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The connectivity and tunability of superconducting qubits and resonators provide us with an appealing plat-

form to study the many-body physics of microwave excitations. Here we present a multi-connected Jaynes-

Cummings lattice model which is symmetric with respect to the nonlocal qubit-resonator couplings. Our calcu-

lation shows that this model exhibits a Mott insulator-superfluid-Mott insulator phase transition at commensu-

rate fillings, featured by symmetric quantum critical points. Phase diagrams in the grand canonical ensemble are

also derived, which confirm the incompressibility of the Mott insulator phase. Different from a general-purposed

quantum computer, it only requires two operations to demonstrate this phase transition: the preparation and the

detection of commensurate many-body ground state. We discuss the realization of these operations in a super-

conducting circuit.

I. INTRODUCTION

The past few years have witnessed stimulating progress in

the study of superconducting quantum devices1–3. Quantum

logic operations with fidelity exceeding 99.9% and quantum

error correction codes were recently realized4–6. By experi-

menting with various designs of the superconducting qubits

and resonators, decoherence times on the scale of several tens

of microseconds have been achieved in both 3-dimensional

and planar circuits7–9. In several designs, such as the Xmon

qubit, one qubit can be simultaneously connected to multiple

resonators and control wires, which significantly improves the

scalability and tunability of the superconducting systems9–13.

In the aspect of detection, quantum-limited amplifiers were

developed to conduct phase-sensitive measurement of the am-

plitude of the microwave field and test quantum coherence ef-

fects at the single-photon level14,15.

The technological advancements in superconducting de-

vices provide us with an appealing platform to explore many-

body correlations. Analog and digital quantum simulators16,17

of the superconducting systems have been proposed for nu-

merous many-body effects, including phase transitions in the

quantum spin systems18–25, topological effects26–29, electron-

phonon physics30,31, and even high-energy physics32–34. The

implementation of these simulators can help us understand

many-body phenomena that are hard to solve with traditional

condensed matter techniques. Given the connectivity and tun-

ability of the superconducting devices, we can also construct

many-body Hamiltonians that do not exist in the real world,

but carry novel many-body correlations. One such model is

the so-called coupled cavity array (CCA) model, which is

composed of an array of cavities each connected to neigh-

boring cavities. Each cavity couples to a nonlinear medium,

such as a qubit or a number of impurity atoms. In the pio-

neer works of Refs.35–44, it was shown that the CCA exhibits

the Mott insulator (MI)-to-superfluid (SF) phase transition for

cavity polaritons, due to its resemblance to the Bose-Hubbard

(BH) model45–47. The CCA has been thoroughly compared to

the BH model in Refs.36,43. Experimental efforts towards re-

alizing the CCA with superconducting devices have also been

conducted48,49.

In this work, stimulated by recent experimental progress,

we present a multi-connected Jaynes-Cummings (JC) lattice

model that demonstrates quantum phase transition for cavity

polaritons. This model is constructed with arrays of qubits

and resonators, where each qubit is connected to multiple res-

onators by exploiting the unique connectivity of planar super-

conducting qubits. In contrast to the CCA35–37, there is no

direct coupling between the resonators. Instead, the qubit-

resonator couplings in this multi-connected model serve both

as onsite Hubbard interaction and as photon hopping. By

varying a control parameter, this system can make a transi-

tion from the MI phase to the SF phase at commensurate fill-

ings, similar to the CCA and the BH models. More interest-

ingly, as the parameter is varied further, it makes another tran-

sition back to the MI phase from the SF phase. The MI-SF-MI

phase transition is due to the symmetry with respect to the left

and the right qubit-resonator couplings. These predictions are

confirmed by our calculation of the single-particle density ma-

trix and the energy gap of a small lattice using the exact diag-

onalization method50. This method has been previously used

to study the BH model51 and the CCA35,37,40, where it gives

qualitatively correct predictions of the phase transitions. We

also obtain phase diagrams of the multi-connected JC model

in the grand canonical ensemble at zero temperature, which

indicate the incompressibility of the MI phase and the clos-

ing of the energy gap in the SF phase52. Note that due to

the limitation of the current numerical method, details of the

phase boundaries in the thermodynamic limit cannot be ac-

curately characterized. One advantage of this system, com-

pared with a general-purpose quantum computer16, is that it

only requires two operations to demonstrate the phase transi-

tion: preparation and detection of the many-body ground state

at commensurate fillings, both of which can be realized with

current technology.

