concentration of point-like mag-
netic impurities, their spins has been shown to align and thus
produce an effective magnetic field16, and we are primarily
interested in this latter system.

To proceed, we study the scattering off a finite concentra-
tion of impurities in Eq. (1) using the T -matrix approach,
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FIG. 1: Evolution of the band structure as a function of the impurity
potential U/M = 0, 1, 2, 3, 4, 5, 6, 10. Here, ρ = 0.1, M = Mẑ,
Dc/h̄vF = 300, and h̄vF = 1.

see e.g. Refs.30,32. For a low density of localized magnetic
impurities, all with the scattering potential V(r), the impu-
rity averaged Fermion Green function (GF) reads G(k,z) =
G0(k,z)[σ0 −Σ(k,z)G0(k,z)]−1 to first order in the density
of impurities ρ. Here, the self-energy in the Born approxi-
mation is given by Σ(k,z) = ρ[σ0 −V0g0(z)]−1V0, with V0 =

(Uσ0− JS ·σ). Resolving the algebra, we obtain

G(k,z) =
[z− Ũ(z)]σ0+ [h̄vFk× ẑ+M̃(z)] ·σ

[z− Ũ(z)]2− M̃z(z)− |h̄vFkeiϕ+ M̃+(z)|2
, (2a)

Ũ(z) =ρ
U −g0(z)[U2−M2]

[1−g0(z)U]2−g2
0(z)M2

, (2b)

M̃(z) =
ρ

[1−g0(z)U]2−g2
0(z)M2

M. (2c)

Here g0(z)σ0 =
∑

k g(k,z) = −z log[Dc/(−z)]σ0/4π(h̄vF)2,
where we have introduced a finite cut-off energy Dc for the
band width of the surface states. In addition, we have intro-
duced M = −JS, M = |M|, M+ = Mx + iMy, and tanϕ = kx/ky.

Using −ImGr(k,ω)/π to calculate the low-energy band
structure, the formulation provided in Eqs. (2) enables a con-
tinuous variation of the potential scattering U. In Fig. 1 we
plot the evolution of the calculated band structure for increas-
ing potential scattering U, but fixed strength of the local mag-
netic impurity moment M = Mẑ. We here explicitly choose a
magnetic moment such that there is a clear gap at the Dirac
point for zero potential scattering. The band structure shows
an essentially unperturbed and gapped band structure for po-
tentials U/M . 1, see Figs. 1(a, b). However, the gap vanishes
rapidly for increasing U/M & 1, as seen in Figs. 1(b – h). The
flattening of the lower part of the Dirac cone for U/M & 1 in-
dicates the presence of an impurity resonance. Even though
the impurity resonance is located well below the Dirac point,
there is enough spectral weight available from its tail to sig-
nificantly modify the gap and for U/M ≥ 4 the gap is com-
pletely filled. We thus conclude that even weak potential scat-
tering significantly alters the low-energy spectrum by filling
the magnetically induced gap at the Dirac point. There is also
an overall upward energy shift of the band structure with in-
creasing U, indicated by the shift z→ z− Ũ(z) in the denom-
inator of G(k,z) in Eqs. (2). This is expected since potential

scattering contributes as a local positive (hole) doping. This
effect is advantageous since it both breaks particle-hole sym-
metry, not usually present in TIs27, and it can also be seen
to mimic additional carrier doping of the material. Both the
gap turning into a region of suppressed, but finite, intensity
and the energy shift in Fig. 1 agree very well with the exper-
imental results reported in Ref.11. The results in Fig. 1 are
for magnetic moments along σz. Adding a small moment also
along σx,y does not change the results. This is clear since the
shift h̄vFkeiϕ → h̄vFkeiϕ + M̃+(z) in the dispersion relation in
Eqs. 2 does not act as a mass term in the Hamiltonian, but
merely renormalizes the angular dependence of the energy.

In order to compare to local probing experiments and more
clearly resolve the impurity resonance structure, we are also
interested in the integrated DOS around the Fermi energy
EF . For this purpose we study the properties of DOS(ω) =
−Im
∑

k Gr(k,ω)/π. Assuming |M+| � |Mz| � Dc, there is
only a weak angular dependence in the momentum summa-
tion and we can perform the summation analytically, giving

G(z) =
[z− Ũ(z)]σ0+M̃(z)·σ

4π(h̄vF)2 log
|M̃(z)|2− (z− Ũ(z))2

D2
c

. (3)

