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The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly
phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-
onsite-symmetric gapless edge modes of 2+1D bulk bosonic SPTs with a generic finite Abelian
group symmetry (isomorphic to G =

∏
i ZNi = ZN1 × ZN2 × ZN3 × . . . ). We demonstrate that

some classes of SPTs (termed “Type II”) trap fractional quantum numbers (such as fractional
ZN charges) at the 0D kink of the symmetry-breaking domain walls; while some classes of SPTs
(termed “Type III”) have degenerate zero energy modes (carrying the projective representation
protected by the unbroken part of the symmetry), either near the 0D kink of a symmetry-breaking
domain wall, or on a symmetry-preserving 1D system dimensionally reduced from a thin 2D tube
with a monodromy defect 1D line embedded. More generally, the energy spectrum and conformal
dimensions of gapless edge modes under an external gauge flux insertion (or twisted by a branch cut,
i.e., a monodromy defect line) through the 1D ring can distinguish many SPT classes. We provide a
manifest correspondence from the physical phenomena, the induced fractional quantum number and
the zero energy mode degeneracy, to the mathematical concept of cocycles that appears in the group
cohomology classification of SPTs, thus achieving a concrete physical materialization of the cocycles.
The aforementioned edge properties are formulated in terms of a long wavelength continuum field
theory involving scalar chiral bosons, as well as in terms of Matrix Product Operators and discrete
quantum lattice models. Our lattice approach yields a regularization with anomalous non-onsite
symmetry for the field theory description. We also formulate some bosonic anomalies in terms of
the Goldstone-Wilczek formula.
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I. INTRODUCTION

Symmetry dictates the conservation law and the corre-
sponding conserved current on classical actions in classi-
cal physics, such as by Noether’s theorem.1 However, as
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it is now well-known, there is a potential obstruction of
some classical symmetry to be promoted to a consistent
symmetry in the quantum level. This is the paradigm of
“quantum anomalies.”2

Quantum anomalies occur in our real-world physics,
such as pion decaying to two photons via Adler-Bell-
Jackiw chiral anomaly.3,4,73 Anomalies also constrain
beautifully on the Standard Model of particle physics,
in particular to the Glashow-Weinberg-Salam theory, via
anomaly-cancellations of gauge and gravitational cou-
plings. The above two familiar examples of anomalies
concern chiral fermions and continuous symmetry (e.g.
U(1), SU(2), SU(3)). Out of curiosity, we ask “Are there
concrete examples of quantum anomalies for bosons in-
stead? And anomalies for discrete symmetries? Are they
potentially testable experimentally in the lab in the near
future?”

In this work, we address the question affirmatively
and demonstrate that “bosonic anomalies for discrete
symmetries” can be expected on the boundary of
some interacting bosonic symmetry-protected topologi-
cal states(SPTs) in condensed matter systems.5,6 (Such
interacting bosonic SPTs may be realized in the future by
applying the ultracold bosonic gas controlled by optical
lattice,7 see a recent proposal and reference therein.8)
Our work thus will address some of the interplays be-
tween “symmetry,” “quantum anomaly,” and “topology.”

There has been rapid progress on exploring the entan-
gled quantum states with gapless edge modes protected
by some global symmetry. The classic example is the one
dimensional(1D, one dimensional space and one dimen-
sional time, or 1+1D) Haldane spin-1 chain with SO(3)
spin rotational symmetry.9,10 Another renown example
are topological insulators, which are protected by fermion
number conservation U(1) symmetry and time reversal
symmetry ZT2 .11–16 Topological insulator may be real-
ized in a non-interacting free fermion system, while there
are so-called the bosonic SPTs, which can only happen
in an interacting bosonic system.

In attempting to understand various phases of interact-
ing bosonic systems, it is important to try to characterize
them in terms of unique physical properties. The goal of
this paper is to address this question for bosonic SPTs in
2D. Let us motivate our question in the simplest scenario
of the 1D SPTs given by the spin-1 Haldane chain. The
Hamiltonian conserves spin rotation and time-reversal
symmetries and the ground state is formed by singlets
in the bulk. Bulk excitations are formed by breaking
singlets, a process that requires an energy gap. Its non-
trivial property resides on the edges, both of which con-
tain an effective spin-1/2 transforming projectively un-
der rotation or time-reversal symmetry. Since the edge
spin is effectively “free”, it renders a 2-fold degeneracy
(per edge) in the spectrum. Hence, here the mathemati-
cal concept of projective representations is directly con-
nected to spectral zero energy mode degeneracy.

In this work, we will show that edge modes of bosonic
SPTs in 2D can also provide physical signatures of the

bulk state. We will study the 2D bosonic SPTs with
1D edge modes on the boundary(see Fig.1), protected
by a global symmetry G of a generic cyclic group G =∏
i ZNi = ZN1

× ZN2
× ZN3

× . . . (to which any fi-
nite Abelian group is isomorphic). Our basic result is
that point defects on the 1D edge are associated to in-
duced ZN charge (referred as Type II bosonic anomaly
in Sec.IV) or protected degeneracies(referred as Type III
bosonic anomaly in Sec.V) for some classes of SPTs.

The edge modes of our focus have the property that
they can only be gapped out if the symmetry is bro-
ken. In a description around a gapless 1+1D Lut-
tinger liquid-like fixed point, this means that putative
interacting energy-gap-opening terms (sine-Gordon co-
sine terms) violate the symmetry and are therefore for-
bidden (which does not rule out the possibility that a gap
may open by symmetry breaking). The suppression of all
these gap opening terms is a manifestation that counter-
propagating modes carry different global charges, which,
consequentially implies that back-scattering processes vi-
olate the symmetry. Thus an important step in captur-
ing the edge properties of SPTs is to construct the sym-
metry transformation that endow counter propagating
modes with this anomalous property. We will study this
anomalous non-onsite symmetry explicitly.

