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Abstract

The optical nonlocality in symmetric metal-dielectric multilayer metamaterials is theoretically

and experimentally investigated with respect to the TM-polarized incident light. A new nonlocal

effective medium theory is derived from the transfer-matrix method to determine the nonlocal ef-

fective permittivity depending on both frequency and wave vector in the symmetric metal-dielectric

multilayer stack. In contrast to the local effective medium theory, our proposed nonlocal effective

medium theory can accurately predict the measured incident angle-dependent reflection spectra

from the fabricated multilayer stack and provide nonlocal dispersion relations. Moreover, the bulk

plasmon polaritons with large wave vectors supported in the multilayer stack are also investi-

gated with the nonlocal effective medium theory through the analysis of dispersion relation and

eigenmode.
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I. INTRODUCTION

Metal-dielectric multilayer metamaterials have recently emerged into the focus of exten-

sive exploration due to their anomalous electromagnetic properties in optical frequency range

and the straightforward fabrication process. Metal-dielectric multilayer metamaterials with

hyperbolic (or indefinite) dispersion have been demonstrated to realize a broad range of

applications1, such as enhanced electromagnetic density of states2,3, negative refraction4–6,

deep-subwavelength imaging7–9, spontaneous emission enhancement10–12, thermal emission

engineering13, and anomalous indefinite cavities14. Furthermore, the metal-dielectric multi-

layer stack is also utilized to construct the epsilon-near-zero (ENZ) metamaterials, which is

of great interests in many research areas, including radiation wavefront tailoring15–17, invis-

ible cloaking18,19, displacement current insulation20,21, optical nonlinearity enhancement22,

harmonic generation23,24, enhanced photonic density of states25, and soliton excitations26.

The electromagnetic properties of the metal-dielectric multilayer stack are simply charac-

terized by the local effective medium theory (EMT) since the nanoscale multilayer period

is much smaller than the electromagnetic wavelength. In fact, the variation of the elec-

tromagnetic field on the scale of the multilayer period will result in the spatial dispersion,

leading to the optical nonlocality27, which has been studied in other types of metamate-

rials such as split-ring resonator arrays28 and nanorod structures29,30. Due to the strong

optical nonlocality in the metal-dielectric multilayer stack, especially when the frequency

of the electromagnetic field approaches to the ENZ position31, several extraordinary optical

phenomena appear, such as the additional light waves32 and complex eigenmodes33, which

cannot be predicted by the local EMT. In order to address this issue, the limitation of the

local EMT has been studied recently34, and several different nonlocal EMT models have

been proposed, such as the field averaging algorithm confined to the lossless condition35,36

and the dispersion relation approximation limited to the normal incident light37.

In this work, the optical nonlocality is theoretically and experimentally studied in the

symmetric metal-dielectric multilayer stack with respect to the TM-polarized incident light

for different incident angles. The optical nonlocality for the TM-polarized incident light is

much stronger than that for the TE-polarized light that we have studied previously38, due

to the fact that the effective permittivity tensor for the TM-polarized light shows strong

anisotropy. Here a new nonlocal EMT is derived based on the original definition of the
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effective permittivity through the transfer-matrix method39 in order to analytically describe

the variation of the electromagnetic field across the symmetric metal-dielectric multilayer

stack with respect to both frequency and wave vector. It is demonstrated that the measured

incident angle-dependent reflection spectra from the fabricated multilayer stack can be pre-

dicted accurately by the proposed nonlocal EMT, instead of the local EMT. Furthermore,

the difference between the nonlocal effective permittivity and the local effective permittivity

is also analyzed in detail, together with the ENZ position shift and the variation of iso-

frequency contour (IFC) induced by the optical nonlocality. Moreover, the bulk plasmon

polaritons (BPPs)40,41, a sort of highly confined optical modes with large wave vectors gen-

erated from the coupling of the surface plasmon polaritons (SPPs) propagating along the

interfaces of the metal-dielectric multilayer stack, are also investigated with the nonlocal

EMT through the analysis of dispersion relation and eigenmode.