The resulting DOS is plotted in Fig. 2 for different ratios U/M.
In the case of vanishing U, Fig. 2(a), the DOS retains the lin-
ear dispersion of the surface states and has a distinct energy
gap centered around the Dirac point, as is expected for a finite
concentration of purely magnetic impurities15,16. Slightly in-
creasing 0 < U/M . 1, there is an overall energy shift of the
spectrum towards a hole doped state, but more importantly,
the size of the energy gap also decreases. The reduced gap
is a direct consequence of the impurity resonance from the
potential scattering moving toward lower energies and effec-
tively crowding out the gap. Already for U/M = 2, a very
realistic value for the potential scattering of a magnetic im-
purity atom (see Concluding remarks), there is a clear res-
onance peak visible in the low-energy spectrum and its tail
has already started to fill up the energy gap. Thus, we again
see clearly how including a realistic potential scattering term
lifts the magnetically induced gap and, as a consequence, the
DOS instead tends towards that of a potential impurity27–31.
This offers a simple explanation to recent experimental stud-
ies, which have found no significant difference between mag-
netic and non-magnetic surface impurities19,23. We also note
how the impurity resonance at intermediate U values tends to
split up in two peaks, a feature which has also been reported
experimentally11.

3D lattice model.—The continuum model results demon-
strate the importance of including the potential scattering con-
tribution for magnetic impurities, since the resulting impurity
resonance easily fills the magnetically induced gap. In fact, a
realistic impurity can easily provide a potential scattering per-
turbation (& 1 eV) exceeding that of the bulk energy gap in
a TI (∼ 0.3 eV). This also raises the question if a continuum
surface model, with an infinitely large bulk gap, accurately
captures the low-energy properties of TI surface impurities.
We therefore also study magnetic surface impurities with fi-
nite potential scattering in a full 3D lattice model. This lattice
calculation excellently complements the continuum model, as
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FIG. 2: Evolution of the DOS as a function of the impurity poten-
tial U/M = 0, 0.2, 0.6, 1, 2 (a) and U/M = 4, 6, 8, 10 (b). Other
parameters are the same as in Fig. 1.

it not only includes a finite bulk gap, but also captures the
nonzero penetration of the surface states into the bulk of the
TI. Moreover, we only access the behavior of Dirac delta im-
purities in the continuum model, whereas the lattice model
naturally allows for non-singular impurities.

More specifically, we use a simple tight-binding model
of a TI, which consists of s-orbitals arranged on a diamond
lattice7,33:

Hlatt =
∑
〈i, j〉,σ

(t+δti j)c
†

iσc jσ+
4iλ
a2

∑
〈〈i, j〉〉,σσ′

c†iσσ·(d
1
i j×d2

i j)c jσ′. (4)

Here ciσ is the annihilation operator on site i in the lattice with
spin-index σ, t is the nearest neighbor hopping, λ is the spin-
orbit coupling,

√
2a is the cubic cell size, and d1,2

i j are the two
bond vectors connecting next-nearest neighbor sites i and j.
This system becomes a strong TI with a single Dirac surface
cone when setting δti j = 0.25t for one of the nearest neighbor
directions not parallel to (111)7. To access a surface we con-
struct a slab in the (111) direction with ABBCC ... AABBC
stacking termination. To avoid a hybridization gap between
the two slab surfaces, we use 8 lateral unit cells, each consist-
ing of 6 atomic layers. Finally, we set t = 2 and λ= 0.3t, which
gives h̄vF u 1 for the surface states, the same as inHsurf .

To study surface impurities we create a rectangularly
shaped surface supercell with n sites in each direction, result-
ing in a surface area A =

√
3n2a2/2, where a = 1 is the unit

of length. We then add Himp =
∑
σ,σ′ Vc†BσcBσ′ to the Hamil-

tonian, where V is the total impurity scattering potential and
B is one specific surface lattice site within the supercell. We
only consider single-site impurities, which models substitu-
tional or on-top absorbed adatoms, as those most straightfor-
wardly connects to the continuum model results. However,
we do not expect any qualitative changes for extended defects.
For the impurity we include both potential and magnetic scat-
tering: V = Uσ0 − JS ·σ. The surface states in Hlatt does not
have as simple a spin structure as the continuum modelHsurf ,
but we nonetheless find that Zeeman magnetic fields along the
ŷ-direction develop a clear energy gap at the Dirac point. We
therefore use a total scattering potential V = Uσ0 +Mŷ ·σ to
study the influence of potential scattering on the magnetic im-
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FIG. 3: Evolution of the surface local DOS (per energy and area
unit) maximally away from the impurity as a function of the impurity
potential U/M = 0,1,2 (a) and U/M = 3,5,10 (b). Here n = 4 and
M = 4.

purity induced gap. We solveH =Hlatt+Himp in the supercell
using exact diagonalization and use the eigenstates to calcu-
late the local DOS at each lattice site. We use a 70×70 k-point
grid to achieve a high energy resolution capable of accurately
resolving small energy gaps and a 0.01 Gaussian broadening
to compensate for the finite system size.