Compared with previous works on the CCA35–37, our work

exploits the nonlocal nature of the qubit-resonator couplings

as well as the intrinsic symmetry with respect to the left and

the right couplings to study quantum phase transition of cavity

polaritons. This multi-connected JC lattice can be extended to

two-dimensional or more complicated configurations to study

many-body correlations in bosonic systems. The nonequi-

librium dynamics of the cavity polaritons in this setup can

also be investigated. We would like to mention that intercon-

nected qubit-resonator arrays with uniform or opposite cou-

plings were studied in previous works that focus on effective
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resonator coupling and quantum magnetism53–55. While our

focus here is to study quantum phase transition caused by the

interplay of the qubit-resonator couplings, which is distinc-

tively different from that of the previous works.

The paper is organized as follows. In Sec. II, we present the

multi-connected JC lattice model and its construction with su-

perconducting qubits and resonators. The effective Hubbard

interaction and photon hopping are analyzed in the limiting

case of drastically-different coupling constants. We calculate

the single-particle density matrix and the energy gap of this

multi-connected model at commensurate fillings using the ex-

act diagonalization method in Sec. III. Then, in Sec. IV, this

method is extended to the grand canonical ensemble and the

phase diagrams at zero temperature are derived. We discuss

the realization of this model and the two operations required

to demonstrate the MI-SF-MI phase transition: state prepara-

tion and detection. Conclusions are given in Sec. VI.

II. MULTI-CONNECTED JC LATTICE

A. Model Hamiltonian

A 1D multi-connected superconducting JC lattice is de-

picted in Fig. 1 (a). This setup can also be extended to

more complicated configurations, such as a two-dimensional

checkerboard pattern of alternative qubits and resonators. The

building block of this lattice is made of a superconducting

qubit denoted by Qi and a superconducting resonator de-

noted by Ri. The qubit Qi couples to neighboring resonators

Ri and Ri−1 with coupling strengths gr and gl, respectively.

The total Hamiltonian of this model can be written as Ht =
∑

i

(

Hi
0
+ Hi

int

)

, where

Hi
0 = ωca

†
i
ai +

ωz

2
σz

i
(1)

is the noninteracting Hamiltonian of one repeating unit and

Hi
int = gr

(

a
†
i
σ−i + σ

+

i ai

)

+ gl

(

a
†
i−1
σ−i + σ

+

i ai−1

)

(2)

describes the JC couplings between a qubit and its neighbor-

ing resonators56. Here ωc is the angular frequency of the res-

onator modes, ωz is the energy level splitting of the qubits,

ai (a
†
i
) is the annihilation (creation) operator of the resonator

mode Ri, and σ
z,+,−
i

are the Pauli operators of the qubit Qi. We

set ~ = 1 for convenience of discussion.

The repeating units in our model are connected via qubit-

resonator couplings. This is in sharp contrast to the CCA,

where neighboring resonators couple directly to each other via

a hopping Hamiltonian −t
∑

(a
†
i
ai+1 + a

†
i
ai+1)35–37. As we will

show, the qubit-resonator couplings in our model play both

the role of onsite interaction and the role of photon hopping.

A key feature of this model is that the system is invariant with

respect to the exchange of the couplings gl and gr. Hence, the

unit cell can be defined in two ways, either with Qi and Ri or

with Qi and Ri−1 in one cell, as shown in Fig. 1 (b).

This multi-connected JC model can be realized with super-

conducting qubits and resonators developed in recent state-

of-the-art experiments. One promising system is the so-called

grglgr grgl

Qi Qi+1

Ri+1Ri−1 Ri(a) 

(b) 

Qi Qi+1 Ri+1Ri−1 Ri

grglgr grgl

Qi Qi+1 Ri+1Ri−1 Ri

grglgr grgl

FIG. 1. (a) Schematic circuit of a multi-connected JC lattice with

qubits Qi, resonators Ri, and qubit-resonator couplings gl and gr . (b)

Two ways of defining the unit cell: with Qi and Ri in one cell (top)

and with Qi and Ri−1 in one cell (bottom), respectively.

Xmon qubit, which excels in connectivity, controllability, and

decoherence time9,10. This qubit can be connected to multi-

ple resonators and control wires with tunable couplings. It

also demonstrates a decoherence time exceeding 40 µs. In our

discussions, we choose the control parameters to be in range

of gl,r/2π ∈ [0, 300] MHz, the resonator detuning ∆/2π ∈
[−1, 1] GHz with ∆ = ωc − ωz, and ωc/2π = 10 GHz.

B. Limiting case: gl ≪ gr (or gr ≪ gl)

We start with the simple case of gl = 0, i.e., each repeating

unit as defined by the top part of Fig. 1 (b) is isolated from

each other with a vanishing coupling between Qi and Ri−1.