II. DEVELOPMENT OF NONLOCAL EFFECTIVE MEDIUM THEORY

Figure 1(a) illustrates the schematic of the symmetric metal-dielectric multilayer stack

composed of 4-pair periodic silver (Ag) and silica (SiO2) layers on the top of a thick silver

substrate. The Ag-SiO2 multilayer stack possesses a symmetric unit structure with one

half-thickness SiO2 layer on the top of the Ag layer and the other at the bottom. The

silver substrate acts as a mirror to block the transmission and enhance the reflection from

the multilayer stack so that the optical nonlocality is only strongly related to the measured

reflection spectra in experiments. The permittivity and the thickness of the Ag layer and

the SiO2 layer are individually denoted as (εm, am) and (εd, ad), while the thickness of the

silver substrate is denoted as asub. Here the TM-polarized incident light propagating in

the x-z plane with an arbitrary incident angle θ0 is considered. In general, the symmetric

Ag-SiO2 multilayer stack can be regarded as a bulk homogenous and anisotropic effective

medium on the top of the silver substrate as shown in Fig. 1(b). With respect to the TM-

polarized light propagating in the x-z plane, the local anisotropic effective permittivity of the

multilayer stack can be approximated by the local EMT as εlocx = (εmam+εdad)/(am+ad) and

εlocz = εmεd(am+ad)/(εmad+εdam). Clearly, the local effective permittivity is only a function

of frequency, without considering the spatial dispersion caused by the optical nonlocality.

However, previous studies show that the metal-dielectric multilayer stack possesses strong
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optical nonlocality, leading to the nonlocal effective permittivity that is not only related to

the frequency but also to the wave vector.

In order to take into account the optical nonlocality, the nonlocal EMT based on the

original definition of the effective permittivity is proposed and derived through the transfer-

matrix method, where the Ag-SiO2 multilayer stack is considered as a one-dimensional pho-

tonic crystal structure. In the uniaxial multilayer stack, the nonlocal effective permittivity

tensor of the stack can be presented as a diagonal matrix with non-zero diagonal components

εnonlocx and εnonlocz , while the off-diagonal components are negligible. Furthermore, due to the

symmetric and periodic property of the Ag-SiO2 multilayer stack, the nonlocal effective per-

mittivity is independent of the number of layers. Therefore, only one symmetric unit cell

embedded in a homogenous and isotropic surrounding medium is considered in the calcula-

tion of the nonlocal effective permittivity, as displayed in Fig. 1(c). For the TM-polarized

incident light, the electric field in each layer can be presented as a linear combination of the

forward propagating wave (along the positive z-direction) and the backward propagating

wave (along the negative z-direction)

Ei = E+
i exp (ikziz) + E−

i exp (−ikziz) , (1)

where i represents the layer number shown in Fig. 1(c) and i = 0, 1, 2, 3, 4. Note that

the factor exp(ikxx) in Eq. (1) is omitted since the wave vector kx along the interfaces is

preserved across each layer. According to the boundary conditions, the electric fields across

each interface are related via the transfer-matrix as




E+
i exp (ikzidi)

E−
i exp (−ikzidi)



 =





1/ti,i+1 ri,i+1/ti,i+1

ri,i+1/ti,i+1 1/ti,i+1



 ·





E+
i+1 exp

(

ikzi+1
di
)

E−
i+1 exp

(

−ikzi+1
di
)



 , (2)

in which the transmission coefficient ti,i+1 and the reflection coefficient ri,i+1 are

ti,i+1 =
2
√
εi cos θi√

εi+1 cos θi +
√
εi cos θi+1

(3)

and

ri,i+1 =

√
εi+1 cos θi −

√
εi cos θi+1√

εi+1 cos θi +
√
εi cos θi+1

(4)

with respect to the TM-polarized incident light. Furthermore, the phase variation of the

electric field in each layer can be determined as
∫ di

di−1

[

E+
i exp (ikziz) + E−

i exp (−ikziz)
]

dz = E+
i ∆φ+

i + E−
i ∆φ−

i , (5)
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where the phase factor ∆φ+
i and ∆φ−

i are expressed as

∆φ+
i =

exp(ikzidi)− exp(ikzidi−1)

ikzi
(6)

and

∆φ−
i =

i [exp(ikzidi)− exp(ikzidi−1)]

kzi
. (7)