In Fig. 3 we plot the local surface DOS maximally away
from a M = 4 impurity in a n = 4 supercell, corresponding to
7% surface impurity concentration. At U = 0 we see a clear
energy gap at the Dirac point centered around the Fermi level.
Slowly increasing U moves the energy gap to slightly higher
energies and, at the same time, very clear impurity resonance
peaks start to appear at progressively lower energies. The lat-
ter causes the energy gap to shrink and it is completely filled
already at U/M & 5. We especially note that the gap disap-
pears already for small values of U. This is very far from the
unitary scattering limit, where the impurity resonance peak is
firmly centered around the Dirac point27 and then generates
such a large amount of DOS around the Fermi level, that the
system becomes prone to spontaneous magnetization through
a Stoner-like impurity mechanism34. Instead, the energy gap
in Fig. 3 disappears due to the tail of the impurity resonance
peak adding spectral weight at the Dirac point. We also note
that the impurity resonance has a clear double-peak structure,
which we here attribute to bonding and anti-bonding impu-
rity bands. While we in Fig. 3 plot the local DOS far away
from the impurity, the energy gap is a global property and
does not change throughout the surface. The impurity reso-
nances are naturally taller closer to the impurity, but we find
that the peaks are non-dispersive, and thus their influence on
the energy gap is the same both near and far away from the
impurity. Quite remarkably, all the results and trends with
increasing strength of the potential scattering U are very sim-
ilar for the 3D lattice model in Fig. 3 and the continuum sur-
face model in Fig. 1. These include the energy gap shrinking
and moving to higher energies, before finally disappearing for



4

5 10 15
0

0.05

0.1

5 10 15
0

0.2

0.4
Energy gap
n=4, M=2
n=6, M=2
n=4, M=4
n=6, M=4

Dirac point position

U U

E

(a) (b)
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U for supercell sizes n and impurity magnetic moments M. Dashed
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U/M of the order of one, as well as the two-peaked impurity
resonance structure. This is especially noteworthy since the
lattice calculation has a bulk gap of only about ±0.6 and the
impurity resonance state has been found to penetrate as deep
as 10 layers into the TI27,35.

In order to explicitly track the influence of the potential
scattering on the energy gap, we plot in Fig. 4(a) the extracted
energy gap as function of U for several different impurity
concentrations and magnetic moments. Clearly, the energy
gap is larger for larger M and higher impurity concentrations,
as both generate an overall larger effective Zeeman magnetic
field. However, we find that the gap in all cases diminishes
and is finally completely filled for very realistic strengths of
the potential scattering associated with a magnetic impurity.
This result is unaffected if we add a finite chemical potential
µ to the Hamiltonian Hlatt (dashed line). Thus both intrinsic
doping and local charge puddles36 will not affect the results,
if anything, non-local effects from charge puddles have been
proposed to further diminish the gap37,38. In Fig. 4(b) we fi-

nally plot the position of the Dirac point. There is a sub-linear
increase in position of the Dirac point with increasing U, but,
notably, the size of the magnetic moment does not influence
the position of the Dirac point. Adding a finite µ simply shifts
the Dirac point an equivalent distance.

Concluding remarks.—Finite concentration of magnetic
impurities, where a Zeeman magnetic field is produced as a
collective effect15,16, has been considered to be a promising
pathway for gap opening and thus functionalizing the TI sur-
face. We have here shown that by also including the potential
scattering, present for all impurities, the magnetically induced
gap can be completely filled. Potential scattering in Dirac ma-
terials is known to give rise to impurity resonances24, and we
find that the tail of their spectral weight easily fills up the en-
ergy gap. Most strikingly, we find that the energy gap is com-
pletely filled for a ratio between the potential and magnetic
scattering contributions as low as 1 – 10, which is well within
the range of expected values for the potential (1 – 10 eV) and
magnetic (0.1 – 1 eV) scattering for magnetic dopants in TIs.
The remarkably close alignment between results from a con-
tinuum surface model and a 3D tight-binding lattice model
makes it possible to rule out modeling deficiencies. Our re-
sults therefore provide new crucial understanding and could
offer to resolve the seemingly contradictory experimental sit-
uation as to if magnetic impurities induce an energy gap in the
TI surface states.
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