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Twisting symmetries provides an efficient method to diagnose symmetry-protected topological
(SPT) phases. In this paper, edge theories of (2+1)-dimensional topological phases protected by
reflection as well as other symmetries are studied by twisting reflection symmetry, which effectively
puts the edge theories on an unoriented spacetime, such as the Klein bottle. A key technical step
taken in this paper is the use of the so-called cross-cap states, which encode entirely the unoriented
nature of spacetime, and can be obtained by rearranging the spacetime geometry and exchanging the
role of space and time coordinates. When the system is in a non-trivial SPT phase, we find that the
corresponding cross-cap state is non-invariant under the action of the symmetries of the SPT phase,
but acquires an anomalous phase. This anomalous phase, with a proper definition of a reference
state, on which symmetry acts trivially, reproduces the known classification of (2+1)-dimensional
bosonic and fermionic SPT phases protected by reflection symmetry, including in particular the
Z8 classification of topological crystalline superconductors protected by reflection and time-reversal
symmetries.

I. INTRODUCTION

Symmetry-protected topological (SPT) phases are
gapped phases of matter which are not adiabatically
deformable, under a given set of symmetry conditions,
to a topologically trivial phase. While SPT phases do
not have an intrinsic topological order (i.e., do not sup-
port (deconfined) fractional excitations), they are sharply
(topologically) distinct from topologically trivial states,
such as an atomic insulator, which respect the same set of
symmetries. In other words, the distinction between SPT
and trivial phases cannot be made within Landau’s the-
ory; SPT phases are beyond the classification of phases
of matter based on broken symmetries. A flurry of re-
cent theoretical works includes, among others, the break-
down (or collapse) of the non-interacting classifications
of fermionic SPT phases upon inclusion of interactions,
non-trivial bosonic SPT phases and the possibility of
symmetry-respecting surface topological order, classifi-
cation of interacting electronic topological insulators in
three dimensions, and proposals for a possible complete
classification of SPT phases. (For a partial and incom-
plete list of recent works on SPT phases, see Refs. 1–23.)

One of the most efficient and powerful methods to
study SPT phases is to twist or gauge symmetries pro-
tecting SPT phases.9,24,25 Quite generically, global sym-
metries in quantum field theories can be twisted, i.e.,
can be used to define twisted boundary conditions. It
was proposed that the twisted theory can be used to di-
agnose the original SPT phases, i.e., to judge whether
or not the original theory is symmetry-protected, and
distinct from topologically trivial phases. More specif-
ically, once twisted, the edge theory of an SPT phase
suffers from various kinds of quantum anomalies, such
as a global anomaly under large U(1) gauge transfor-
mations, or a global gravitational anomaly.9,25,26 On the

other hand, gauging (non-spatial) symmetries effectively
deconfines a set of quasiparticles (anyons). The fractional
statistics of the braiding in the gauged theory can be used
to diagnose the original SPT phases.24,27

Twisting non-spatial unitary symmetries of SPT
phases is by now reasonably well-understood. Toward
further developments of methodologies to SPT phases,
it is necessary to extend the twisting or gauging pro-
cedure to spatial and/or antiunitary symmetries, such
as parity symmetry (P -symmetry) and time-reversal (T -
symmetry).21–23,26,28 The purpose of this paper is to
provide an efficient and intuitive method to diagnose
SPT phases protected by a spatial symmetry such as
parity (reflection). We will study (1+1)-dimensional
[(1+1)d] non-chiral gapless theories with spatial symme-
tries, which are the edge theories of the corresponding
(2+1)d bulk SPT phases protected by parity (P ) symme-
try or parity combined with a unitary non-spatial sym-
metry such as CP -symmetry (parity symmetry combined
with charge conjugation). In typical situations, in addi-
tion to P - or CP -symmetry, there are other non-spatial
symmetries such as U(1) symmetry or time-reversal (T )
symmetry.

Our starting point is Ref. 26, where twisting parity
within edge theories of SPT phases (protected by par-
ity) has been used to diagnose the edge theories. This
twisting procedure leads to theories that are effectively
defined on an unoriented manifold, e.g., the Klein bot-
tle, and thus suggests an interesting link between SPT
phases and so-called orientifold field theories - type of
theories discussed in unoriented superstring theory.29–38

We make one further step in this paper by making use of
the so-called cross-cap states in formulating orientifold
field theories. Cross-cap states are quantum states in
field theories (conformal field theories) obtained by twist-
ing parity symmetry and encode, quantum mechanically,
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the unoriented topology; the fact that the theory is put
on an unoriented surface is entirely encoded in the cross-
cap states. They are akin to boundary states in boundary
conformal field theories, which are obtained by exchang-
ing the role of space and time coordinates. One promis-
ing aspect of cross-cap states is that they are formulated
and constructed fully in terms of many-body physics, and
hence are expected to capture the effects of interactions.

We will identify quantum anomalies in the edge theo-
ries of SPT phases as the non-invariance of a cross-cap
state under the action of the other symmetry than par-
ity. Correspondingly, a bulk theory which supports an
anomalous edge theory is diagnosed as a non-trivial SPT
phase. Our procedure to diagnose an edge theory with
parity symmetry can be summarized as follows:

(i): The edge theory of a given bulk theory is put on an
unoriented spacetime, the Klein bottle. In practice,
this can be achieved by twisting boundary condi-
tions (orientifold procedure).

(ii): The edge theory on the Klein bottle is then quan-
tized. The cross-cap state corresponding to the
twisting is constructed.

(iii): In the quantized theory, the effects of other sym-
metry, such as time-reversal, fermion number par-
ity, etc. are studied. When these symmetries are
anomalous, i.e., when the cross-cap state is non-
invariant under these symmetries, the edge the-
ory cannot be gapped while preserving the symme-
tries. The corresponding bulk phase is symmetry-
protected and topologically distinct from a trivial
phase.

In the previous work,26 the edge theories of SPT phases
with P o U(1)A symmetry and those with CP o U(1)V
symmetry have been studied. The partition function
on the Klein bottle was shown to be anomalous (non-
invariant) upon threading a unit flux of the U(1) sym-
metry. In fact, the partition function acquires the anoma-
lous (−1)-sign, implying the Z2 classification of these
SPT phases. The proposed formulation in this paper
in terms of cross-cap states reproduces these results for
SPT phase with PoU(1)A and CPoU(1)V . In addition,
this formulation in terms of cross-cap states offers a few
technical advantages. First, the new formulation allows
us to discuss SPT phases protected by a broader set of
symmetries than P o U(1)A or CP o U(1)V . That is,
we do not need a continuous U(1) symmetry and a large
U(1) gauge transformation. Second, it is not necessary
to compute the full (symmetry-twisted) partition func-
tion; all information necessary to diagnose edge theories
are encoded in cross-cap states.

The rest of the paper is organized as follows. In Sec.
II, some generalities on twisting/gauging parity symme-
tries and finding cross-cap states are presented. We fur-
ther demonstrate that non-invariance of the cross-cap
states under symmetry operations is related to the non-
invariance of the partition function, i.e., the quantum

anomalies. We also draw some parallel between twist-
ing non-spatial symmetries (so-called orbifold procedure)
and twisting parity symmetries (orientifold). In Sec. III,
we apply our strategy to the bosonic SPT phases pro-
tected by P - or CP -symmetry together with other sym-
metries, and find that the non-invariance of the cross-cap
states reproduces all the non-trivial SPT phases found in
Ref. 39. In Sec. IV, we discuss real fermionic SPT phases
(topological superconductors) protected by parity sym-
metry. By identifying quantum anomalies (anomalous
phases) in the cross-cap states, the results consistent with
known microscopic analysis of gapping potentials are ob-
tained.

II. CROSSCAP STATES AND SPT PHASES

In this section, some generalities of our approach to
SPT phases are presented. We start by briefly reviewing
twisting and gauging non-spatial unitary symmetries of
SPT phases, in particular within (1+1)d edge theories of
(2+1)d SPT phases. When the edge theories are realized
at the boundary of non-trivial SPT phases, this twisting
procedure (orbifolding) reveals a conflict between differ-
ent symmetries at the quantum level, even when they are
mutually consistent at the classical level. This is an ex-
ample of quantum anomalies, signaling the impossibility
of realizing the edge theory on its own once symmetry
conditions are imposed. Hence, it is also indicative of
the presence of non-trivial bulk states. Twisting unitary
spatial symmetry, such as parity and CP symmetry, can
be discussed in a similar way, resulting in an unoriented
spacetime manifold. Cross-cap states, which are quan-
tum states fully encoding the unoriented nature of the
theory, are introduced. A potential conflict of other sym-
metries with parity/CP symmetry can be studied in the
language of cross-cap states.

A. Edge theories of SPT phases

By definition, when going from a SPT phase to a triv-
ial phase in a phase diagram by changing parameters in
the system’s Hamiltonian, one inevitably encounters a
quantum phase transition, if the symmetry conditions
are strictly enforced. This in turn implies that if an
SPT phase is spatially proximate to a trivial phase, there
should be a gapless state localized at the boundary be-
tween the two phases; this critical state can be thought of
as a phase transition occurring locally in space, instead
of the parameter space of the Hamiltonian. As implied
by this construction, the edge state of a non-trivial SPT
phase should never be removable (completely gapped)
if the symmetries are strictly imposed. (It should be
noted, however, that there are other interesting pos-
sibilities for symmetric surface states for (3+1)d SPT
phases.15,16,40,41) Hence, this critical boundary state sig-
nals the topological distinction between the SPT and



3

trivial phases, and many properties of SPT phases can
be extracted from their boundary physics. For exam-
ple, by inspecting under which symmetry conditions a
given edge theory is stable/unstable, one can predict un-
der which symmetry conditions a given phase can be a
SPT phase.

Although studying the boundary instead of the bulk
reduces the dimensionality of the problem, it is still not
straightforward to judge if a given state is topological
or not. In principle, one could enumerate all possible
symmetry-allowed perturbations within the edge theory,
which can potentially gap out the edge. Without any
guiding principle, however, such brute force approach is
quite cumbersome, and also, more fundamentally, does
not provide any intuition on the physics of SPT phases.
Hence it is necessary to have an efficient and illuminating
guiding principle for diagnosing topological properties of
phases of matter with symmetries.

