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Abstract

Rephasing and non-rephasing two-dimensional coherent spectra map the anti-crossing associated

with normal-mode splitting in a semiconductor microcavity. For a 12-meV detuning range near

zero detuning, it is observed that there are two diagonal features related to the intra-action of

exciton-polariton branches and two off-diagonal features related to coherent interaction between

the polaritons. At negative detuning, the lineshape properties of the diagonal intra-action features

are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic

companion feature is observed, shifted from the exciton feature by the biexciton binding energy.

Closer to zero detuning, all features are enhanced and the diagonal intra-action features become

nearly equal in amplitude and linewidth. At positive detuning the exciton- and cavity-like char-

acteristics return to the diagonal intra-action features. Off-diagonal interaction features exhibit

asymmetry in their amplitudes throughout the detuning range. The amplitudes are strongly mod-

ulated (and invert) at small positive detuning, as the lower polariton branch crosses the bound

biexciton energy determined from negative detuning spectra.

PACS numbers: 73.21.Fg, 78.47.J-, 78.47.nj
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Semiconductor microcavities supporting exciton-polaritons1,2 are used in optoelectronic

application3–5 and provide a platform for exploring exotic coherent physical phenomena.6–14

The normal-mode coupling between the photonic cavity mode (γ) and the exciton resonance

(X) enhances both the linear and nonlinear optical interactions.15 Transient four-wave mixing

(FWM) confirm that strong exciton-cavity interactions modify the temporal behavior of the

coherent response and many-body Coulomb correlations determine the exact dynamics,16

which affects dissipation7,17,18 and coherent control.19,20 Biexciton-polaritons also contribute

to the overall emission signal, even through the biexciton binding energy is only slightly

altered by the cavity.21,22

Multidimensional coherent spectroscopy (MDCS) is based on and supersedes FWM. At

optical frequencies, MDCS has been utilized to study various semiconductor nanostructures.23–29

This technique retains both time and frequency resolution, is able to unambiguously dis-

tinguish a variety of quantum pathways (including those with non-radiative steps),30 and

can separate homogeneous and inhomogeneous broadening.31 To date, two-quantum, and

higher-order,32 coherent spectra have shown that many-body interactions dominate the

signals, including a contribution from bound biexcitons for excitation with the correct po-

larization configuration. Two-dimensional coherent spectroscopy (2DCS) has also examined

coherence and control of excitonic qubits in microcavity pillars.33

Despite the extensive fundamental and applied studies of microcavity exciton-polaritons,

the anti-crossing has not been systematically mapped using MDCS. In this paper, normal-

mode splitting of a semiconductor microcavity and the associated exciton-polariton branches

are mapped using rephasing and non-rephasing 2DCS. This study is performed over a range

of energy detuning (∆ = Eγ −EX) near the anti-crossing, where Eγ and EX correspond the

cavity-mode and exciton-mode energies respectively. The detuning-dependence of spectral

features, related to intra-action (diagonal features) of and interaction (off-diagonal features)

between polariton branches, informs us about the coupling between the cavity and excitonic

or biexcitonic modes. For example, a contribution from a bound biexciton is isolated at

negative detuning, which is convolved with the off-diagonal features at positive detuning

and strongly modulates their relative amplitudes.

The experimental setup is described fully elsewhere.34 In brief, the laser source is a mode-

locked Ti:Sapphire oscillator that produces 100-fs pulses. A MONSTR is used to create and

phase control four identical pulses arranged on the corners of a box. As shown in Fig. 1,
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three pulses impinge the microcavity sample, which resides in an optical cryostation at the

focus and crossing point of the beams. A tracer (Tr) beam is used for alignment and blocked

for the FWM and 2DCS measurements. All measurements are performed in the third-order

nonlinear optical regime, excited with average powers of 0.2−0.7 mW per beam. In a third-

order perturbation excitation scheme, the signal is generated from interaction by all three

excitation pulses. The excitation sequence is shown in the inset of Fig. 1: the first pulse

creates a coherent superposition between the ground and excited states, the second pulse

then creates a population in either the ground or excited state, and the third pulse converts

the population into a radiating polarization. This polarization is emitted as a transient

FWM signal, which is collected in transmission mode and directed to a spectrometer and

CCD camera.

The microcavity sample (denoted NMC73) was grown by molecular beam epitaxy on a

GaAs substrate.1 The mirrors consist of GaAs/AlAs (14.5 and 12 bilayer) distributed Bragg

reflectors separated by a wedged λ GaAs cavity, with a cavity mode close to 830 nm. In

the center of the cavity, at the antinode of its electric field, is a single 8-nm In0.04Ga0.96As

quantum well. The reflection properties at low temperature (not shown) exhibit the typical

normal-mode splitting expected for such a structure. Translating the sample detunes the

cavity mode with respect to the bare exciton energy.