Note that the opposite limit of gr ≪ gl can be studied similarly

due to the symmetry between gl and gr. The total Hamiltonian

in this limit has the form of Ht =
∑

i Hi
JC

with

Hi
JC = ωca

†
i
ai +

ωz

2
σz

i
+ gr

(

a
†
i
σ−i + σ

+

i ai

)

. (3)

The Hilbert space of each unit cell is spanned by the basis

states {|ni, σi〉} with ni being the microwave photon number

of the resonator mode and σi =↑, ↓ being the qubit state at

site i. The lowest eigenstate of Hi
JC

is |0i, ↓i〉 with the energy

−ωz/2. All other eigenstates, denoted by |ni,±i〉 with ni > 0,

are polariton doublets in the subspace of {|ni − 1, ↑i〉, |ni, ↓i〉},
and contain both photon and qubit excitations. The eigenen-

ergies of the states |ni,±i〉 are εni,±i
= (ni − 1/2)ωc ±Ωni

(∆)/2

with Ωni
(∆) =

√

∆2 + 4g2
r ni, depending on the detuning ∆56.

The qubit-resonator coupling gr generates nonlinearity in

the polariton states. In Appendix A, we present an analysis

of the nonlinearity involving only the lower-polariton states.

The nonlinearity can be viewed as an effective Hubbard inter-

action for the polariton modes. Our results, different from that
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in Refs.36,43, are in good agreement with the energy gap shown

in Fig. A1. For the low-lying states |1i,−i〉 and |2i,−i〉, the in-

teraction strength U = (2−
√

2)gr at∆ = 0; and U = (∆+|∆|)/2
for |∆| ≫ gr, demonstrating drastically-different behavior for

large positive and negative detunings.

Next, we introduce a small but finite coupling strength gl

that satisfies the condition gl ≪ gr. This coupling can be

viewed as a perturbation that induces hopping of a polariton

excitation between adjacent unit cells with the conservation of

the total excitation number, e.g., the nonzero matrix element

〈0i−1, ↓i−1 |〈2i,−i|σ+i ai−1|1i−1,−i−1〉|1i,−i〉 = −1/2
√

2 (4)

is associated with the hopping of an excitation at site i − 1 to

site i with a hopping strength t ∝ gl.

The total Hamiltonian of the multi-connected JC lattice thus

contains the two competing elements for a MI-to-SF phase

transition52: onsite interaction and hopping between neigh-

boring sites, both originated from the qubit-resonator cou-

plings. With gl ≪ gr (or vice versa), the system is dominated

by the onsite interaction and is expected to be in a MI phase at

integer fillings. With the increase of gl, the kinetic energy of

the polariton mode eventually overcomes that of the Hubbard

interaction, and the system could enter a SF phase. Given the

symmetry between gl and gr, these two couplings play simi-

lar roles when their strengths become comparable, each con-

tributing to the onsite interaction as well as the hopping term.

In the following sections, we will study the quantum phase

transition of this model in detail.

III. PHASE TRANSITION AT COMMENSURATE

FILLINGS

Define the operator N̂ =
∑

i(a
†
i
ai + σ

+

i
σ−

i
) as the total exci-

tation number of the lattice, containing both photon and qubit

excitations. Because [Ht, N̂] = 0, the total excitation num-

ber is a good quantum number. For a bosonic system, the

MI phase occurs at commensurate fillings, i.e., the excitation

number N is a multiple of the lattice size M. Here we study

the many-body phases of the multi-connected JC lattice with

a fixed excitation number N and N/M being an integer. We

apply the exact diagonalization method on a small lattice to

find the precise ground state of this model50. This method

gives qualitatively correct predictions of the phase transitions

in the BH model51 and the CCA35,37,40. The natural choice

of the basis vectors for our model is all possible configura-

tions of the state |ψ〉 = |n1, σ1〉|n2, σ2〉 · · · |nM, σM〉 that satis-

fies
∑

i(ni + δi) = N, where δi refers to the qubit excitation at

site i with δi = 0 (1) for σi =↓ (↑). The Hamiltonian in the N-

excitation subspace can be written as a sparse matrix on these

basis vectors. Using a Lanczos-type algorithm, the low-lying

eigenstates, in particular, the ground state, can be obtained.

A. Single-particle density matrix

For a system of fixed particle number, 〈G|ai|G〉 ≡ 0, and

it cannot be utilized as an order parameter, where |G〉 is the
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FIG. 2. (a) ρ1(x) versus the lattice distance x at ∆ = 0. Blue cir-

cle: (gl, gr) = (5, 295) MHz; green triangle: (25, 275) MHz; and

red square: (150, 150) MHz. (b) ρ1(xmax) versus gr at ∆ = 0.