Therefore, the nonlocal effective permittivity can be obtained based on the original definition

of effective permittivity as

εnonlocx =
〈Di〉x
〈Ei〉x

=

∑3

i=1 εi(E
+
i ∆φ+

i + E−
i ∆φ−

i ) cos θi
∑3

i=1(E
+
i ∆φ+

i + E−
i ∆φ−

i ) cos θi
(8)

and

εnonlocz =
〈Di〉z
〈Ei〉z

=

∑3

i=1 εi(E
+
i ∆φ+

i + E−
i ∆φ−

i ) sin θi
∑3

i=1
(E+

i ∆φ+
i + E−

i ∆φ−
i ) sin θi

(9)

which are related to the amplitudes of the electric fields in Eqs. (2)–(4) and the phase factors

in Eqs. (6)–(7). It is noted that according to the conservation of the wave vector kx across

each layer, the nonlocal effective permittivity obtained from Eqs. (8)–(9) depends on both

the frequency and the wave vector via kx = nik0 sin θi (where the wave vector of free space

is k0 = 2π/λ). Therefore, both the frequency and the spatial dispersion are considered in

the nonlocal EMT.

III. NONLOCAL EMT ANALYSIS OF EXPERIMENTAL DATA

In order to demonstrate the effects from the optical nonlocality, the symmetric 4-pair

Ag-SiO2 multilayer stack on the top of a thick silver substrate shown in Fig. 1(a) is then

fabricated and the measured reflection spectra are compared with the nonlocal EMT analy-

sis. The thickness of the Ag layer and of the SiO2 layer is designed to be 10 nm and 85 nm,

respectively. The thickness of the silver substrate is 100 nm which is thick enough to block

the optical transmission in visible frequency region. The multilayer stack is deposited on

top of silicon substrates with the electron-beam evaporation system, where Ag is deposited

at the rate of 0.2 Å/sec and SiO2 is deposited at 0.2 Å/sec. Each material is individually de-

posited on a silicon substrate first to calibrate and optimize the deposition parameters. The

optical constant of each material and the film thickness are characterized with the variable

angle spectroscopic ellipsometry (VASE, J. A. Woollam Co. VB400/HS-190). The VASE
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measurements show that the optical constant of Ag matches the standard data of Johnson

and Christy42 based on the fitting from a general oscillator model. The dielectric constant of

SiO2 is fitted from the Sellmeier dispersion relation. The VASE measured film thickness for

each material also matches the thickness value for the set deposition parameters. Figure 2

shows the scanning electron microscope (SEM) picture of the cross section of the fabricated

Ag-SiO2 multilayer stack on the top of the silver substrate, in which the focused ion beam

(FIB) system (Helios Nanolab 600) is used to cut the cross section. Each deposited thin

layer can be clearly seen, where the bright and the dark stripes individually correspond to

the Ag layers and the SiO2 layers, together with the silver substrate at the bottom. The

thickness of the deposited layers can be characterized with the VASE, and the measured

averaged thickness for the Ag layer, the SiO2 layer, and the silver substrate is 10 ± 0.4 nm,

85± 1.6 nm, and 100± 0.4 nm, respectively.

The reflection spectra of the symmetric Ag-SiO2 multilayer stack above the silver sub-

strate are then measured under the TM-polarized light in the wavelength range from 400 nm

to 800 nm, with respect to different angles of incidence from 0◦ to 80◦ with a variation of 10◦.

The measured reflection spectra containing the information of optical nonlocality are com-

pared with the theoretical reflection spectra calculated from the multilayer stack, the local

EMT, and the nonlocal EMT at different angles of incidence, as shown in Fig. 3. It is clear

that the theoretical reflection spectra obtained from the multilayer stack calculation (black

curves) are coincident with the experimental reflection spectra (red curves). Meanwhile, the

theoretical reflection spectra calculated from the nonlocal EMT (blue curves) is also very

close to the experimental data, showing the locations of the reflection minimums accurately.

However, without the consideration of optical nonlocality, the theoretical reflection spectra

obtained from the local EMT (dashed-blue curves) deviate far away from the experimental

reflection spectra with obvious blue shifts.