Spectrally resolved FWM is acquired as a precursor to performing 2DCS with τ = 0 fs
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FIG. 1. (Color online) Experimental setup for the multidimensional coherent spectroscopy. (f

= lens, M = mirror, BS = beam splitter, FWM = four-wave-mixing signal, τ = period between

pulses A and B, T = period between pulses B and C, and t = period after pulse C triggers the

emission, Tr = tracer beam, traces the phase-matched direction, and LO = local oscillator for

spectral interferometry). The inset shows the excitation pulse sequence.
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and T = 100 fs. The inset of Fig. 2 shows a typical spectrum, revealing resonances associated

with the lower (LP) and upper (UP) polariton branches. Figure. 2 shows the spectral posi-

tions extracted from spectra measured at different positions on the sample. The detuning,

∆, is determined for each spectrum by modeled the data using

EUP/LP (∆) = 1/2[2EX + ∆/± (∆2 + E2
VRS)1/2], (1)

where EVRS is the vacuum Rabi splitting, a measure of the coupling between the optical field

and the excitons. It is found that EVRS = 3.1±0.1 meV and EX = 1491.3±0.03 meV, which

both agree well with results on similar structures.1 The inset spectrum is then indicated

as a dashed vertical line at ∆ ' −3.75 meV. Microcavities are sensitive to the angle of

incidence, since the dispersion varies with the in-plane wavevector. Here the external angle

of incidence for each beam is approximately 7o and the axis of the box of pulses is at

normal incidence. Each beam couples to slightly different polariton states in momentum

space, which may lift the measured energy and lower the overall signal strength. However,

close to zero detuning, the FWM emission requires attenuation of at least ND2.5, indicating

minimal momentum-related signal reduction and excitation within the parabolic region of
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FIG. 2. (Color online) Detuning dependence of the features observed in spectrally resolved four-

wave mixing (FWM). A typical FWM spectrum is shown in the inset, from which the center

energies of the lower (LP) and upper (UP) polaritons are extracted for the body of the figure.

Solid lines model the vacuum Rabi splitting, the bare exciton energy and the detuning for each

spectrum. Also shown are the expected energy of the bound biexciton, EXX and the detuning

range of the G2 profile discussed in Fig. 4.
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the in-plane momentum.35

For 2DCS measurements, the transient FWM is collected in the spectrometer along with

a phase-stabilized local oscillator (LO) pulse, such that complex spectra can be recorded by

spectral interferometry. Spectra are acquired for a range of time delays, τ , scanned in phase-

stabilized increments. A numerical Fourier transform is performed to convert τ to ωτ . If

the conjugate pulse A∗ is scanned backward in time (toward the sample), the time-ordering

results in the phase-matching condition ks = −kA∗ + kB + kC . Transient FWM exhibits a

photon echo for inhomogeneously broadened systems. This method records a rephasing 2D

spectrum, SI(−ωτ , T, ωt), wherein the diagonal (~ωτ = ~ωt) of the plot is towards the lower

right corner, due to the numerical choice of the emission photon energy. Rephasing spectra

allow for the separation of homogeneous and inhomogeneous linewidths. Alternatively, if

pulse B is scanned instead of pulse A∗, then the phase matching becomes ks = kB−kA∗ +kC

and the spectrum is non-rephasing, SII(ωτ , T, ωt).

Figure 3 shows the absolute field amplitude of the rephasing (bottom row) and non-

rephasing (top row) 2DCS results for a range of detuning values from (a) ∆ = −5 meV to (e)

+4.5 meV. Excitation is performed with a mixing time T = 100 fs and collinear polarization

(XXXX), where the notation corresponds to the polarization state of the three pump pulses

and the emission. Each panel is normalized to the strongest peak for presentation. At each

value of ∆ the laser spectrum is overlaid with the non-rephasing spectrum, illustrating that

the two resonances are excited equally in each case. This is important for careful comparison

of the relative amplitudes of each feature as a function of detuning. Due to the transmission

geometry, strong absorption of the tracer beam prevents experimental determination of

the global phase using all-optical methods or via spectrally-resolved transient absorption.36

Hence, only amplitude spectra are shown.