Blue dot-dashed curve: gl = 5 MHz; green solid: gl = 25 MHz;

and red dashed: gl = 150 MHz. (c) ρ1(xmax) versus gl and gr for

∆ = −300, 0, 100 MHz from left to right. Here M = 8 and N/M = 1.

many-body ground state. Instead, we calculate the normalized

single-particle density matrix57

ρ1(i, j) = 〈G|a†
i
a j|G〉/〈G|a†i ai|G〉, (5)

to characterize the phase transition of the multi-connected JC

lattice. This matrix is generically Hermitian. Because of the

lattice translational and reflectional invariances of the ground

state, ρ1(i, j) = ρ1(i + k, j + k) for an arbitrary integer k; and

ρ1(i, j) = ρ1( j, i). The matrix ρ1(i, j) is hence real, sym-

metric and cyclic. Below, we replace ρ1(i, j) by the nota-

tion ρ1(|i − j|). The single-particle density matrix, and hence

the off-diagonal-long-range-order (ODLRO)58, decays alge-

braically in the SF phase of 1D bosonic systems according

to the Mermin-Wagner-Hohenberg theorem; whereas it de-

creases exponentially to zero in the MI phase. We can then

choose a value of x, where ρ1(x) has significantly higher value

in the SF phase than in the MI phase, and use ρ1(x) as a proof-

of-principle indicator of the MI-to-SF phase transition, even

though we cannot accurately determine the position of the

quantum critical points.

We calculate ρ1(|i − j|) using the exact diagonalization

method for a lattice of M = 8 and a total excitation number of

N = 8 under the periodic boundary condition. For such a lat-

tice, the maximal lattice distance xmax = 4. Our results show

that even for a small-size system, this method can reveal the

essential feature of the MI-to-SF phase transition. In Fig. 2

(a), ρ1(x) is plotted versus the lattice distance x for three sets

of couplings (gl, gr). For (gl, gr) = (5, 295) MHz, i.e., with

gl ≪ gr, ρ1(x) decreases to nearly zero as the lattice distance

increases to x = xmax. This indicates that the system is in an

insulator phase. As analyzed in Sec. II B, in this limit, the cou-

pling gr provides strong Hubbard interaction; while gl only in-

duces small hopping. By slightly increasing gl to 25 MHz and

decreasing gr to 275 MHz, ρ1(x) increases but still nearly van-

ishes at x = xmax. In contrast, for (gl, gr) = (150, 150) MHz,

ρ1(x) remains finite at the maximal lattice distance xmax. Both
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FIG. 3. (a) Egp versus 1/M at M = 4, 5, 6, 7, 8 and its extrapolation

E0
gp to M = ∞ at gr = 150 MHz. (b) E0

gp versus gr . Here gl = 5 MHz

(blue circle, dot-dashed curve), 25 MHz (green triangle, solid), and

150 MHz (red square, dashed) with ∆ = 0 and N/M = 1.

couplings gl,r now generate hopping and onsite repulsion that

are comparable in strength. The system hence demonstrates

spatial correlation over a longer range than that in the MI

phase, which implies the transition to a SF phase.

The dependence of ρ1(xmax) on the coupling gr is shown

in Fig. 2 (b) for three values of gl. For each gl, ρ1(xmax) de-

creases to zero when gr ≪ gl and gr ≫ gl; and it reaches a

large maximum when gr ∼ gl. Hence, by continuously chang-

ing the coupling gr at a given gl, the ground state evolves from

a MI phase to a SF phase, and then makes another transition

back to the MI phase. This is a unique feature of this multi-

connected model, rooted in the symmetry with respect to the

two couplings. In Fig. 2 (c), ρ1(xmax) is plotted as functions of

gl,r for three detunings, which further verifies the symmetry of

the couplings. It also indicates that the detuning plays an im-

portant role in the phase transition. With a negative detuning,

the system becomes more “photon”-like with a reduced effec-

tive interaction, as discussed in Appendix A. The SF phase

then becomes more favorable and exists in a broader param-

eter regime. With a positive detuning, on the other hand, the

system becomes more “spin”-like with a stronger effective in-

teraction, and the SF regime is narrowed.

B. Energy gap

The energy gap is another important quantity to study the

critical behavior of quantum phase transition. It is also related

to the inverse of the compressibility of the many-body phases.

Let EN+ = E(N + 1) − E(N) (EN− = E(N) − E(N − 1)) be

the energy difference of adding (removing) one excitation to

a system of N excitations, where E(N) is the ground state en-

ergy for a system with N polaritons. The energy gap is defined

as Egp = EN+ − EN−
51. In the MI phase at commensurate fill-

ings, Egp is finite due to the onsite interaction; while in the SF

phase, Egp vanishes.