B. Symmetry twist and conflicting symmetries

Our approach to diagnose non-trivial SPT phases is
to identify quantum anomalies within edge theories.
We illustrate our strategy by considering a fermionic
SPT phase protected by Uc(1)× Us(1) symmetry, where
Uc/s(1) refers to U(1) symmetry associated with the con-
servation of electromagnetic charge and z-component of
spin Sz, respectively. This phase is akin to (2+1)d time-
reversal symmetric topological insulators (the quantum
spin Hall effect), although because of the imposed conser-
vation of Sz, states with Uc(1)×Us(1) symmetry are clas-
sified by two integral topological invariants (i.e., “charge”
and “spin” Chern numbers). We will focus on the case of
vanishing charge Chern number, and hence the allowed
phases are classified by the integer-valued spin Chern
number.

Consider the following Hamiltonian describing the
edge of the Sz-conserving quantum spin Hall phase with
Uc(1)×Us(1) symmetry defined on a circle of circumfer-
ence `

H =

∫ `

0

dx
[
ψ†↑(−vi∂x)ψ↑ + ψ†↓(+vi∂x)ψ↓

]
, (1)

where x ∈ [0, `] is the spatial coordinate of the edge, ψ↑/↓
represents the fermion creation operator for up/down
spin, and v is the Fermi velocity. Any global symme-
try in quantum field theories can be twisted (i.e., can
be used to twist boundary conditions). We choose Uc(1)
symmetry to twist the boundary condition as

ψs(x) = e2πiαψs(x+ `), s ∈ {↑, ↓}. (2)

Let the ground state with the twisted boundary condition
be |GS〉α, which satisfies[

ψs(x)− e2πiαψs(x+ `)
]
|GS〉α = 0, s ∈ {↑, ↓}. (3)

Observe that the boundary condition (2) is invariant
under global U(1)c transformations

0 = ψs(x)− e2πiαψs(x+ `)

= eiφQ
[
ψs(x)− e2πiαψs(x+ `)

]
e−iφQ, (4)

where Q is the total charge operator associated to U(1)c
symmetry, and φ is an arbitrary real parameter. Simi-
larly, the boundary condition (2) is invariant under the
global U(1)s transformation generated by eiφSz where Sz
is the total “charge” associated to U(1)s symmetry. A
crucial observation now is that, while the boundary con-
dition (2) is invariant under the global U(1)s, the cor-
responding ground state may carry an “anomalous” Sz
quantum number,

eiQφ|GS〉α = ei×0×φ|GS〉α = |GS〉α,
eiSzφ|GS〉α = ei×2α×φ|GS〉α = e2iαφ|GS〉α. (5)

(The quantum numbers of the ground state can be com-
puted explicitly, by using, for example, bosonization
and identifying an operator corresponding to the ground
state |GS〉α. More precisely, the operator is given by
∼ exp(iα(ϕL + ϕR)), where the left- and right-moving
electrons are identified as ψL/R ∼ exp(±iϕL/R). For de-
tails, see Ref. 18.) The anomalous phase is nothing but
chiral anomaly; in the presence of a U(1)c magnetic flux
twisting the boundary condition, the Sz quantum num-
ber, which is conserved at the classical level, is not con-
served at the quantum level. Hence, only way to reconcile
the U(1)c × U(1)s symmetry and quantum mechanics is
to realize this (1+1)d theory as a boundary theory of
a higher-dimensional system, a (2+1)d bulk SPT phase
respecting the U(1)c × U(1)s symmetry.

Let us now be more general. Consider an edge theory,
which is written in terms of a fundamental quantum field
Φ(x) and is defined on a spatial circle x ∼ x+`. Suppose
there is a set of non-spatial unitary symmetry operators,
G, which leave the edge theory invariant. We consider a
twisting boundary condition by a group element g1 ∈ G,

Φ(x+ `) = G1 Φ(x)G−1
1 = Ug1 · Φ(x), (6)

where G1 is the operator which implements a symmetry
operation g1 in the Hilbert space of the edge theory, and
Ug1 is a unitary matrix acting on the internal index of
the field Φ(x), i.e., a unitary matrix representation of
the symmetry. (The field Φ(x) can carry a set of in-
dices representing internal degrees of freedom, which are
suppressed in the equation above and in the following.)
With twisting, states in the Hilbert space, the ground
state |GS〉g1 in particular, obey

[Φ(x+ `)− Ug1Φ(x)] |GS〉g1 = 0. (7)

As a next step, we consider the action of another symme-
try g2 ∈ G. (g2 can be equal to g1, which is the situation
relevant to the quantum Hall effect, but in our examples
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below, g2 6= g1.) At the classical level, the g1-twisted
boundary condition (6) may be invariant under g2 ∈ G,

0 = Φ(x+ `)− Ug1Φ(x)

= G2 [Φ(x+ `)− Ug1Φ(x)] G−1
2 . (8)

When this is the case, one may expect the twisted the-
ory after quantization is invariant under g2 as well. In
particular, one expects the partition function and/or the
ground state of the twisted edge theory is invariant un-
der g2. When this expectation is betrayed, there is a
quantum anomaly.

Before leaving this subsection, we comment on a con-
nection between the twisting procedure and orbifold-
ing/gauging. Gauging and orbifolding have a similar
(identical) effect in that we focus on a gauge singlet
(G-invariant) sector of the theory [although the gaug-
ing means in general imposing the singlet condition lo-
cally (e.g., at each site of a lattice), while the projection
in orbifolding is enforced only globally]. Let us again
consider an edge theory with symmetry group G. By
state-operator correspondence in quantum field theories,
corresponding to the state |GS〉g in the twisted theory,
there is an operator, the twist operator σg, which, when
acting on the ground state of the untwisted theory, cre-
ates |GS〉g42–44:

|GS〉g = σg(0)|0〉. (9)

(The location of the insertion of the operator σg is taken
to be the origin in the radial quantization.) The twist
operator, when inserted in correlation functions, imple-
ments the symmetry twist by g, and satisfy the following
algebraic relation with Φ(x) on the complex plane:

Φ(z, z̄)σg(w, w̄) = σg(w, w̄)Ug · Φ(z, z̄). (10)

Starting from the original, untwisted, theory, one can
now consider including the ground states with twisted
boundary conditions to define an extended theory. In the
extended theory, the ground states with twisted bound-
ary conditions (the ground states in the “twisted sec-
tors”), and hence the corresponding twist operators, are
considered as an excitation. This procedure to generate
a new theory from the untwisted theory is called orbifold.

Now, by further invoking bulk-boundary correspon-
dence, there is a corresponding bulk excitation (anyon).
Bulk statistical properties of the gauged theory can be
read off from the operator product expansions and fu-
sion rules obeyed by the twist operator(s). Now a given
symmetry group G can be implemented in various differ-
ent ways in different SPT (and trivial) phases protected
by G leading to different choices of Ug, and to differ-
ent twist operators. By studying statistical (braiding)
properties of the twist operator(s), one can distinguish
different ungauged (original) theories.24

C. Spatial symmetry

When considering SPT phases protected by spatial
symmetries, one can consider twisting the spatial sym-
metries. Let us consider a parity symmetry:

PΦ(x)P−1 = UPΦ(`− x), (11)

where the space is defined on a circle x ∼ x+`. Twisting
by parity symmetry can be introduced in the following
way.29,30,34,36–38

a. Loop channel We consider Euclidean spacetime
[0, `] × [0, β] parameterized by (x1, x2), where x1 is the
spatial coordinate and x2 is the imaginary time coordi-
nate. In the path integral picture, the fields obey the
following twisted boundary conditions

Φ(x1, x2 + β) = PΦ(x1, x2)P−1 = UPΦ(`− x1, x2),

Φ(`, x2) = G Φ(0, x2)G−1, (12)

in which G may be implementing a non-spatial unitary
symmetry g ∈ G, e.g., the fermion number parity.26 In
the operator language, twisting by parity symmetry can
be introduced as a projection operation. This amounts to
inserting the parity operator into the partition function,

ZK = Trg

[
Pe−βHloop(`)

]
, (13)

where Hloop ≡ H is the Hamiltonian that generates time-
translation in the x2-direction. The trace is taken in the
Hilbert space defined for the quantum field obeying the
boundary condition Φ(x1+`) = G Φ(x1)G−1, as indicated
by the subscript g. (For later use, we also introduce
another parity operator, P ′, such that P ′ ·P−1 = G .)
This representation of the partition function with the
choice of x2 as a direction of time-evolution will be called
the ”loop channel” picture.

b. Tree channel As we have seen in the case of non-
spatial symmetries, it is useful to discuss the twisted par-
tition function in terms of the twist operator and the
corresponding state. One may want to develop a similar
alternative picture for the case of twisting by parity. To
this end, one needs to find a convenient and proper “time-
slice” that allows us to define a quantum state (|GS〉g in
the notation of the previous section for the non-spatial
symmetry), which implements the twisting condition.

It is convenient to recall that any 2d compact unori-
ented surface without boundary can be generated from a
sphere S2 by adding handles and cross-caps, which can
be thought of as a real projective plane RP2. In partic-
ular, the Klein bottle can be generated by first cutting
out two discs from S2, and then identifying antipodal
points of the resulting holes. In fact, one can rearrange
the path integral on the Klein bottle such that the fields
are now defined on [0, `/2]× [0, 2β]. The precise steps for
rearranging the spacetime is described in Fig.1.

We use (σ1, σ2) to represent this rearranged spacetime.
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FIG. 1. Rearrangement of spacetime. (a) The original loop
channel (Euclidean) spacetime. Here the points (A,B) and
(A′, B′) in the spacetime are identified due to the boundary
conditions Eq. (12). The line segments with the same symbols
are also identified by the boundary conditions Eq. (12). (b)
We shift the box of the spacetime formed by A′B′D′C′ along
x2 by β. (c) After shifting the box, we flip the orientation of
the box with respect to x1 = 3`/4. (d) We slide the box along
x1 by `/2. Then we obtain the crosscap geometry. Notice that
any x2 ∈ [0, β] is identified with its antipodal point at the slice
of “time” at x1 = 0 and x1 = `/2. By renaming the variables
x1 → σ1 and x2 → σ2, we obtain the spacetime of the tree
channel. Here the σ1 direction is taken to be a direction
of (fictitious) time-evolution. At the boundary of spacetime
located at σ1 = 0 and σ1 = `/2, there are cross-caps.