In Fig. 3(a) the γ-like mode is the low-energy feature, denoted A, and is broader than the

higher-energy X-like mode, denoted B. From analysis of the lineshapes the cross-diagonal

width is dominated by the homogeneous linewidths37 of intra-action features A and B,

yielding values of γLP = 0.35 meV and γUP = 0.14 meV respectively. In comparison, the

diagonal linewidths, which can be dominated by inhomogeneous broadening, are only slightly

wider in each case: σLP = 0.38 meV and σUP = 0.17 meV. In addition to the diagonal intra-

action features, two off-diagonal interaction features C and D are observed, which are due

to coherent coupling between the A and B features.23
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FIG. 3. (Color online) Rephasing, SI (bottom row), and non-rephasing, SII (top row), two-

dimensional coherent spectra for the labelled range of detuning. Also shown is the laser excitation

spectrum for each excitation position. Diagonal intra-action features are A and B, and off-diagonal

interaction features are C and D. Negative detuning also shows a biexciton feature, XX.

Increasing ∆ shifts all spectral features toward higher energy. The separation between

the A and B modes (projected onto the emission axis) is ∼ 7 meV in (a), decreases as ∆

tends to zero, becoming 3.4 meV in (c), and increases again to 5.6 meV in (e). Close to

zero detuning (∆ = 0.75 meV), the homogeneous linewidths of A and B in the SI spectra are

γLP = 0.12 meV and γUP = 0.18 meV respectively. The properties are nearly identical and

γ-like and X-like characteristics are no longer distinguishable, since it is expected that the

observed linewidths should become identical.38 For larger positive detuning the homogeneous

linewidths of A and B are γLP = 0.14 meV and γUP = 0.24 meV respectively. The γ-like

and X-like characteristics are once again distinguishable, but are not quite the same as for

negative detuning. As expected from analysis of the Hopfield coefficients,21 the modes switch

and the γ-like mode is now the upper polariton, B. The mode switch is consistent with results

where the mirror reflectivity results in a narrower cavity than bare exciton linewidth.38

Collinear polarization in 2DCS allows for excitation to the biexciton (XX) states.39 For

bound biexcitons, binding energy acts to shift the XX feature laterally from the X-like

mode in the emission energy, ~ωt. This feature is only observed for negative detuning, from

which the XX binding energy is determined to be ∼ 1.88 meV. The biexciton follows the
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expected excitation-density dependence and is suppressed for co-circular polarization (data

not shown). Its cross-diagonal linewidth is almost identical to that for the X-like mode,

which is expected because the quantum pathway that creates the XX feature is a two-step

excitation via the exciton. Hence, the linewidth projected on the absorption energy, −~ωτ ,

should be identical to that for the exciton. The linewidth projection onto ~ωt may be a little

wider (tilting the feature away from the diagonal), depending on the degree of correlation of

the exciton and biexciton states.40,41 In this case, the exciton and its biexciton are parallel

and are highly correlated.

Non-rephasing, SII , are presented for comparison, showing very similar results to SI

spectra across the entire detuning range. SII spectra typically have slightly weaker off-

diagonal features, as is observed here. Otherwise, the two diagonal intra-action, two off-

diagonal interaction and biexciton features are all observed as discussed above.

Figure 4 shows the integrated amplitude versus detuning for the four main polaritonic

features A through D. In each case, a small area around each feature is integrated. Panel

(a) shows the total integrated amplitude for a 12-meV detuning range and is normalized

to the highest emission strength at ∆ = 0 meV. Significant enhancement of the exciton-

polariton transition are observed due to normal-mode coupling,42 as the integrated amplitude

increases and peak close to zero detuning. The peakshape of extracted total amplitude is

asymmetric in detuning43 and can be fit with two gaussian lineshapes: G1 is centered at

zero detuning and G2 is centered at 1.88 meV (G2), corresponding to the biexciton binding

energy determined from negatively detuned spectra. Fitted full widths at half maximum

of G1 and G2 are ∼ 3.39 meV and ∼ 3.65 meV respectively. The sum of G1 and G2 well

represent the ∆-dependence peakshape.

Figure 4 (b) and (c) show ∆-dependence of the relative amplitude for the individual

diagonal intra-action and off-diagonal interaction spectral features. From each spectrum

the individual features’ integrated amplitudes are extracted and normalized to the total in-

tegrated amplitude. At zero detuning the relative amplitudes of the diagonal intra-action

features are identical, showing that normal-mode coupling leads to enhancement and equal-

ization of the UP and LP branches. Away from zero detuning the higher-energy diagonal

feature, B, is always stronger and the overall amplitude of the diagonal features drops at

small positive detuning. In contrast, the relative integrated amplitude of the off-diagonal

features is smaller at negative detuning and oscillates for positive detuning. The oscillation

7



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3  

Fig.4  

(a) 