We calculate the energy gap Egp of the multi-connected JC

model at the filling factor N/M = 1. In Fig. 3 (a), Egp is

plotted as a function of 1/M. Due to the finite-size effect, the

energy gap remains open for a finite lattice in all regimes of

the couplings. For gr ≪ gl or gr ≫ gl, Egp is nearly inde-

pendent of the size of the system; whereas for gr comparable

to gl, Egp strongly depends on M. We thus extrapolate the

energy gap to the thermodynamic limit with M → ∞ using

a fourth-degree polynomial of M. The extrapolated gap E0
gp,

plotted in Fig. 3 (b) versus the coupling gr at fixed gl’s, clearly

bears the feature of a MI-to-SF phase transition. In the regime

of gr ≪ gl, where a MI phase is predicted, the gap E0
gp is

open. With the increase of gr, E0
gp decreases and eventually

closes when gr becomes comparable to gl, with this system

entering a SF phase. As gr further increases towards gr ≫ gl,

E0
gp opens again after a finite interval of zero gap, indicating

that the system is in the MI phase again. The energy gap in

the limit of gr ≪ gl and gr ≫ gl can be well explained by a

simple analysis of the effective onsite interaction, presented in

detail in Appendix A and Fig. A1.

The above phase transition is featured by symmetric quan-

tum critical points due to the symmetry between the couplings

gl and gr. At zero detuning, the many-body phase transition

of this model is solely determined by the ratio gr/gl. For

gr/gl < βc or gr/gl > β−1
c with βc being the critical point,

the system is in the MI phase; and in the intermediate regime,

the system is in a SF phase. From Fig. 3 (b), we estimate that

βc ∼ 2/3. It can be shown that the phase transition at ∆ , 0

also embodies this feature. We want to mention that our nu-

merical method, conducted on a small lattice, cannot yield

accurate value for the critical points, which could change in

the thermodynamic limit. Our results, however, demonstrate

the main feature of the MI-SF-MI transition.

IV. PHASE TRANSITION IN GRAND CANONICAL

ENSEMBLE

Quantum phase transition in the CCA is often studied in the

grand canonical ensemble (GCE)35–37, where the excitation

density (filling factor) is directly associated with the many-

body phase and its compressibility. Here we extend the exact

diagonalization method used in Sec. III to study the multi-

connected JC lattice in the GCE50. Consider the free energy

F̂ = H − µN̂ at a given chemical potential µ and define |G〉 as

the ground state of the free energy F̂. In the GCE, the total

excitation number N is a function of the chemical potential,

and can be obtained from the ground-state wave function by

N(µ) = 〈G|N̂|G〉. The basis vectors in this calculation are:

|ψ〉 = |n1, σ1〉|n2, σ2〉 · · · |nM, σM〉 with
∑

i(ni + δi) ≤ Nmax

for a lattice of M sites. The maximal total excitation num-

ber Nmax is chosen to include all possible basis vectors at the

given chemical potential; and N(µ) ≤ Nmax. Note that the

chemical potential, as discussed in previous works, is not a

directly controllable parameter in this system43.

A. Excitation density

We calculate the many-body ground state of a lattice with

M = 6. The chemical potential is in a range that yields an ex-

citation density of n ∈ [0, 2] with n = N/M. In Fig. 4 (a), the

density n is plotted as a function of the chemical potential at

∆ = 0. For the couplings (gl, gr) = (5, 295), (25, 275) MHz,

the density first increases with µ by small discrete steps of

δn = 1/M to reach a broad plateau of n = 1 at a critical chem-
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ical potential µ−(n = 1), as indicated by the solid circle. At

µ ≥ µ+(n = 1), indicated by the solid square, the density starts

increasing again to reach a plateau of n = 2. The discreteness

of the small steps is due to the finite size of this system, where

the ground state always has fixed (integer) number of total

excitations. The excitation number increases with the chem-

ical potential one at a time, which gives the discrete density

increment of δn. For (gl, gr) = (150, 150) MHz, in contrast,

no such plateau exists, and n increases continuously with µ

in small steps. These plateaus at commensurate fillings im-

ply the incompressibility of the many-body state, which is an

important feature of the MI phase52. The critical chemical

potentials µ±(n) correspond to the boundaries between com-

mensurate and incommensurate densities, and hence, between

the MI and the SF phases. The single-particle density matrix

ρ1(xmax) is plotted in Fig. 4 (b). When the chemical potential

is within the plateaus, ρ1(xmax) is reduced to a very small value

(even in this finite size system), owning to the fast decay of the

spatial correlation in the MI phase; whereas ρ1(xmax) shows a

slower decay outside the plateaus in the SF phase.