The fields now obey the cross-cap boundary conditions

Φ(0, σ2 + β) = UP ′Φ(0, σ2),

Φ(`/2, σ2 + β) = UPΦ(`/2, σ2),

Φ(σ1, σ2 + 2β) = G ′Φ(σ1, σ2)G ′−1, (14)

where

P2 = P ′2 = G ′. (15)

By further rotating (σ1, σ2) coordinates by 90◦, we can
take σ1 as a time-coordinate. In this coordinate system,
the time-evolution is generated by a (fictitious) Hamil-
tonian (denoted by Htree in the following). The fact
that the system is defined on an unoriented surface is
now encoded in boundary conditions at σ1 = 0 and
σ1 = `/2. We then introduce cross-cap states which obey
these boundary conditions as:

[Φ(0, σ2 + β)− UP ′Φ(0, σ2)] |CP 〉 = 0,

[Φ(`/2, σ2 + β)− UPΦ(`/2, σ2)] |CP ′〉 = 0. (16)

The partition function can be written in terms of the
cross-cap states as

ZK = 〈CP ′ |e−
`
2Htree(2β)|CP 〉, (17)

where Htree is the Hamiltonian that generates time-
translation in the tree channel picture. The loop channel-
tree channel duality (also known as open-closed duality)
asserts that the partition functions computed in the loop
and tree channels agree.
c. Interplay with non-spatial symmetries By con-

structing the cross-cap states, we have “gauged” parity
symmetry. As in the case of the SPT phases with non-
spatial symmetries, we now consider the effects of an-
other non-spatial symmetry, represented by g ∈ G, on
the cross-cap states. We act with g on the cross-cap
boundary conditions,

[Φ(0, σ2 + β)− UPΦ(0, σ2)] |CP 〉 = 0

⇒ G [Φ(0, σ2 + β)− UPΦ(0, σ2)] G−1G |CP 〉 = 0

⇒ [UgΦ(0, σ2 + β)− UPUgΦ(0, σ2)] G |CP 〉 = 0

⇒
[
Φ(0, σ2 + β)− U−1

g UPUgΦ(0, σ2)
]
G |CP 〉 = 0.

(18)

Thus we deduce the following relation:

G |CP 〉 = |Cg·P ·g−1〉. (19)

If the cross-cap condition is invariant under g ∈ G,
UP = U−1

g UPUg , then we may expect that so is the
cross-cap state, |CP 〉 = G |CP 〉, classically. However this
expected invariance may be broken down quantum me-
chanically. This then signals that the theory is anoma-
lous and should describe the edge of a SPT phase defined
in one higher dimension.

III. BOSONIC SPT PHASES

In this section, we apply our strategy above to edge
theories of bosonic SPT phases consisting of a single com-
ponent non-chiral boson (i.e., a two-component chiral bo-
son with 2× 2 K-matrix). We consider situations where
parity (P ) or a combination of parity and charge conjuga-
tion (CP ) is a part of the full symmetry group, which can
potentially protect the edge theory from gap-opening.

In Ref. 26, SPT phases protected by P or CP sym-
metry together with a continuous U(1) symmetry were
studied by using a generalization of Laughlin’s argument.
It was found that non-trivial Z2 bosonic SPT phases can
exist in the presence of the following combinations of
symmetries:

• P o U(1)A (“spin U(1)”),

• CP o U(1)V (“charge U(1)”),

where the subscript A/V represents the “axial/vectorial”
nature of the U(1) symmetry.

In Ref. 39, following the spirit of Refs. 17 and 45, a
microscopic stability analysis for the bosonic edge theory
is carried out by enumerating possible gapping potentials
in the presence of various discrete symmetries. It was
found that the bosonic edge theory can be ingappable
(protected) in the presence of the following symmetries:
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• P × C,P × T

• P × TC, CP × T , T × C.

SPTs protected by these symmetries are all classified by
Z2. In addition, it was also found that there are SPT
phases protected by

• T × C × P

The classification of these SPT phases is Z4
2.

In the following, we will study these SPT phases by us-
ing cross-cap states and by identifying quantum anoma-
lies. As we will show, this analysis reproduces exactly the
same classification as in Ref. 39, and hence it gives us a
perspective complimentary to the generalized Laughlin’s
argument on the Klein bottle in the “loop channel” pic-
ture, and to microscopic stability analysis.

A. Free compactified boson

We start from the free boson theory on a spatial ring
of circumference ` defined by the partition function Z =∫
D[φ] exp(iS) with the action

S =
1

4πα′

∫
dt

∫ `

0

dx

[
1

v
(∂tφ)2 − v(∂xφ)2

]
, (20)

where the spacetime coordinate of the edge theory is de-
noted by (t, x), v is the velocity, α′ is the coupling con-
stant, and the φ-field is compactified as

φ ∼ φ+ 2πR, (21)

with the compactification radius R. The canonical com-
mutation relation is

[φ(x, t), ∂tφ(x′, t)] = i2πα′v
∑
n∈Z

δ(x− x′ − n`). (22)

We use the chiral decomposition of the boson field, and
introduce the dual field θ as

φ = ϕL + ϕR, θ = ϕL − ϕR. (23)

The mode expansion of the chiral boson fields is given by
(x± = vt± x)

ϕL(x+) = xL + πα′pL
x+

`
+ i

√
α′

2

n 6=0∑
n∈Z

αn
n
e−

2πinx+

` ,

ϕR(x−) = xR + πα′pR
x−

`
+ i

√
α′

2

n 6=0∑
n∈Z

α̃n
n
e−

2πinx−
` ,

(24)

where [αm, α−n] = [α̃m, α̃−n] = mδmn and [xL, pL] =
[xR, pR] = i. The compactification condition on the bo-
son fields implies the allowed momentum eiganvalues are

given by

p =
1

2
(pL + pR) =

k

R
, p̃ =

1

2
(pL − pR) =

R

α′
w,

pL =
k

R
+
R

α′
w, pR =

k

R
− R

α′
w, (25)

where k and w are an integer. In terms of these momen-
tum eigenvalues, the compactification conditions on the
boson fields are

ϕL(x+ `)− ϕL(x) = +πα′pL,

ϕR(x+ `)− ϕR(x) = −πα′pR,
φ(x+ `)− φ(x) = πα′(pL − pR) = 2πRw,

θ(x+ `)− θ(x) = πα′(pL + pR) = 2π
α′

R
k. (26)

The Hilbert space is constructed as a tensor product
of the bosonic oscillator Fock spaces, each of which gen-
erated by pairs of creation and annihilation operators
{αm, α−m}m>0 and {α̃m, α̃−m}m>0, and the zero mode
sector associated to xL,R and pL,R. We will denote states
in the zero mode sector by specifying their momentum
eigenvalues as

|p, p̃〉 = |k/R,Rw/α′〉, k, w ∈ Z, (27)

or more simply as |k,w〉. Alternatively, the Fourier trans-
formation of the momentum eigenkets defines the “posi-
tion” eigenkets, which we denote by

|φ0, θ0〉 0 < φ0 ≤ 2πR, 0 < θ0 ≤ 2πα′/R. (28)

The two basis are related by

|p, p̃〉 =

∫ 2πR

0

dφ0

∫ 2πα′/R

0

dθ0e
−ipφ0−ip̃θ0 |φ0, θ0〉. (29)

B. Symmetries

Various symmetries of the single-component compact-
ified boson theory are listed below.
d. U(1)× U(1) symmetry In the free boson theory,

when there is no perturbation, there are two conserved
U(1) charges, one for each left- and right-moving sector,
defined by

NL,R =

∫ `

0

dx ∂xϕL,R = α′πpL,R, (30)

They satisfy

[ϕL, NL] = [ϕR, NR] = α′πi. (31)

Correspondingly to these conserved quantities, the free
boson theory is invariant under the following U(1)×U(1)
symmetry

Uδφ,δθ : φ→ φ+ δφ, θ → θ + δθ,

: ϕL → ϕL + δϕL, ϕR → ϕR + δϕR. (32)
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In terms of the conserved charges, the generators of the
U(1)× U(1) transformations are given by

U L
δϕL = eiδϕLNL/(α

′π) = eiδϕLpL ,

U R
δϕR = eiδϕRNR/(α

′π) = eiδϕRpR ,

Uδφ,δθ = U L
δϕLU R

δϕR = ei(δφp+δθp̃). (33)

Note also that Uδφ,δθ acts on the momentum eigenkets
as

Uδφ,δθ|p, p̃〉 = ei(pδφ+p̃δθ)|p, p̃〉. (34)

e. C-symmetry Particle-hole symmetry or charge
conjugation (C-symmetry) is unitary and acts on the
bosonic fields as

C : φ→ −φ+ ncπR, θ → −θ +
mcπα

′

R
: (x1, x2)→ (x1, x2), (35)

where (nc,mc) ∈ {0, 1}. From these transformation laws
of the boson fields, we read off the action of C-symmetry
on the position basis as

C |φ0, θ0〉 = eiδ |−φ0 + ncπR,−θ0 +mcπα
′/R〉 , (36)

where eiδ is an unknown phase factor. In order to have
the relation C |p, p̃〉 ∝ | − p,−p̃〉, expected from the com-
mutation relation between C and p, p̃, the phase δ has to
be a constant (independent of φ0 and θ0). The action of
C-symmetry on the momentum eigenstates is given by

C |p, p̃〉 = eiδe−ipncπR−ip̃
mcπα

′
R | − p,−p̃〉

= eiδe−iπknc−iπwmc | − p,−p̃〉, (37)

where p = k/R and p̃ = wR/α′. Since δ is constant,
the phase ambiguity is fixed once we specify the action
of C on a reference state, e.g., |p, p̃〉 = |0, 0〉. In our anal-
ysis presented below, the reference state and its charge
conjugation parity eiδ plays an important role.

f. T -symmetry Antiunitary time-reversal operator
T acts on the boson fields as

T : φ→ φ+ nTπR, θ → −θ +
mTπα

′

R
: (x1, x2)→ (x1,−x2), (38)

where nT ,mT ∈ {0, 1}.
g. P -symmetry Parity P is defined by

P : φ→ φ+ npπR, θ → −θ +
mpπα

′

R
: (x1, x2)→ (`− x1, x2), (39)

where np,mp ∈ {0, 1}.
h. CP -symmetry The above symmetries can be

combined. For example, CP -symmetry is a non-local
unitary symmetry, and defined by

C P : φ→ −φ+ ncpπR, θ → θ +
mcpπα

′

R
: (x1, x2)→ (`− x1, x2), (40)

where ncp,mcp ∈ {0, 1}.