(b) 

(c) 

-6 -4 -2 0 2 4 

Detuning (meV) 

N
o

rm
a

li
z
e

d
 

In
te

n
s

it
y
 

R
e
la

ti
v
e
 I
n

te
n

s
it

y
 (

%
) 

0 

1 

0 

20 

40 

60 

20 

0 

10 

30 

1485 1490 1495 1500 

Emission Energy, ħwt (meV) 

A
b

s
o

rp
ti

o
n

 E
n

e
rg

y,
 ħ

w
t 

(m
e

V
) 

1485 

1490 

1500 

1495 

-1500 

-1495 

-1485 

-1490 

D = -5.0 meV D = -2.75 meV D = .75 meV D = 2.5 meV D = 4.5 meV 

A 

B C 

D 

XX 

SII 

SI 

(a) (b) (c) (d) (e) 

A 

B C 

D 

A 

B 

C 

D 

Total 

G1 

G2 

G1+G2 

1485 1490 1495 1500 1485 1490 1495 1500 1485 1490 1495 1500 1485 1490 1495 

6 

EXX 

1 

0 
Emission Photon Energy (meV)

A
b

s
o

rp
ti

o
n

 P
h

o
to

n
 E

n
e
rg

y
 (

m
e
V

)

 

 

1545 1550 1555

-1555

-1550

-1545

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 4. (Color online) Detuning dependence of the features in the rephasing 2DCS. (a) Shows the

normalized amplitude of the entire spectrum, with best fits based on two gaussian profiles G1 and

G2. (b) Shows the relative amplitude of the diagonal features A and B. (c) Shows the relative

amplitude of the off-diagonal features C and D. The solid lines in (b) and (c) model the affect of

the two resonances parameterized by the G1 and G2 gaussian profile in (a).

position is consistent with the position of the small G2 peak from panel (a). In this range,

the amplitude of peak C increases rapidly, corresponding to the increasing slope of G2, and

decreases rapidly to become smaller than D, corresponding to the decreasing slope of G2.

Both the width of G2 and the range of ∆ where the oscillations occurs agree well with the

width of the LP branch passing through the bound biexciton; see Fig. 2.

The solid lines in Fig. 4(b) and (c) model the relative amplitudes of the diagonal and off-

diagonal features based on the following parameters. First, amplitude offsets for each feature

are selected from negative detuned spectra, yielding 25 %, 43 %, 10 % and 12 %, for A, B,

C and D respectively. Second, near ∆ = 0 meV, the strength of the two diagonal features

equalizes, bringing the two modes close in amplitude in the range of the G1 profile. This

∼ 9% deviation is symmetric for each feature. Third, in the region of the G2 profile ∼ 11%

of the spectral weight is transferred from both diagonal features to the off-diagonal features,
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most likely due to additional many-particle interaction terms in the quantum pathways to the

biexciton manifold. Fourth, the off-diagonal features experience a ±d(G2)/d∆ modulation

in their spectral weight by approximately ±14%, which is most likely due to a attraction or

repulsion of LP branch as it passes through XX. The latter two effects are complementary

evidence of the recently observed Feshbach resonance.14 Feshbach resonances occur when

the energy of two free, yet interacting, polaritons is in resonance with the bound molecular

excitonic state. Off-diagonal features are the interaction between the LP and UP branches,

so that even though the LP branch alone overlaps with the XX, both off-diagonal amplitudes

are modulated and invert. This result arises from coherent coupling by quantum interference

of the polaritons through the shared ground state or by a Raman-like coherence between the

excited polaritons.30 2DCS sensitivity is revealed, because no splitting is observed associated

with the Feshbach resonance in the linear spectra, yet the influence of this LP-XX crossing

is clear.

In summary, this study has mapped the detuning dependence of the cavity mode through

the exciton and biexciton modes of a single quantum well and isolated the coherent re-

sponse using two-dimensional coherent spectroscopy. Enhancement of the four-wave mixing

emission was observed near zero detuning, along with anti-crossing of the upper and lower

polariton branches. Homogeneous and inhomogeneous linewidths are found to be consistent

with those for a wider cavity than bare exciton mode Amplitudes of the spectral features are

highly sensitive to the interaction between exciton, biexciton and cavity modes, revealing

strong modification as bands intersect. This work paves the way for determining contri-

butions through polarization- and excitation-dependent studies using 2DCS and begs full

microscopic theoretical treatment to reproduce spectral features. Moreover, these methods

can be used to disentangle the coherent and transient phenomena that parallel processes

identified in ultracold atomic physics, such as condensation and superfluidity.
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