Furthermore, in order to indicate the effects of optical nonlocality on the effective per-

mittivity, Figs. 4(a)–4(d) plot the differences between the nonlocal effective permittivity

and the local effective permittivity defined as ∆εx = εnonlocx − εlocx and ∆εz = εnonlocz − εlocz

for the x-component and the z-component of the effective permittivity, respectively. It is

shown that the x-component of the effective permittivity is more sensitive to the optical

nonlocality, since the variation of ∆εx is greater than the value of ∆εz in both the real

part and the imaginary part with respect to the variations of the wavelength and the angle
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of incidence. In addition, the variation of the ENZ wavelength associated with the optical

nonlocality (nonlocal ENZ wavelength) that is determined as Re(εnonlocx ) = 0 is also plotted

as the black curves in Figs. 4(a) and 4(b), which indicate that the nonlocal ENZ wavelength

varies from 628.693 nm to 612.268 nm as the angle of incidence changes from 0◦ to 80◦.

The difference between the nonlocal ENZ wavelength λnonloc
ENZ and the local ENZ wavelength

λloc
ENZ = 587.277 nm is also illustrated in Fig. 4(e) as a function of the angle of incidence.

The variation of the permittivity differences ∆εx and ∆εz at the local ENZ wavelength with

respect to the angle of incidence are shown in Figs. 4(f) and 4(g), which reveal that the

optical nonlocality has stronger influence on the x-component of the effective permittivity

than on the z-component of the effective permittivity.

The iso-frequency contours (IFCs) based on both the nonlocal EMT and the local EMT

can be obtained based on the nonlocal effective permittivity and the local effective permit-

tivity,
k2
x

εnonlocz

+
k2
z

εnonlocx

= k2
0 (10)

and
k2
x

εlocz

+
k2
z

εlocx

= k2
0. (11)

The IFCs of the multilayer stack will also be calculated from the dispersion equation, where

the multilayer stack is considered as a one-dimensional photonic crystal27

cos(kz(am + ad)) = cos(kmam) cos(kdad)−
1

2

(

εmkd
εdkm

+
εdkm
εmkd

)

sin(kmam) sin(kdad), (12)

in which k2
m,d = εm,dk

2
0 − k2

x for the TM-polarized light. As displayed in Fig. 5, the IFCs

calculated from the nonlocal EMT in Eq. (10) and the local EMT in Eq. (11) are compared

with those obtained from the multilayer stack in Eq. (12) at three specific wavelengths: the

local ENZ wavelength λloc
ENZ = 587.277 nm [Figs. 5(a) and 5(d)], the nonlocal ENZ wavelength

associated with the 60◦ angle of incidence λnonloc
ENZ,60◦ = 616.255 nm [Figs. 5(b) and 5(e)], and

the nonlocal ENZ wavelength related to the 0◦ angle of incidence λnonloc
ENZ,0◦ = 629.693 nm

[Figs. 5(c) and 5(f)]. The IFCs based on the nonlocal EMT [dashed curves in Figs. 5(a)–

5(c)] are almost the same as those of the multilayer stack (solid curves), especially in the

area that the wave vector kx is confined in the light cone of the air (green circles). The

deviation only occurs when the wave vector kz approaches to the boundary of the Brillouin

zone, where the multilayer stack cannot just be regarded as a homogenous and anisotropic
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effective medium since the periodic property of the multilayer stack play important roles. On

the contrary, the IFCs based on the local EMT [dashed curves in Figs. 5(d)–5(f)] are far away

from the IFCs of the multilayer stack without considering the optical nonlocality. Finally,

it is notable that during the calculation, the values of the wave vectors are normalized by

the specified wave vector kp = 4.56983× 107m−1 that is related to the Ag plasma frequency

ωp = 1.37× 1016 rad/s.