B. Phase diagrams

The critical chemical potentials µ±(n) discussed above de-

fine the phase boundaries for the transition between commen-

surate and incommensurate phases for the multi-connected

JC lattice36. To derive the phase boundaries in the ther-

modynamic limit, we calculate µ±(n) for finite lattices with

M = 3, 4, 5, 6, respectively, and then extrapolate the results to

M → ∞ to derive µ0
±(n). In Fig. 4 (c), µ0

±(n) are plotted versus

the logarithmic ratio λ = log(gr/gl) with gr + gl = 300 MHz

at ∆ = 0 to form a phase diagram for our model. The regimes

enclosed by µ0
±(n) correspond to the Mott lobes at the com-

mensurate fillings of n = 1, 2, demonstrating the incompress-

ibility of the MI phase. As |λ| decreases, µ0
+

(n) → µ0
−(n),

and the system exhibits a transition from the MI phase to

the SF phase. Outside the Mott lobes, the dotted lines corre-

spond to commensurate filling points within the SF regime59.

The phase boundaries are symmetric with respect to positive

and negative λ, due to the symmetry between the couplings.

Furthermore, we plot µ0
±(n) as a function of the detuning at

gl,r = 150 MHz in Fig. 4 (d), which generates a phase diagram

in the parameter space of µ and ∆. Here the MI phase is more

favorable at large positive detuning; while for ∆ . 0.5 MHz,

the system is always in the SF phase within the selected pa-

rameter range. These phase diagrams agree well with the re-

sults in Sec. III and our analysis in Appendix A.

V. REALIZATION

In Sec. II A, we briefly discussed the realization of the

multi-connected JC lattice with superconducting qubits and

resonators. Our model works in practical parameter regimes

within reach of current technology. Recent experiments have

shown that superconducting qubits can couple simultaneously

to multiple resonators and control wires9,10. The detuning can

FIG. 4. (a) The density n and (b) ρ1(xmax) versus µ − ωc for a lattice

of M = 6 at ∆ = 0. Blue dot-dashed curve: (gl, gr) = (5, 295) MHz;

green solid: (25, 275) MHz; and red dashed: (150, 150) MHz. The

circles (squares) mark µ−(n) (µ+(n)). (c) and (d) µ0
±(n) versus λ =

log(gr/gl) with gr + gl = 300 MHz and ∆ = 0 and versus ∆ with

gl,r = 150 MHz. Here µ0
+
(n) (µ0

−(n)) are solid (dashed) at the Mott

lobes; dotted in the SF phase. Yellow (orange) lobes: n = 1 (n = 2).

be adjusted by applying dc field to tune the energy level split-

ting of the qubits. Tunable coupling in the qubit-resonator

systems has been tested in several experimental works10–13.

By varying one of the couplings (Fig. 3 (b)), the MI-SF-MI

phase transition could be demonstrated.

Compared with a general-purpose quantum computer16,

this analog quantum simulator only requires two operations

to be realized: 1. the preparation of the many-body ground

state at selected control parameters and filling factor; 2. the

detection of this ground state. Below we study the implemen-

tation of these operations and discuss the effects of quantum

errors.

A. State preparation

The MI-SF-MI phase transition studied in Sec. III occurs

in the ground state of the multi-connected JC lattice at inte-

ger fillings. We present a scheme to prepare the N-excitation

ground state with N/M = 1. This approach can be extended to

prepare states with higher integer fillings. Our procedure con-

tains two steps: 1. flipping of the state of the superconducting

qubits; 2. adiabatically transferring the system to the proper

ground state using a Landau-Zener process.

We first discuss the excitation energy Ex between the first

excited state and the ground state of a lattice with N = M ex-

citations. The dependence of Ex on the detuning is plotted in

Fig. 5 (a) for a lattice of M = 8. Here Ex continuously in-

creases with ∆ and exhibits a linear dependence on ∆ at large

positive detuning. Due to the finite size effect, for |∆| compa-

rable to the couplings, the excitation energy remains sizable

regardless of the many-body phase. When extrapolated to the
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FIG. 5. (a) Ex versus ∆ for a lattice of M = 8 and N/M = 1 and (b)

E0
x for M → ∞. Blue circle: (gl, gr) = (5, 295) MHz; green triangle:

(25, 275) MHz; and red square: (150, 150) MHz.

thermodynamic limit with M → ∞, however, Ex is reduced

to very small value in the regime of the SF phase and remains

sizable for the MI phase, as shown in Fig. 5 (b).

For state preparation, we first adjust the qubit energy to ob-

tain a large positive detuning with ∆ ≫ gl, gr. Here the qubits

are nearly decoupled from the resonators. The initial state of

this system can be written as |01, ↓1〉|02, ↓2〉 · · · |0M, ↓M〉 with

N = 0 excitation. By applying an ac driving field to gener-

ate a Rabi oscillation, the qubits are flipped to the state | ↑i〉,
and the system state becomes |01, ↑1〉|02, ↑2〉 · · · |0M, ↑M〉. This

state contains N = M excitations and is the ground state of

the multi-connected JC lattice in the limit of large positive de-

tuning. Next, we adiabatically reduce the detuning to a target

value, which is in a regime of interest to the study of the quan-

tum phase transition. With the Landau-Zener theorem60, the

final state is the many-body ground state at the target detuning.