C. Crosscap States

We now move on to the tree channel picture and con-
struct cross-cap states by twisting P - and CP - symme-
tries. After rearranging spacetime and exchanging the
role of space and time, the spacetime is, space× time =
2β × `/2. We parameterize this Euclidean spacetime by
(σ1, σ2). The original spacetime of [0, `]× [0, β] is param-
eterized by (x1, x2) (for the mapping between the two
spacetime see Fig. 1).

1. P -symmetry

We first consider the cross-cap state obtained by twist-
ing parity symmetry, defined in Eq. (39). The corre-
sponding cross-cap states are defined by[

φ(σ2)− φ(σ2 + β)− npπR
]
|Cp(np,mp)〉 = 0,[

θ(σ2) + θ(σ2 + β)− mpπα
′

R

]
|Cp(np,mp)〉 = 0. (41)

By mode-expansion, the cross-cap condition (41) trans-
lates into the corresponding condition for each mode. To
find an explicit form of the cross-cap states, we first focus
on the zero mode sector of the boson fields:

φ(σ2) = xL + xR +
πα′p̃σ2

β
+ · · · ,

θ(σ2) = xL − xR +
πα′pσ2

β
+ · · · . (42)

Within the zero mode sector, we solve the cross-cap con-
ditions (41). The first condition (41) can be reduced to

πα′p̃− npπR = 0 mod 2πR

⇒ p̃ =
R

α′
(2N + np), N ∈ Z. (43)

Similarly, the second condition can be solved as:

2(xL − xR) +
2πα′pσ2

β
+ πα′p =

mpπα
′

R
mod

2πα′

R

⇒ p = 0, (xL − xR) = (2Ñ +mp)
πα′

2R
, Ñ ∈ Z. (44)

Solving the conditions (43) and (44), we find the cross-
cap state |Cp(np,mp)〉 in terms of the momentum eigen-
ket {|p, p̃〉} as

|Cp(np,mp)〉 =
∑
N∈Z

(−1)mpN |0, 2N + np〉. (45)

The full cross-cap state is obtained by including the parts
related to the oscillatory modes:√

R
√

2 exp

[
−
∞∑
n=1

(−1)n

n
α−nα̃−n

]
|Cp(np,mp)〉. (46)

For our purpose of diagnosing SPT phases, however, it
turns out that it is enough to focus on the zero-mode
sector.
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2. CP -symmetry

Next we consider CP -symmetry. The corresponding
cross-cap conditions are given by[

φ(σ2) + φ(σ2 + β)− ncpπR
]
|Ccp(ncp,mcp)〉 = 0,[

θ(σ2)− θ(σ2 + β)− mcpπα
′

R

]
|Ccp(ncp,mcp)〉 = 0.

(47)

By solving these conditions within the zero mode sector,
we obtain, as the cross-cap state,

|Ccp(ncp,mcp)〉 =
∑
N∈Z

(−1)ncpN |2N +mcp, 0〉. (48)

D. Diagnosis of SPT phases

1. P o U(1)A and CP o U(1)V symmetries

We start with the case of the symmetry group P o
U(1)A, which has been studied in Ref. 26 by using a
generalization of Laughln’s gauge argument. In the gen-
eralized Laughlin’s argument, the edge theory is put on
an unoriented spacetime, such as the Klein bottle, and
then the invariance under flux threading (a large gauge
transformation of U(1)A symmetry) of the partition func-
tion of the edge theory is investigated. More specifically,
the analysis in Ref. 26 is performed in the loop-channel
channel picture. In the following, we will reproduce this
result in terms of the tree-channel calculations, i.e., by
using the cross-cap state.

The relevant cross-cap state is |Cp(np, 0)〉 presented in
Eq. (45). We set mp = 0 since np ∈ {0, 1},mp = 0
is enough to classify the P o U(1)A-symmetric SPT
phases according to Ref. 39. However, it is straightfor-
ward to generalize the analysis below to more general
sets of {np,mp}. The U(1)A symmetry is generated by
U A
δθ = exp(ip̃δθ):

U A
δθ : θ → θ + δθ, φ→ φ. (49)

Let us act with U A
δθ on the cross-cap condition (41). The

cross-cap condition for φ is trivially invariant under U A
δθ .

For the condition written in terms of the dual field θ
(with mp = 0),

U A
δθ {θ(σ2) + θ(σ2 + β)} (U A

δθ )−1U A
δθ |Cp(np,mp)〉 = 0

⇒{θ(σ2) + θ(σ2 + β) + 2δθ}U A
δθ |Cp(np,mp)〉 = 0.

(50)

Thus, the cross-cap condition is transformed into

θ(σ2) + θ(σ2 + β) = 0

⇒ θ(σ2) + θ(σ2 + β) + 2δθ = 0, (51)

which is invariant when

2δθ = 0 mod
2πα′

R
. (52)

Thus, at least classically, we expect the theory to be in-
variant when δθ = πα′/R. On the other hand, this invari-
ance may not be maintained at the quantum level. The
cross-cap state may not be invariant under U A

δθ=πα′/R

and can pick up an anomalous phase; one can easily check

U A
πα′/R|Cp(np, 0)〉 = (−1)np |Cp(np, 0)〉. (53)

Thus the edge theory, when enforced parity symme-
try with np = 1, is anomalous for U(1)A symme-
try. This invariance/non-invariance is equivalent to the
invariance/non-invariance of the Klein bottle partition
function under large gauge transformations discussed in
Ref. 26. Observe also that the anomalous phase here is
Z2-valued (i.e., a sign), and this implies that the classifi-
cation is Z2 since the two copies of the theory is trivial.
This agrees with the loop channel calculation.26,39

SPT phases protected by CP o U(1)V can be dis-
cussed in the same manner as P oU(1)A. The cross-cap
state obtained by twisting CP is given by |Ccp(0,mcp)〉
in Eq. (48). The U(1)V symmetry is generated by
U V
δφ = exp(ipδφ) as

U V
δφ : θ → θ, φ→ φ+ δφ. (54)

Under this symmetry action, the cross-cap condition (47)
with ncp = 0 is invariant when

2δφ = 0 mod 2πR. (55)

On the other hand, we find

U V
δφ=πR|Ccp(0,mcp)〉 = (−1)mcp |Ccp(0,mcp)〉. (56)

Thus the edge theory with parity symmetry with mcp = 1
and U(1)V is anomalous.26,39 Here the anomalous phase
is the Z2 sign, and thus classification is Z2 as in the
previous case.

The above analysis in terms of the cross-cap states is a
reformulation of Ref. 26; while in Ref. 26 the Klein bot-
tle partition functions are computed in the loop channel
picture, here we have considered and studied the cross-
cap states in the tree channel. A few technical remarks
are in order. (i) We have considered adiabatic trans-
formations of the cross-cap states by acting with U A

δθ
or U V

δφ and by continuously changing δθ or δφ, respec-
tively. In terms of the original, loop channel picture,
these twisting parameters should appear as a twisting
angle in twisting boundary conditions in the spatial di-
rection. This can be seen explicitly as follows. By using
the formula G |CP 〉 = |CgPg−1〉, the partition function in
the tree channel can be written as,

ZK = 〈CP ′ |e−
`
2HtreeU A

δθ |CP 〉

= 〈CP ′ |e−
`
2Htree |CUAδθ·P ·UA−δθ 〉. (57)
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This can be written in the loop channel as

ZK = TrP ′UAδθP−1UA−δθ
e−βHloop (58)

By noting UAδθP
−1UA−δθ = P−1UA−2δθ, and taking P ′ = P ,

ZK = TrUA−2δθ
e−βHloop , (59)

i.e., 2δθ (not δθ) appears, in the loop channel, as a twist-
ing angle for a spatial boundary condition. When 2δθ
is an integer multiple of 2π, the twisted system is large
gauge equivalent to the system without twisting.

(ii) The current analysis in the tree-channel picture
has a few advantages over the loop-channel calculations.
First of all, in Ref. 26, we rely heavily on the exis-
tence of a continuous U(1) symmetry (either U(1)A or
U(1)V ) as in Laughlin’s thought experiment in the quan-
tum Hall effect. Therefore, it is not entirely obvious how
the methodology in Ref. 26 can be generalized to SPT
phases which lack continuous (U(1)) symmetries. The
reformulation in the tree channel and in term of cross-
cap states, however, indicates a natural way to deal with
SPTs without U(1) symmetry. In fact, the procedure de-
scribed above can be generalized to cases without U(1)
symmetry. (See the following sections.) Second, in the
current reformulation in the tree channel, there is no need
to compute the full partition function, although it is pos-
sible to compute the partition function by using cross-cap
states.

2. P × C symmetry

To demonstrate that our methodology works in the ab-
sence of a continuous U(1) symmetry, we now consider
SPT phases protected by P ×C. Here the relevant cross-
cap state is |Cp(np,mp)〉 in Eq. (45). We consider C-
symmetry (35) with nc = mc = 0. One can check easily
that under the action of C-symmetry, the cross-cap con-
dition (41) is invariant. On the other hand, the cross-cap
state may not, as one can check explicitly as

C |Cp(np,mp)〉 = eiδ(−1)npmp |Cp(np,mp)〉, (60)

by using Eq. (37). To judge if the cross-cap state is
anomalous or not, we need to know the overall phase
eiδ, which originates from our ignorance on the charge
conjugation parity of the zero mode sector. Depending
on our choice of δ, either one of phases with (np,mp) =
(0, 0), (0, 1), (1, 0) or (np,mp) = (1, 1) is anomalous. A
natural choice would be eiδ = 1, as this means we as-
sign the charge conjugation parity +1 to the reference
state |p, p̃〉 = |0, 0〉. With this choice, the edge the-
ory with the symmetry group P × C is anomalous when
(np,mp) = (1, 1): this result is consistent with the micro-
scopic analysis given in Ref. 39. The phase acquired by
the cross-cap state under the action of C-symmetry is Z2

(i.e., sign), and hence the classification is Z2. Further-
more, one may twist CP symmetry, which can be gener-
ated by the multiplication of C and P , i.e., CP = C×P ,

to form the cross-cap state |Ccp, (np,mp)〉 and then study
the action of C on the cross-cap:

C |Ccp(np,mp)〉 = eiδ
′
(−1)npmp |Ccp(np,mp)〉, (61)

where eiδ
′

is an overall phase factor, which, as in Eq.
(60), cannot be determined. This again generates the
same classification as Eq. (60).