IV. ANALYSIS OF DISPERSION RELATION AND BULK PLASMON MODE

The TM-polarized incident light will excite the SPPs at the metal-dielectric interfaces

of the multilayer stack when the wave vector kx extends beyond the light line of the free

space. Moreover, due to the coupling of the SPPs between different multilayer interfaces, the

BPPs with large wave vectors will be generated in the multilayer stack, which will strongly

enhance the optical nonlocality. The enhanced optical nonlocality can be illustrated by the

differences between the nonlocal effective permittivity and the local effective permittivity

∆εx and ∆εz with respect to the variations of the frequency and the wave vector, as shown in

Fig. 6. Similar to the results in Figs. 4(a)–4(d), ∆εx [Figs. 6(a) and 6(b)] is more sensitive to

the optical nonlocality than ∆εz [Figs. 6(c) and 6(d)] in both the real part and the imaginary

part. Furthermore, the variation of the ∆εx is greatly increased when the wave vector kx

extends to the region below the light line of free space, i.e., kx/kp > ω/ωp , where the BPPs

are excited in the metal-dielectric multilayer stack and propagate along the metal-dielectric

interfaces in the x-direction.

In order to understand the mechanism for the giant ∆εx in the BPP region, the dispersion

relations calculated from the multilayer stack in Eq. (12), the nonlocal EMT in Eq. (10)

and the local EMT in Eq. (11) are investigated, as shown in Figs. 7(a), 7(b) and 7(c),

respectively. The dispersion curves are separated by the light line of air (straight green line)

into two regions. Above the light line (kx/kp < ω/ωp), the dispersion of the multilayer stack

in Fig. 7(a) includes three branches, in which the first and the second branches (A1 and A2 )

located between the experimental wavelength range from 400 nm to 800 nm are related to the

two minimums in the reflection spectra in Fig. 3, while the third branch (A3 ) is not observed

in the reflection spectra since it is outside the experimental wavelength range. Below the light

line (kx/kp > ω/ωp), the dispersion of the multilayer stack in Fig. 7(a) possesses another four
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branches (B1, B2, B3, and B4 ) that are below the dispersion of the SPP (dashed-black curve)

calculated via kx =
√

εmεd/(εm + εd)k0, corresponding to four BPP modes associated with

the four Ag layers in the multilayer stack. Regarding to the dispersion relations calculated

from the nonlocal EMT [Fig. 7(b)] and the local EMT [Fig. 7(c)], it is shown that the three

branches above the light line are similar to those the multilayer stack in Fig. 7(a). The three

branches in the dispersion relation from the nonlocal EMT in Fig. 7(b) are almost the same

as those from the multilayer stack, but the three branches from the local EMT give slight

blue shifts in Fig. 7(c). However, the dispersion relations in the BPP region below the light

line calculated from the multilayer stack, the nonlocal EMT, and the local EMT are quite

different. According to the EMT, the multilayer stack is regarded as a bulk homogenous and

anisotropic effective medium so that there is no specific metal-dielectric interfaces inside the

medium anymore during the procedure of averaging the electromagnetic field across each

periodic structure. Therefore, the BPP modes supported in either the nonlocal medium in

Fig. 7(b) or the local effective medium in Fig. 7(c) are determined by the interference of the

SPPs between the two boundaries of the effective medium and therefore there are many more

branches shown in the BPP region. With the consideration of the spatial dispersion related

to the optical nonlocality in the nonlocal EMT, the first four branches in the BPP region in

the dispersion relation in Fig. 7(b) are almost identical with the four branches related to the

BPP modes in the dispersion relation of the multilayer stack in Fig. 7(a). On the contrary,

the dispersion relation from the local EMT does not perform such properties in the BPP

region, implying that the local EMT is not accurate to describe the BPP mode dispersion.

To further explore the dispersion relation of the multilayer stack, Fig.7(d) illustrates the

eigenmodes of the electromagnetic field associated with the seven branches of the dispersion

relation in Fig. 7(a), in terms of the distributions of both the magnetic field amplitude

Hy and the magnetic field intensity |Hy|. It is clear that the first three eigenmodes (A1,

A2, and A3 ) above the light line behaves as propagating modes along the z-direction in the

multilayer stack across through the whole multilayer stack. On the other hand, the four BPP

eigenmodes (B1, B2, B3, and B4 ) in the multilayer stack have the localized electromagnetic

fields along the interfaces of the Ag layers and the SiO2 layers due to the coupling of the

SPP modes.
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V. CONCLUSIONS

A nonlocal EMT has been derived based on the original definition of the effective per-

mittivity through the transfer-matrix method in order to study the optical nonlocality in

the symmetric metal-dielectric multilayer stack with respect to the TM-polarized incident

light for different incident angles. Instead of the local EMT, the nonlocal EMT can accu-

rately predict the measured incident angle-dependent reflection spectra from the fabricated

multilayer stack due to the consideration of nonlocal effective permittivity. The nonlocal

EMT not only reveals the difference between the nonlocal effective permittivity and the

local effective permittivity but also the variation of IFCs induced by the optical nonlocality.