The time interval for the adiabatic process is determined by

the excitation energy Ex, which remains a sizable value in all

parameter regimes, e.g., Ex = 66 MHz for gl = gr = 150 MHz

and ∆ = 0, for a finite lattice of M = 8. The state prepara-

tion can hence be implemented within tens of nanoseconds,

much shorter than the decoherence time of the qubits and the

resonators, and would not be seriously affected by the envi-

ronmental noise.

Because of the small anharmonicity in certain supercon-

ducting qubits, such as the transmon and the Xmon, the higher

states in the qubit circuits can affect the state preparation

scheme61. Let the third quantum state in a qubit be |ei〉 and

the energy level splitting between the states | ↑i〉 and |ei〉 be

ω′z. In a typical transmon (Xmon), the anharmonicity is ∼ 5%

of ωc, yielding (ωz − ω′z)/2π ∼ 500 MHz. During the Rabi

flipping, the ac field generates nonzero coupling between | ↑i〉
and |ei〉 which is of the same order of magnitude as the Rabi

frequency Ω for the spin-flip operation. To avoid leakage to

the state |ei〉, it requires that Ω ≪ (ωz −ω′z), which puts a con-

straint on the spin-flip time. By choosing Ω/2π = 50 MHz,

the spin flip can be realized in a practical time scale of 3 ns..

B. Detection

The phase transition can be characterized by measuring the

quadrature correlation of the resonator modes at sites i and

i + xmax. Consider a quadrature component Xi = ai + a
†
i

for the resonator mode ai. The correlation of the quadra-

tures 〈Xi · X j〉 can be detected by measuring the amplitude

of the microwave field of both resonators and making a sta-

tistical average on the measured quadrature products. Such

measurement has been utilized to study photon coherence and

correlation in recent experiments14. To achieve a faithful mea-

surement of the many-body state, it requires that a single run

during the measurement takes place in a time interval much

shorter than the decoherence time of the qubits and the res-

onators. For a finite system with fixed number of excitations,

〈a†
i
a
†
j
〉 ≡ 0 and ρ1(i, j) is symmetric to i and j. We then have

〈Xi · Xi+xmax
〉 = 2ρ1(xmax). As discussed in Sec. III A, ρ1(xmax)

carries the signature of the many-body phases and can be used

to study the quantum phase transition.

In addition, spatial correlation of the qubit operators also

reveals the occurrence of the phase transition. We find that

the correlation function 〈σ+
i
σ−

j
+ σ+

j
σ−

i
〉 between the qubits

at sites i and i + xmax demonstrates the same behavior as that

of the single-particle density matrix presented in Sec. III and

Sec. IV. The phase transition can hence be detected by con-

ducting measurements on the qubits.

VI. CONCLUSION

To conclude, stimulated by recent experimental progress in

superconducting quantum devices, we studied the many-body

phases of a multi-connected JC lattice model with nonlocal

qubit-resonator couplings. We showed that a MI-SF-MI phase

transition can be observed for cavity polaritons at commensu-

rate fillings. Different from the CCA model studied in previ-

ous works, our model embodies a symmetry with respect to

the qubit-resonator couplings, which is at the root of the ap-

pearance of symmetric quantum critical points. Our results for

the single-particle density matrix and the energy gap confirm

our analysis of an effective Hubbard interaction. Phase dia-

grams in the grand canonical ensemble are obtained, where

the incompressibility of the MI phase is verified. We also

studied the realization of this model with superconducting

devices, presenting robust schemes for state preparation and

detection. This model can be extended to two-dimensional

qubit-resonator arrays and other more complicated configu-

rations to study the many-body physics of microwave excita-

tions. It also provides an interesting perspective to study the

nonequilibrium dynamics of the cavity polaritons in this setup.
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APPENDIX A HUBBARD INTERACTION IN JC MODEL

With gl = 0, the multi-connected JC lattice is an array

of isolated qubit-resonator systems each described by the JC
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FIG. A1. E0
gp (solid) and effective Hubbard U (dashed) versus ∆. (a)

(gl, gr) = (5, 295) MHz; (b) (25, 275) MHz; and (c) (150, 150) MHz.

model. The qubit-resonator coupling generates nonlinearity

in the JC model. We connect this nonlinearity to an effective

Hubbard interaction for the polaritons with a simple analysis.