This situation should be contrasted with the cases with
a continuous U(1) symmetry; in the latter case, one can
compare the phase acquired by the cross-cap state when
acting with U V

δθ and U V
δθ+πR; One can follow the evolu-

tion of U V
δθ |Ccp(ncp,mcp)〉 adiabatically. In the present

case, because of the discrete nature of C-transformation,
such comparison is not possible.

3. P × T symmetry

We now consider the cases where we have both P/CP
and T/CT symmetries. As in the case of P × C, we can
first twist P/CP to obtain the corresponding cross-cap
state. The action of the remaining symmetry, T/CT , on
the cross-cap state can be studied. However, unlike C-
symmetry, which is a non-spatial unitary symmetry, how
T/CT symmetry acts in the tree-channel is non-trivial.
We illustrate this point for the case of P × T symmetry.

Let us consider the bosonic edge theory in the pres-
ence of P -symmetry with mp = 0 and T -symmetry with
nT = 0. We twist P -symmetry and consider the cor-
responding cross-cap state |Cp(np, 0)〉 in Eq. (45). One
can check the cross-cap condition is left invariant under
T -symmetry: the fields obey, in the loop channel, the
following boundary conditions:

φ(x1, x2 + β) ≡ φ(`− x1, x2) + npπR,

φ(x1 + `, x2) ≡ φ(x1, x2),

θ(x1, x2 + β) ≡ −θ(`− x1, x2),

θ(x1 + `, x2) ≡ θ(x1, x2). (62)

Under time-reversal, these conditions are transformed
into:

φ(x1,−x2) ≡ φ(`− x1, β − x2) + npπR,

φ(x1 + `, β − x2) ≡ φ(x1, β − x2),

− θ(x1,−x2) +mT
πα′

R
≡ θ(`− x1, β − x2)−mT

πα′

R
,

− θ(x1 + `, β − x2) +mT
πα′

R
≡ −θ(x1, β − x2) +mT

πα′

R
.

(63)

For example, we can derive the first line of Eq.(62) from
the first line of Eq.(63) by following steps.

φ(x1, x2 + β) ≡ φ(`− x1, x2) + npπR,

↔ φ(x1, y2) ≡ φ(`− x1, y2 − β) + npπR,

→ φ(x1,−y2) ≡ φ(`− x1,−y2 + β) + npπR,

↔ φ(x1,−x2) ≡ φ(`− x1, β − x2) + npπR, (64)
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where we renamed the variable y2 = x2 + β inbetween
the first and the second lines, and we acted T -symmetry
inbetween the second and the third lines. With the com-
pactification conditions, these are equivalent to

φ(x1,−x2) ≡ φ(`− x1, β − x2) + npπR,

φ(x1 + `, β − x2) ≡ φ(x1, β − x2),

θ(x1,−x2) ≡ −θ(`− x1, β − x2),

θ(x1 + `, β − x2) ≡ θ(x1, β − x2), (65)

which, with mere relabeling β − x2 → x2, are equivalent
to the original boundary conditions.

Since T -transformation leaves the P -twisted boundary
condition invariant, we expect the cross-cap state is also
invariant under T -transformation, at least up to a phase
factor. (Recall that we are after this possible anomalous
phase of the cross-cap state.) To compute this phase,
we need to know how T -transformation looks like in
the tree channel. In the tree channel, T -transformation
should look like a parity transformation (in fact, CP -
transformation, since T flips the sign of φ):

φ(σ1, σ2)→ −φ(σ1, 2β − σ2),

θ(σ1, σ2)→ θ(σ1, 2β − σ2) +mT
πα′

R
. (66)

This CP -transformation in the tree-channel picture, ob-
tained from T -transformation in the loop-channel pic-

ture, is denoted by C̃P in the following. If the phase
field φ and its dual θ obey the standard commutation

relation, this C̃P -transformation must be unitary, i.e.,
it must preserve, in particular, the Heisenberg algebra
obeyed by the zero modes, [xL, pL] = [xR, pR] = i. If
it were defined in the original coordinates (x1, x2), this

unitary C̃P -transformation is CPT-dual of T -symmetry.
Since T -transformation in the loop channel preserves

the boundary condition, this should be so in tree channel
as well. The cross-cap conditions

[φ(σ2)− φ(σ2 + β)− npπR] |Cp(np, 0)〉 = 0,

[θ(σ2) + θ(σ2 + β)] |Cp(np, 0)〉 = 0, (67)

are transformed into, by the C̃P transformation,

[−φ(2β − σ2) + φ(β − σ2)− npπR] C̃ P|Cp(np, 0)〉 = 0,[
θ(2β − σ2) +mT

πα′

R

+ θ(β − σ2) +mT
πα′

R

]
C̃ P|Cp(np, 0)〉 = 0. (68)

Due to the compactification condition, these cross-cap
conditions are equivalent to the original conditions.

While the crosscap conditions are preserved by C̃P , the
cross-cap state |Cp(np, 0)〉 (45) is not invariant when
np = mT = 1,

C̃ P|Cp(np, 0)〉 = (−1)mTnp |Cp(np, 0)〉. (69)

Thus C̃P or the original time-reversal symmetry is
anomalous. This result is consistent with the gapping
potential analysis in Ref. 39.

In Appendix A, we present identification of quantum
anomalies using cross-cap states for other bosonic SPT
phases studied in Ref. 39.

IV. REAL FERMIONIC SPTS

In this section, we discuss edge theories of (2+1)d topo-
logical superconductors in the presence of discrete sym-
metries. In particular, we consider topological supercon-
ductors with reflection symmetry in symmetry classes
D+R+ and BDI + R++, and their CPT partners dis-
cussed in Refs. 46–48, At quadratic level, i.e., in the ab-
sence of interactions, topological classification for these
symmetry classes are found to be Z2 and Z, respectively.
For the latter, it was found in Ref. 11, the Z classifi-
cation collapses into Z8 in the presence of interactions.
Our discussion in this section can trivially be extended to
other fermionic SPT phases supporting complex (Dirac)
fermion edge modes.

A. Majorana fermion edge states

Consider an edge theory of a (topological) supercon-
ductor consisting of Nf flavors of non-chiral real (Majo-
rana) fermions described by the Hamiltonian

H =

Nf∑
a=1

∫ `

0

dx [ψaL(−vi∂x)ψaL + ψaR(+vi∂x)ψaR] . (70)

The fermi velocity v is set to be identical for all fermion
flavors for simplicity. The fermion fields obey the canon-
ical anticommutation relations

{ψaL(x), ψbL(x′)} = 2πδab
∑
m∈Z

δ(x− x′ + `m),

{ψaR(x), ψbR(x′)} = 2πδab
∑
m∈Z

δ(x− x′ + `m). (71)

The (1+1)d non-chiral fermionic edge theory (70) can be
realized at the edge of (2+1)d topological superconduc-
tors in symmetry classes DIII, D+R+ and BDI + R++.
The fermionic edge theory (70) is invariant under the
following three symmetries:

(i) The fermion number parity conservation, where the
fermion parity operator is given by

Gf = (−1)F , F =

Nf∑
a=1

Fa, (72)

where Fa is the total fermion number operator for the
a-th flavor,

Fa =
1

2π

∫ `

0

dx iψaLψ
a
R. (73)
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The fermion number parity conservation is the most fun-
damental symmetry of any fermionic system. In the fol-
lowing, the fermion number parity conservation is as-
sumed to be always unbroken (at least classically – it
may however be anomalous).

(ii) Time-reversal symmetry. We consider two-kinds of
time-reversal: one which squares to +1:

T ψL(t, x)T −1 = ψR(−t, x),

T ψR(t, x)T −1 = ψL(−t, x),

T 2 = 1, T iT −1 = −i, (74)

and the other which squares to −1:

T ψL(t, x)T −1 = ψR(−t, x),

T ψR(t, x)T −1 = −ψL(−t, x),

T 2 = Gf , T iT −1 = −i. (75)

(The flavor index is suppressed.)
(iii) Parity symmetries. Similarly to time-reversal, we

consider two-kinds of parities: one which squares to +1:

PψL(t, x)P−1 = ψR(t, `− x),

PψR(t, x)P−1 = ψL(t, `− x),

UP = σx, P2 = 1, (76)

and the other which squares to −1:

PψL(t, x)P−1 = ψR(t, `− x),

PψR(t, x)P−1 = −ψL(t, `− x).

UP = iσy, P2 = −1. (77)

Note that the phase of parity (and hence parity squared)
is arbitrary for systems of complex fermions whereas
there is no such arbitrariness for real fermions.

Observe that T 2 = −1 and P2 = 1 are CPT conju-
gate to each other. Similarly, T 2 = 1 and P2 = −1 are
CPT conjugate to each other. (These can easily be in-
ferred from the fact that they both prohibit the same kind
of masses.) In the absence of time-reversal and parity
symmetries, the non-chiral fermion edge state can easily
be gapped by adding a mass term. To realize a non-
trivial SPT phase, we need to impose T , P, or both T
and P (see Table I). Imposing T 2 = −1 alone leads to
Z2 topological classification (class DIII) while imposing
T 2 = 1 alone does not give rise to a SPT. Similarly, im-
posing P2 = 1 alone leads to Z2 topological classification
(class D + R+) while imposing P2 = −1 alone does not
give rise to a SPT (class D+R−). Imposing T 2 = −1
together with P2 = −1 (class DIII + R−−) gives rise to
Z8 topological distinction. Similarly, its CPT conjugate,
P2 = 1 together with T 2 = +1 (class BDI + R++)
gives rise to Z8 topological distinction. In the following,
our task is to understand these Z2 (class D+R+) and
Z8 (class BDI+R++) classifications of SPTs in terms of
quantum anomalies. We will apply our formalism using
cross-cap states.

Class T P Classification

DIII T 2 = Gf None Z2

BDI T 2 = 1 None 0

D+R+ None P2 = 1 Z2

D+R− None P2 = −1 0

DIII+R−− T 2 = Gf P2 = −1 Z→ Z8

BDI+R++ T 2 = 1 P2 = 1 Z→ Z8

TABLE I. Edge theories of (2+1)d topological superconduc-
tors with various time-reversal and parity symmetries studied
in Sec. IV.