Furthermore, the BPP modes with large wave vectors enhanced by the optical nonlocality

can also be characterized with the nonlocal EMT.
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FIGURE CAPTIONS

FIG. 1. (Color online) (a) Schematic of the symmetric and periodic Ag-SiO2 multilayer

stack on the top of the silver substrate. (b) Schematic of the homogeneous and anisotropic

effective medium on the silver substrate. (c) Schematic of the symmetric unit cell of the

Ag-SiO2 multilayer stack with respect to the TM-polarized incident light across each layer.

FIG. 2. (Color online) The SEM picture of the cross section of the fabricated Ag-SiO2

multilayer stack on the silver substrate.

FIG. 3. (Color online) The measured reflection spectra from the Ag-SiO2 multilayer stack

(black curves), the calculated reflection spectra based on the multilayer stack (red curves),

the nonlocal EMT (blue curves) and the local EMT (dashed-blue curves) at different angles

of incidence from 0◦ to 80◦ over the wavelength range from 400 nm to 800 nm.

FIG. 4. (Color online) The differences between the nonlocal effective permittivity and the

local effective permittivity for (a) Re(∆εx) = Re(εnonlocx − εlocx ), (b) Im(∆εx) = Im(εnonlocx −
εlocx ), (c) Re(∆εz) = Re(εnonlocz − εlocz ), and (d) Im(∆εz) = Im(εnonlocz − εlocz ), with respect

to the variations of the angle of incidence and the wavelength. (e) The differences between

the nonlocal ENZ wavelength and the local ENZ wavelength as a function of the angle of

incidence. The differences between the nonlocal effective permittivity and the local effective

permittivity with respect to the angle of incidence at the local ENZ wavelength for (f) the

x-component ∆εx and (g) the z-component ∆εz.

FIG. 5. (Color online) The comparison between the IFCs of the multilayer stack (solid

curves) and the IFCs based on the nonlocal EMT (dashed curves) at (a) the local ENZ

wavelength λloc
ENZ = 587.277 nm, (b) the nonlocal ENZ wavelength associated with the 60◦

angle of incidence λnonloc
ENZ,60◦ = 616.255 nm, and (c) the nonlocal ENZ wavelength related to

the 0◦ angle of incidence λnonloc
ENZ,0◦ = 629.693 nm. The comparison between the IFCs of the

multilayer stack (solid curves) and the IFCs based on the local EMT (dashed curves) at (c)

the local ENZ wavelength λloc
ENZ = 587.277 nm, (d) the nonlocal ENZ wavelength associated

with the 60◦ angle of incidence λnonloc
ENZ,60◦ = 616.255 nm, and (e) the nonlocal ENZ wavelength

related to the 0◦ angle of incidence λnonloc
ENZ,0◦ = 629.693 nm.
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FIG. 6. (Color online) The differences between the nonlocal effective permittivity and the

local effective permittivity for (a) Re(∆εx) = Re(εnonlocx − εlocx ), (b) Im(∆εx) = Im(εnonlocx −
εlocx ), (c) Re(∆εz) = Re(εnonlocz − εlocz ), and (d) Im(∆εz) = Im(εnonlocz − εlocz ) as a function of

the wave vector kx/kp and the frequency ω/ωp.

FIG. 7. (Color online) The dispersion relation calculated from (a) the multilayer stack, (b)

the nonlocal EMT, and (c) the local EMT. (d) The eigenmodes of the electromagnetic field

in the multilayer stack with respect to the dispersion relation (a) in terms of the distributions

of both the magnetic field amplitude Hy and the magnetic field intensity |Hy|.
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