The eigenstates |ni,±i〉 are the lower- and upper- polariton

states with excitation number ni = 〈a†i ai+σ
+

i
σ−

i
〉; and the state

|0i, ↓i〉 contains no excitation. Note that the excitation number

ni is a good quantum number in this model. We assume that

the excitations fill the lower-polariton states only. Denote the

energy to add ni excitations to this system as ∆εni
= εni ,−i

−
ε0i ,↓i

. We derive

∆εni
= niωc − ∆/2 −Ωni

(∆)/2 (A1)

with Ωni
(∆) =

√

∆2 + 4g2
r ni, using the expression for the

eigenenergy in Sec. II B.

Assume that the lower-polariton states can be described by

an effective Hamiltonian He f f = ωp p
†
i
pi + (U/2)p

†
i
p
†
i
pi pi,

where pi is the annihilation operator of the polariton mode

and U is the strength of an onsite Hubbard interaction. Un-

der this Hamiltonian, the energy of ni excitations is ∆εni
=

niωp + Uni(ni − 1)/2. For ni = 1, ∆ε1i
= ωp. The effective

interaction for ni and ni + 1 excitations can then be derived

as U = (∆εni+1 − ∆εni
− ∆ε1i

)/ni. Combining this result with

Eq. (A1), we find the effective Hubbard interaction for the JC

model as

U =
[

∆ −Ωni+1(∆) + Ωni
(∆) + Ω1(∆)

]

/2ni, (A2)

depending on the coupling strength gr, the detuning ∆, and

the excitation number ni. For the low-lying states |1i,−i〉 and

|2i,−i〉, which correspond to the lower-polariton states with

one and two excitations, we have

U =
∆

2
+

√

∆2 + 4g2
r −

1

2

√

∆2 + 8g2
r . (A3)

This result is different from that in previous works using sim-

ilar analysis36,43.

At ∆ = 0, U = (2 −
√

2)gr, determined by the coupling gr.

In the limiting case of |∆| ≫ gr, U = (∆ + |∆|)/2, i.e.,

U = { 0, ∆ < 0;

∆, ∆ > 0.
(A4)

For large negative detuning, the effective interaction vanishes.

This is because the lower-polariton states in this regime are

approximately photon-number states with equal energy level

spacing. For large positive detuning, the interaction increases

with the detuning. This offers us a convincing explanation of

the behavior of the energy gap at the filling factor N/M = 1.

In Fig. A1, we plot the effective interaction U in comparison

with the extrapolated energy gap E0
gp studied in Sec. III B. In

the regime of gl ≪ gr and gr ≪ gl, the effective U agrees very

well with E0
gp. This confirms the validity of our analysis for

the effective interaction.

We want to emphasize that this simple analysis only gives

us a rough picture of the effective onsite interaction in the JC

model, which decreases with the excitation number ni. The

JC model bears many properties that are distinctively different

from that of the onsite Hubbard model.
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15 D. Ristè, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggel-

man, Ya M. Blanter, K. W. Lehnert, R. N. Schouten, and L. Di-

Carlo, Nature (London) 502, 350 (2013).
16 S. Lloyd, Science 273, 1073 (1996).
17 See, e.g., J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012); and

references there in.
18 Y.-D. Wang, F. Xue, Z. Song, and C.-P. Sun, Phys. Rev. B 76,

174519 (2007).
19 J. J. Garcı́a-Ripoll, E. Solano, and M. A. Martin-Delgado, Phys.

Rev. B 77, 024522 (2008).
20 L. Tian, Phys. Rev. Lett. 105, 167001 (2010).
21 S. Gammelmark and K. Mølmer, New J. Phys. 13, 053035 (2011).
22 O. Viehmann, J. von Delft, and F. Marquardt, Phys. Rev. Lett. 110,

030601 (2013).
23 H. You, M. R. Geller, and P. C. Stancil, Phys. Rev. A 87, 032341

(2013).
24 Y. Zhang, L. Yu, J.-Q. Liang, G. Chen, S. Jia, and F. Nori, Sci.

Rep. 4, 4083 (2014).
25 U. Las Heras, A. Mezzacapo, L. Lamata, S. Filipp, and A. Wall-

raff, and E. Solano, Phys. Rev. Lett. 112, 200501 (2014).
26 D. I. Tsomokos, S. Ashhab, and F. Nori, Phys. Rev. A 82, 052311

(2010).
27 J. Q. You, Z. D. Wang, W. Zhang, and F. Nori, eprint

arXiv:1108.3712.
28 A. L. C. Hayward, A. M. Martin, and A. D. Greentree, Phys. Rev.

Lett. 108, 223602 (2012).
29 T. L. Schmidt, A. Nunnenkamp, and C. Bruder, Phys. Rev. Lett.

110, 107006 (2013).
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49 A. A. Houck, H. E. Türeci, and J. Koch, Nature Phys. 8, 292

(2012).
50 J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large

Symmetric Eigenvalue Computations (Birkhäuser (Boston, 1985).
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