B. Cross-cap states

a. Cross-cap condition In both symmetry classes
D+R+ and DIII+R−−, parity P and fermion number
parity Gf are conserved. Hence, theories in these sym-
metry classes can be twisted by parity P, and the combi-
nation of fermion number parity and spatial parity GfP.
In the fermionic edge theory (70), twisting boundary con-
ditions in time direction by P or GfP leads to the fol-
lowing conditions on the fermion fields:

ψL(x1, x2 + β) = η1ψR(`− x1, x2),

ψR(x1, x2 + β) = η2ψL(`− x1, x2). (78)

Here, η1,2 are given by

(η1, η2) =


(+,+) twisting by P with P2 = 1

(−,−) twisting by GfP with P2 = 1

(+,−) twisting by P with P2 = −1

(−,+) twisting by GfP with P2 = −1

(79)

In the rearranged geometry (see Fig. 1), these twisted
boundary conditions are given by

ψL(σ1, σ2) = η1ψR(σ1, σ2 + β),

ψR(σ1, σ2) = η2ψL(σ1, σ2 + β). (80)

By making a 90 degree rotation in the (σ1, σ2) plane,
(σ1, σ2) → (σ′1, σ

′
2) = (σ2,−σ1), we exchange the role

of time and space coordinates and regard σ1 direction
as a fictitious time direction. The fermion fields ψ′L,R
with respect to the rotated coordinate system (σ′1, σ

′
2)

are related to the original fermion fields as

ψ′L = eiπ/4ψL, ψ′R = e−iπ/4ψR. (81)

The cross-cap states are defined by the cross-cap condi-
tions

[ψL(σ2)− iη1ψR(σ2 + β)] |C(η1, η2)〉 = 0,

[ψR(σ2) + iη2ψL(σ2 + β)] |C(η1, η2)〉 = 0, (82)

where for notational simplicity we have removed ′ and
simply write ψ′L,R → ψL,R and σ′1,2 → σ1,2.
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A crucial observation is that for the cross-cap condi-
tions generated by P with P2 = +1, there are Majo-
rana fermion zero modes in the mode expansion of the
fermion fields, while there are no Majorana zero modes
when P2 = −1. This follows from the general formula
(15), which suggests that when P2 = 1(−1) the fermion
fields obey periodic (anti-periodic) boundary condition.
(This can also be understood by first assuming the exis-
tence of zero modes, ψL0 and ψR0 for the left- and right-
moving fermion fields, respectively. Then, the cross-cap
condition tells us ψL0−iη1ψR0 = 0 and ψR0+iη2ψL0 = 0.
With η1 = −η2, these two conditions are not compatible
with each other.)

This distinction between P2 = 1 and P2 = −1 are
directly related to the Z2 classification in class D+R+

and to the absence of SPT phases in class D+R−. For
class D+R− (P 2 = −1), the fermion zero modes are
not allowed, and hence the corresponding cross-cap state
is constructed entirely in terms of fermionic oscillator
modes (non-zero modes). It can be checked easily that
this cross-cap state is anomaly free. On the other hand,
for class D+R+ (P 2 = +1), the construction of the cor-
responding cross-cap state is more non-trivial because of
the presence of fermion zero modes. We will see the ac-
tion of the fermion number parity operator on the cross-
cap state, |C(η1, η2)〉 with η1 = η2, give rise to an anoma-
lous phase (sign), indicative of the expected Z2 classifi-
cation.

b. Construction of cross-cap states Let us now con-
struct the cross-cap state focusing on η1 = η2 = η:

[ψaL(σ2)− iηψaR(σ2 + β)] |C, η〉 = 0,

[ψaR(σ2) + iηψaL(σ2 + β)] |C, η〉 = 0, (83)

where a = 1, . . . , Nf . When η1 = η2, the cross-cap condi-
tion is compatible with the periodic boundary condition
for the fermion field in σ1 direction. Within the zero
mode sector, the cross-cap condition reads

[ψa0L − iηψa0R] |C, η〉 = 0, (84)

where ψa0L/R is the zero mode for the a-th flavor, satis-

fying (ψa0L/R)2 = 1.

In the following, we construct the cross-cap states
within the zero-mode sector explicitly, together with a
reference state. [Recall the important role played by the
reference state for the case of the bosonic SPT phases
discussed below Eqs. (37) and (60)]. The choice of the
reference state, however, is far from obvious, due to the
degeneracy in the zero mode sector. We will illustrate
this point by contrasting two constructions.

In the first construction, we construct the Hilbert space
of the zero modes by considering the following fermion
creation/annihilation operators:

f†a =
1

2
(ψa0L + iψa0R), fa =

1

2
(ψa0L − iψa0R), (85)

and the Fock vacuum |0f 〉 of the f -fermions. The cross-
cap state |C, η = +〉 is then nothing but |0f 〉 itself,

|C, η = +〉 = eiφ+ |0f 〉. (86)

On the other hand, the cross-cap state |C, η = −〉 can be
constructed as

|C, η = −〉 = eiφ−
Nf∏
a=1

f†a |0f 〉. (87)

[N.B. In the above representation of |C, η〉, the ambiguous
phases φ± are not fixed by the cross-cap condition. These
phases will not affect our later analysis, and hence will be
set to zero henceforth. One common convention for the
phase is |C, η = +〉 = e−i

π
8 |0f 〉, |C, η = −〉 = ei

π
8 f†|0f 〉,

where we focus on the case of single flavor Nf = 1
for simplicity. Then we notice the following identities
ψ0L|C, η〉 = e−iη

π
4 |C,−η〉, ψ0R|C, η〉 = e−iη

π
4 |C,−η〉.

One motivation for this phase convention is that it well
compares with the operator product expansions of the
Ising CFT,42 ψLσ ∼ ei

π
4 µ, ψLµ ∼ e−i

π
4 σ, ψRσ ∼ e−i

π
4 µ,

ψRµ ∼ ei
π
4 σ, where σ and µ are the Ising spin operator

and the disorder operator, respectively. ]
Alternatively, when Nf = even, one can introduce the

following fermion creation operators (see, for example,
Ref. 49):

d†Lj =
1

2
(ψ2j−1

0L + iψ2j
0L), d†Rj =

1

2
(ψ2j−1

0R + iψ2j
0R),

(88)

and the Fock vacuum |0d〉 annihilated by dLj and dRj .

We observe that dLj − idRj = f2j−1 − if2j , (d†jL −
id†jR)|0f 〉 = 0, and

|C,+〉 = |0f 〉 =
∏
j

(d†jL − id
†
jR)|0d〉. (89)

Similarly,

|C,−〉 =

Nf∏
a=1

f†a |0f 〉 =
∏
j

(d†jR − id
†
jL)|0d〉. (90)

(Similar construction is possible even for Nf = odd by
adding an extra Majorana fermion as in Ref. 8. We will
not dwell on this point as the identification of a quantum
anomaly when Nf = odd is rather straight forward and
does not depend on the choice of the reference state.)
One important feature of the second construction is the
clear factorization of the vacuum |0d〉 into the left- and
right-moving sectors, |0d〉 = |0d〉L ⊗ |0d〉R, as it is an-
nihilated by dLj and dRj separately. The entire Hilbert
space built out of |0d〉 also factorizes into the left- and
right-moving sectors. This factorization allows us to in-
troduce the action of reflection (time-reversal) in a trans-
parent way. Such factorization is also expected for gen-
eral construction of cross-cap states and boundary states
in boundary conformal field theories. (See, for example,
Ref. 50.)
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C. Fermion number parity - Z2 classification in
class D+R+

We now ask the properties of the cross-cap states under
the action of symmetry generators. As a start, let us
consider the fermion number parity. In the tree channel,
its explicit form within the zero mode sector is given by

Gf = (iψ1
0Lψ

1
0R)(iψ2

0Lψ
2
0R) · · · (iψNfL ψ

Nf
0R ). (91)

The fermion number parity acting on the cross-cap states
gives

Gf |C,±〉 = (±)Nf |C,±〉. (92)

Therefore, when Nf = even, there is no anomaly. On the
other hand, when Nf = odd, one would conclude, |C,−〉
is anomalous while |C,+〉 is not. This is consistent with
the Z2 classification of (2+1)d topological superconduc-
tors. in symmetry class D+R+.

Upon closer inspection, however, Eq. (92) would look
strange since the two cross-cap states |C,±〉 should be
treated on the equal footing: If the cross-cap |C,±〉 is
obtained by twisting P, |C,∓〉 is obtained from sim-
ply from GfP. Hence, both cross-cap states |C,±〉 be-
long/correspond to the same phase. In fact, it should
be noted that there is a phase ambiguity in defining the
cross-cap states and the fermion number parity opera-
tor. In the above analysis, we implicitly made a par-
ticular choice where the fermion number parity of the
ground state |0f 〉 is +1. In principle, one could assign a
different fermion number parity eigenvalue, e.g., by mod-
ifying the definition of the fermion number parity oper-
ator, Gf → −Gf . Alternatively, instead of using f†, f ,
one could define c := f† and c† := f , which leads to
|C,−〉 = |0c〉 and |C,+〉 =

∏
a c
†|0c〉. In this conven-

tion, it is tempting to claim Gf |C,−〉 = +|C,−〉 while
Gf |C,+〉 = (−1)Nf |C,+〉. Thus, there is some ambi-
guity when deducing the fermion number parity eigen-
value. We have encountered similar ambiguity when deal-
ing with CP symmetric bosonic SPT phases. Such am-
biguity of the fermion number parity eigenvalue of the
ground state, however, does not affect our conclusion,
since, independent of the phase choice, when Nf = odd,
we cannot make both |C,±〉 anomaly-free. Hence we
conclude the Z2 classification of symmetry class D+R+.

D. Time-reversal - Z8 classification in class BDI +
R++

We now include time-reversal symmetry. After π/2
rotation of spacetime, a time-reversal operator is trans-

formed into a parity operator (unitary) (denoted by P̃
in the following). Correspondingly to two time-reversal
operators T 2 = ±1 in the loop channel picture, there are
two kinds of parity operators in the tree channel picture.
They act on the fermion zero modes as:

P̃ψ0LP̃−1 = ψ0R, P̃ψ0RP̃−1 = ψ0L, (93)

and

P̃ψ0LP̃−1 = ψ0R, P̃ψ0RP̃−1 = −ψ0L. (94)

Explicitly, they can be written as

P̃ = eiδ
∏
a

1√
2

(ψ0L + ψ0R)
a

(95)

and

P̃ = eiδ
∏
a

1√
2

(1− ψ0Lψ0R)
a
, (96)

respectively, where eiδ is an unknown phase factor and
will be discussed in more detail shortly. The first parity
operator does not preserve the cross-cap condition with
η1 = η2, so we will focus on the second one. One also
verifies

P̃2 = e2iδ(i)NfGf , (97)

and GfP̃ = P̃Gf .

Let us now calculate the action of P̃ on the cross-
cap states. By using the representation in terms of the

f -fermions, ψ0Lψ0R = i(2f†f − 1), P̃ can be written as

P̃ = eiδ
∏
a

1√
2

[1− i(2na − 1)] , (98)

where na = f†afa. Then, the action of P̃ on the cross-cap
states is given by

P̃|C,+〉 = eiδ
∏
a

1√
2

[1− i(2na − 1)] |0f 〉

= eiδ
∏
a

1√
2

[1 + i] |0f 〉 = e+iπ4Nf eiδ|C,+〉,

P̃|C,−〉 = eiδ
∏
a

1√
2

[1− i] |C,−〉 = e−i
π
4Nf eiδ|C,−〉.

(99)

The relative phase between P̃|C,+〉 and P̃|C,−〉 is
e+iπNf/2, which is independent of the choice of eiδ (the

choice of the action of P̃ on the reference state), and
vanishes when Nf = 4 × integer. In other words, one
cannot make both cross-cap states anomaly-free unless
Nf = 4 × integer. One then immediately concludes the
classification is at least Z4.

On the other hand, as we have seen for the case of the
bosonic SPT phases, a proper choice of the phase eiδ,
if exists, leads to a refined classification. If we choose
|0f 〉 as the reference state and demand |0f 〉 transform

trivially under P̃, P̃|0f 〉 = |0f 〉, we obtain Z4 classifi-
cation. Alternatively, if we choose |0d〉 as the reference

state, and demand P̃|0d〉 = |0d〉, which may be obtained
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from P̃|0d〉L,R = |0d〉R,L,

P̃|C,+〉 = P̃|0f 〉

= P̃

Nf/2∏
j=1

(d†jL − id
†
jR)|0d〉

=

Nf/2∏
j=1

(d†jR + id†jL)|0d〉

= (i)Nf/2|0f 〉. (100)

I.e., eiδ = 1. It can also be checked, straightforwardly,

P̃|C,−〉 = (i)Nf/2|C,−〉, (101)

following Eq. (90). Thus, with this choice, the two cross-
cap states |C, η〉 can be both made anomaly free only
when Nf = 8× integer, i.e., Z8 classification.

As a final comment, we provide a yet another point of
view by using Eq. (97). Equation (97) suggests, within
the zero mode sector, the symmetry is realized projec-
tively. The “unwanted” phase e2iδ(i)Nf can be removed
by choosing eiδ = e−iπNf/4. However, with this choice,
the reference state now acquires an anomalous phase

P̃|0d〉 = e−iπNf/4|0d〉. This conflict between the two
demands, one to represent the symmetry group non-
projectively and the other to make the reference state

transform trivially under P̃, can be considered as a form
of quantum anomaly.

V. CONCLUSION

There are three known ways of symmetry breaking in
nature. First, a symmetry can be broken explicitly by
adding a symmetry-breaking perturbation to the Hamil-
tonian. Second, a symmetry can be broken spontaneously
in many-body systems and in field theories because of
interactions. These two forms of symmetry breaking oc-
cur both in classical and quantum systems. The third
way of symmetry breaking is more subtle and happens
only in quantum many-body systems; A symmetry can
be anomalous, meaning it can be broken because of quan-
tum effects. In discussing SPT phases, we are to distin-
guish different quantum phases of matter, all respecting
the same set of symmetries. Therefore, by definition, the
Landau paradigm, while powerful in discussing phases
with spontaneous symmetry breaking, cannot be applied
to SPT phases. On the other hand, as we demonstrated,
anomalous symmetry breaking (quantum anomalies) can
be useful in diagnosing and perhaps even classifying SPT
phases.

The idea of using quantum anomalies to character-
ize topological phases of matter goes back to Laughlin’s
thought experiment (Laughlin’s gauge argument) in the
quantum Hall states. Our methodology can be consid-
ered as a proper generalization of Laughlin’s gauge ar-
gument to SPT phases protected by parity (reflection)

and other symmetries. In Laughlin’s thought experi-
ment, quantized charge pumping caused by flux thread-
ing (large gauge transformation) characterizes the quan-
tum Hall effect even in the presence of interactions and
disorder. Within edge theories of the quantum Hall ef-
fect, the charge pumping by a large gauge transformation
appears as a quantum anomaly, i.e., non-conservation of
the electric U(1) charge.

The edge theories of SPT phases (if exist) differ from
the edge theories of the quantum Hall systems. First,
quite generically, edge theories supported by SPT phases
are non-chiral (having vanishing thermal Hall conduc-
tance). Second, edge theories of SPT phases may be
protected by discrete symmetries, and may not have a
continuous U(1) symmetry. For these reasons, diagnosing
edge theories of SPT phases requires to identify quantum
anomalies (breaking down of symmetries of SPT phases
by quantum effects) of a subtler kind than in the quan-
tum Hall effect. By twisting parity in edge theories of
(2+1)d topological phases, we obtain a cross-cap state
and investigate possible quantum anomalies in terms of
the cross-cap state. This method is applied explicitly
to the several examples, including bosonic and fermionic
SPT phases, and reproduces the known classifications in
Refs. 11 and 39. In conclusion, we have provided a way
to gauge the spatial symmetries to efficiently diagnose
SPT phases, which is beyond the cohomology classifica-
tion tables. We close with a few comments.

(i) In our approach, it is crucial to fix the action of sym-
metry operators on a reference state in the tree-channel
picture. In particular, possible phase ambiguity should
be fixed, although in many cases a partial result is ob-
tained even without fixing this ambiguity. While we have
provided a proposal to fix this phase ambiguity by speci-
fying reference states, it is desirable to have a more con-
vincing and convenient method. One possible approach
to this problem is to use the state-operator correspon-
dence and assign the phase which is consistent with the
operator algebra of the edge theories. For example, such
argument is used in Ref. 51 in somewhat similar context.
Following this type of approach is left for the future re-
search.

(ii) We treated SPT phases where parity and time-
reversal are in conflict quantum mechanically, in that
enforcing parity by orientifolding leads to breakdown of
time-reversal, e.g., class BDI+R++ topological super-
conductors. We choose to twist parity since twisting
unitary symmetry appears to be more straightforward,
while, in principle, we could equally consider twisting
by time-reversal. In fact, after exchanging the role of
space and time coordinates and when considering cross-
cap states, what appears to be time-reversal symme-
try in the original, loop-channel picture is represented
as a parity (or CP ) symmetry in the tree-channel pic-
ture. This indicates that by exchanging the role of space
and time coordinates, twisting time-reversal is neither
more nor less than twisting parity, and should lead to an
orientifold theory. Our analysis in this paper thus pro-
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vides an insight into SPT phases protected, not by par-
ity, but by time-reversal symmetry and other symmetry,
e.g., (2+1)d time-reversal symmetric topological insula-
tors (the quantum spin Hall effect), which are protected
by U(1)V and time-reversal symmetries. Orientifolds of
gapless edge states discussed in this work may provide a
complementary view to, e.g., Ref. 28, which discusses a
way to gauge time-reversal in gapped bulk SPT phases
by using the tensor network representation of quantum
states.

(iii) In our approach, the use of cross-cap states, upon
going from the loop to tree channel picture, most clearly
demonstrates how quantum anomalies may appear. In
doing so, we exchange the role of space and time coor-
dinates. The fictitious time-evolution and the fictitious
Hilbert space in the tree channel picture is in fact akin
to the row-to-row transfer matrix and to the auxiliary
space of matrix product states (MPSs), respectively. The
projective representation of the symmetry group of SPT
phases on the auxiliary space of MPSs has been success-
fully used to diagnose and classify (1+1)d gapped SPT
phases. Our use of cross-cap states and the associated
anomalous phases have some similarities with the classi-
fication of (1+1)d gapped SPT phases by MPSs.

(iv) In our previous calculations26, the full partition
functions on the Klein bottle are computed explicitly and
checked for the presence/absence of quantum anomalies.
In the current reformulation in the tree channel, there is
no need to compute the partition function, although it is
possible to compute the partition function by using cross-
cap states. In addition, we do not rely on the continuous
U(1) symmetry, and hence can treat a wider class of SPT
phases that are not discussed in Ref. 26.

The tree-channel formulation also somewhat liberates
us from the unwanted reliance on relativistic and confor-
mal symmetries when discussing topological classification
of phases of matter. As an MPS can be constructed for
an arbitrary (1+1)d (gapped as well as gapless) quantum
states, cross-cap states can in principle be constructed for
general edge theories which lack relativistic invariance. If
it comes to compute the full partition function, the lack
of the relativistic invariance may be inconvenient, as the
Hamiltonian in the loop and tree channels do not agree.
The partition function in such situations would not be
expressed in terms of well-known functions such as the
Jacobi theta functions.

The importance, necessity and limitations of relativis-
tic and conformal invariance, when following our ap-
proach to SPT phases, are however not entirely under-
stood currently, and are left for the future studies. It
would be interesting to note that, in constructing cross-
cap states and, similarly, in constructing conformal in-
variant boundary states in boundary conformal field the-
ories, the Virasoro algebra plays a major role.
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Appendix A: Bosonic SPT phases

In this appendix, we will complete the classifications of
(2+1)d bosonic SPT phases protected by P × TC,CP ×
T, T × C and T × C × P . The methodology for the
classification is already explained in the main text. In
this Appendix, to simplify our analysis, we will make
one more assumption: the CPT-theorem. If we limit
our focus to topological classification of relativistic sys-
tems, the CPT-theorem allows us to relate various SPT
phases protected by different sets of symmetries. For
example, with the CPT-theorem, one can convert, e.g.,
the classification problem of bosonic SPT phases with T -
symmetry into the classification problem of bosonic SPT
phases with CP -symmetry. While the restriction to rel-
ativistic systems may sound too stringent, in Ref. 39,
it was shown that classifications of free fermionic SPT
phases by K-theory or the Clifford algebra do satisfy
the CPT-equivalence in general. I.e., different fermionic
SPT phases whose symmetries are CPT-conjugate to
each other are classified by the same topological charge.
While we do not have such systematic understanding for
the case of bosonic SPT phases, which are necessarily
interacting, within microscopic analysis of gapping po-
tentials performed in Ref. 39, such CPT relations among
different SPT phases still exist for bosonic SPT phases.
Our analysis presented below, which makes use of cross-
cap states and assumes the CPT-theorem, also confirm
these results, although it should be emphasized that the
assumption of the CPT-theorem can be avoided if one
wishes.
c. P ×TC symmetry We illustrate the use of CPT-

theorem by considering the edge theory of bosonic SPT
phases protected by P × TC. As P -symmetry, we con-
sider the case with mp = 0 (and the corresponding cross-
cap state |Cp(np, 0)〉 in Eq. (45)). On the other hand,
TC-symmetry, which is a ”spatial“ symmetry in time
and anti-unitary, is given by

T C : φ→ −φ+ nTCπR, θ → θ +
mTCπα

′

R
: (x1, x2)→ (x1,−x2), (A1)

where nTC ,mTC ∈ {0, 1}.
(i) As the first step, we convert TC-symmetry into its

CPT partner, i.e., a parity symmetry P ′:

P ′ : φ→ φ+ nTCπR, θ → −θ +
mTCπα

′

R
: (x1, x2)→ (−x1, x2), (A2)
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which is unitary. Thus we have the bosonic theory with
the two parity symmetries P × P ′ after this mapping.

(ii) Next, we form a non-spatial unitary symmetry by
combining P and P ′, X = P · P ′:

X : φ→ φ+ (np + nTC)πR, θ → θ +
mTCπα

′

R
: (x1, x2)→ (x1, x2). (A3)

Because X is non-spatial in (x1, x2)-space, it should be
non-spatial in (σ1, σ2)-space as well (see Fig. 1). Fur-
thermore, it is straightforward to check that X leaves
the cross-cap conditions by P and P ′ (41) invariant .

(iii) As the third step, we twist P and P ′ to construct
the cross-cap states and study if they are invariant un-
der X or not. By twisting P ′-symmetry, we form the
cross-cap state |Cp′(nTC ,mTC)〉. If either |Cp(np, 0)〉 or
|Cp′(nTC ,mTC)〉 is not invariant under X, then the cor-
responding theory with P × TC is anomalous:

X |Cp(np, 0)〉 = (−1)npmTC |Cp(np, 0)〉,
X |Cp′(nTC ,mTC)〉 = (−1)nTCmTC |Cp′(nTC ,mTC)〉.

(A4)

Thus the edge theory is anomalous if npmTC = 1 or
nTCmTC = 1. To conclude, we have the following triplet
(np, nTC ,mTC) for the anomalous states.

(np, nTC ,mTC) = (1, 0, 1), (0, 1, 1), (1, 1, 1). (A5)

With these procedure, we conclude that the theory with
the symmetry P × TC is anomalous if its CPT partner,
the state with P×P ′ symmetry, is anomalous. The result
agrees with Ref. 39, where all the possible perturbations
which can potentially gap out the edge theory are enu-
merated.

d. CP × T symmetry The cross-cap state for the
SPT phase with CP × T is |Ccp(ncp,mcp)〉 (Eq. (48)),
where (ncp,mcp) ∈ {0, 1}. We find the CPT partner CP ′

of T -symmetry

C P ′ : φ→ −φ, θ → θ +
mTπα

′

R
: (x1, x2)→ (−x1, x2), (A6)

which is unitary. We again form a non-spatial unitary
symmetry by combining CP and CP ′. We call the sym-
metry as Z = CP · CP ′:

Z : φ→ φ+ ncpπR, θ → θ +
(mT +mcp)πα

′

R
: (x1, x2)→ (x1, x2) (A7)

Z is non-spatial in (σ1, σ2)-space (see Fig. 1). We can also
show that Y leaves the cross-cap conditions by twisting
CP and twisting CP ′ (47) invariant. Using the CP ′-
symmetry, we form another cross-cap state |Ccp′(0,mT )〉.
If |Ccp′(0,mT )〉 or |Ccp(ncp,mcp)〉 is not invariant under
Z, the corresponding theory with CP × T is anomalous.

Z |Ccp′(0,mT )〉 = (−1)ncpmT |Ccp′(0,mT )〉,
Z |Ccp(ncp,mcp)〉 = (−1)ncpmcp |Ccp(ncp,mcp)〉. (A8)

Thus the edge theory is anomalous if ncpmT = 1
or ncpmcp = 1. We conclude the following triplet
(mT , ncp,mcp) for the anomalous states.

(mT , ncp,mcp) = (1, 1, 0), (0, 1, 1), (1, 1, 1). (A9)

This result agrees with Ref. 39.
e. P × T This case is analyzed in Sec. III without

using CPT theorem. The CPT partner of T -symmetry,
CP ′, is given by

C P ′ : φ→ −φ θ → θ +
mTπα

′

R
: (x1, x2)→ (−x1, x2). (A10)

By combining P and CP ′, we form a non-spatial unitary
symmetry, Y ≡ P ·CP ′, which acts on the bosonic fields
as

Y : φ→ −φ+ npπR, θ → −θ +
mTπα

′

R
: (x1, x2)→ (x1, x2). (A11)

Y is non-spatial and unitary in (σ1, σ2)-space (Fig. 1). It
can also be checked that Y leaves the cross-cap conditions
by P (41) and CP ′ (47) invariant. Twisting the CP ′-
symmetry, we form another cross-cap state |Ccp′(0,mT )〉.
The action of Y on the cross-cap states is given by

Y |Cp(np, 0)〉 = (−1)npmT |Cp(np, 0)〉,
Y |Ccp′(0,mT )〉 = (−1)npmT |Ccp′(0,mT )〉. (A12)

Thus the edge theory is anomalous if npmT = 1, i.e.,
(np,mT ) = (1, 1). This agrees with Ref. 39.
f. T ×C symmetry Here in this case, there is no ap-

parent P -symmetry. We can however map T -symmetry
into its CPT partner, i.e., CP -symmetry. Then we can
twist CP -symmetry to obtain a cross-cap state and act
C on the cross-cap state to diagnose the stability of the
theory. The CPT partner of T -symmetry, CP -symmetry,
is defined as

C P : φ→ −φ+ nTπR, θ → θ +
mTπα

′

R
: (x1, x2)→ (−x1, x2) (A13)

By twisting this CP -symmetry, we obtain the cross-
cap state |Ccp(nT ,mT )〉 (48). On the other hand, C-
symmetry (35) is identified with nc = mc = 0. Under
the action of C-symmetry, the cross-cap condition (47)
is invariant, while we find, by using (37),

C |Ccp(nT ,mT )〉 = (−1)nTmT |Ccp(nT ,mT )〉. (A14)

Thus the theory with the parity symmetry with nT =
1,mT = 1 and C is anomalous.39

g. T × C × P symmetry The symmetry group T ×
C ×P is CPT-equivalent to CP ′×C ×P or P ′×C ×P ,
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where

C P ′ : φ→ −φ+ nTπR, θ → θ +
mTπα

′

R
: (x1, x2)→ (−x1, x2),

P ′ : φ→ φ+ nTπR, θ → −θ +
mTπα

′

R
: (x1, x2)→ (−x1, x2). (A15)

We can choose a set {P, P ′, CP ′} (other choices can
be {P, P ′, CP}, {P,CP,CP ′}, etc.) that generates the
symmetry group P ′ × C × P , and consider their cor-
responding cross-cap states |Cp(np,mp)〉, |Cp′(nT ,mT )〉
and |Ccp′(nT ,mT )〉. To study the SPT phases (and their
group structure) with the group P ′ × C × P , we can
check how these cross-cap states transform under the
non-spatial symmetries gi which are generated by com-
bining symmetries from {P, P ′, CP ′}, such as X ≡ P ·P ′,
Y ≡ P · CP ′, and C. We can choose {X,Y }, {X,C}, or
{Y,C} as a ”complete” set of non-spatial symmetries.
Here we consider {Y,C}, and their action on the cross-
cap states are given by:

Y |Cp(np,mp)〉 = (−1)npmT |Cp(np,mp)〉,
C |Cp(np,mp)〉 = (−1)npmp |Cp(np,mp)〉,

Y |Cp′(nT ,mT )〉 = (−1)nTmp |Cp′(nT ,mT )〉,
C |Cp′(nT ,mT )〉 = (−1)nTmT |Cp′(nT ,mT )〉,

Y |Ccp′(nT ,mT )〉 = (−1)npmT |Ccp′(nT ,mT )〉,
C |Ccp′(nT ,mT )〉 = (−1)nTmT |Ccp′(nT ,mT )〉. (A16)

The system is in a nontrivial SPT phase if there exists at
least one symmetry-noninvariant cross-cap state. From
(A16), this occurs when

[nT,mT, nP,mP] =[0, 0, 1, 1], [0, 1, 1, 0], [0, 1, 1, 1],

[1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1],

[1, 0, 1, 1], [1, 1, 1, 0], [1, 1, 1, 1].
(A17)

Putting two identical copies of each phase above together
results a trivial phase, i.e., [nT,mT, nP,mP]2 = [trivial].
Here, when we put two phases together, the result-
ing phase, say, [n1

T,m
1
T, n

1
P,m

1
P] ⊕ [n2

T,m
2
T, n

2
P,m

2
P], has

the corresponding cross-cap states |CΩi(nΩi ,mΩi)〉 =
|C1

Ωi
(n1

Ωi
,m1

Ωi
)〉 ⊗ |C2

Ωi
(n2

Ωi
,m2

Ωi
)〉, which are the direct

(tensor) product of the cross-cap states of the original two
phases. On the other hand, all phases above are inequiv-
alent [we can not obtain a trivial phase by putting any
two different elements in the set (A17) together]. How-
ever, phases shown in (A17) are not all possible nontrivial
SPT phases with symmetries T × C × P ; putting differ-
ent phases above together might result other nontrivial
SPT phases that are not listed above. To determine the
group structure of these phases, we observe that putting
three phases in any vertical or horizontal line of the array
(A17) together will result a trivial phase, or equivalently,
we have

[0, 0, 1, 1]

⊕

⊕ [0, 1, 1, 0]

⊕

= [0, 1, 1, 1]

⊕

[1, 0, 0, 1]

=

⊕ [1, 1, 0, 0]

=

= [1, 1, 0, 1]

=

[1, 0, 1, 1]⊕ [1, 1, 1, 0] = [1, 1, 1, 1]. (A18)

From this, we see that all nontrivial phases can
be generated by a specific set of four phases, say,
{[0, 0, 1, 1], [0, 1, 1, 0], [1, 0, 0, 1], [1, 1, 0, 0]} (there are
3 × 3 = 9 equivalent choices for these four group gen-
erators); there are in total fifteen nontrivial SPT phases,
which form a Z4

2 group.39
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