Vacuum

SPT Bulk

Non-onsite global 
symmetry 

transformation

SPT Edge States 

FIG. 1: The boundary of 2D SPT state harbors 1D gapless
edge modes if the global symmetry is preserved (not broken
spontaneously or explicitly). The global symmetry transfor-
mation S of 1D edge mode acts in a non-onsite manner, where
S cannot be written as a tensor product form on each site.
(i.e. The symmetry operator S acts on more than a single
site for its tensor operators, where we show schematically S
acts on two neighbor sites.)

Recently, several theoretical approaches have been de-
veloped to understand bosonic SPTs, such as using group
cohomology,5,6,17 lattice models,18,19,21–23 matrix prod-
uct states,19,22 field theory techniques,22–27 or projective
construction.28–32 One of the goals of this paper is to ad-
dress the connections among miscellaneous approaches
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by working out a few specific examples. To this end, we
specifically highlight three learned aspects about SPTs-
[1]. Non-onsite symmetry on the edge: An important
feature of SPT is that the global symmetry acting on
a local Hamiltonian of edge modes is realized non-
onsite.19,21,22 For a given symmetry group G, the non-
onsite symmetry means that its symmetry transforma-
tion cannot be written as a tensor product form on each
site,5,19

U(g)non-onsite 6= ⊗iUi(g), (1)

for g ∈ G of the symmetry group. On the other hand,
the onsite symmetry transformation U(g) can be written
in a tensor product form acting on each site i,5,19

i.e. U(g)onsite = ⊗iUi(g), for g ∈ G. (The symmetry
transformation acts as an operator U(g) with g ∈ G,
transforming the state |v〉 globally by U(g)|v〉.) There-
fore, to study the SPT edge mode, one should realize
how the non-onsite symmetry acts on the boundary as
in Fig.1.
[2]. Group cohomology construction: It has been

proposed that d + 1 dimensional(d + 1D) SPTs of
symmetry-group-G interacting boson system can be
constructed by the number of distinct cocycles in the
d + 1-th cohomology group, Hd+1(G,U(1)), with U(1)
coefficient.5,33 (See also the first use of cocycle in the high
energy context by Jackiw in Ref.34,35) While another
general framework of cobordism theory is subsequently
proposed36 to account for subtleties when symmetry G
involves time-reversal,25 in our work we will focus on a
finite Abelian symmetry group G =

∏
i ZNi , where the

group cohomology is a complete classification.
[3]. Surface anomalies: It has been proposed that the
edge modes of SPTs are the source of gauge anomalies,
while that of intrinsic topological orders are the source
of gravitational anomalies.37 SPT boundary states are
known to show at least one of three properties:
•(1) symmetry-preserving gapless edge modes,
•(2) symmetry-breaking gapped edge modes,
•(3) symmetry-preserving gapped edge modes with
surface topological order.25,38–41

Bosonic Anomalies realized on the SPT edge
The three aspects •(1),•(2),•(3) above had hinted at

the bosonic anomalies harbored on the boundary of inter-
acting bosonic SPTs. In this work, we focus on character-
izing the bosonic anomalies as precisely as possible, and
attempt to connect our bosonic anomalies to the notion
defined in the high energy physics context. In short, we
aim to make connections between the meanings of bound-
ary bosonic anomalies studied in both high energy physics
and condensed matter theory.

We will examine a generic finite Abelian G =
∏
i ZNi

bosonic SPTs, and study what is truly anomalous about
the edge under the case of •(1) and •(2) above. (Since
it is forbidden to have any intrinsic topological order in
a 1D edge, we do not have scenario •(3).) We focus on
addressing the properties of its 1+1D edge modes, their

anomalous non-onsite symmetry and bosonic anomalies
from three different perspectives, (i) quantum lattice
models, (ii) matrix product states, and (iii) quantum field
theory; while connecting them to cocycles of group coho-
mology.

We shall now define the meaning of quantum anomaly
in a language appreciable by both high energy physics
and condensed matter communities -

The quantum anomaly is an obstruction of a sym-
metry of a theory to be fully-regularized for a full
quantum theory as an onsite symmetry on the UV-
cutoff lattice in the same spacetime dimension.

According to this definition, to characterize our
bosonic anomalies, we will find several possible obstruc-
tions to regulate the symmetry at the quantum level:

? Obstruction of onsite symmetries: Consistently we will
find throughout our examples to fully-regularize our
SPTs 1D edge theory on the 1D lattice Hamiltonian
requires the non-onsite symmetry, namely, realizing the
symmetry anomalously. The non-onsite symmetry on the
edge cannot be “dynamically gauged” on its own space-
time dimension,18,19,21,22,37 thus this also implies the fol-
lowing obstruction.

? Obstruction of the same spacetime dimension: We will
show that the physical observables for gapless edge modes
(the case •(1)) are their energy spectral shifts22 under
symmetry-preserving external flux insertion through a
compact 1D ring. The energy spectral shift is caused by
the Laughlin-type flux insertion of Fig.2. The flux inser-
tion can be equivalently regarded as an effective branch
cut modifying the Hamiltonian (blue dashed line in Fig.2)
connecting from the edge to an extra dimensional bulk.
Thus the spectral shifts also indicate the transportation
of quantum numbers from one edge to the other edge.
This can be regarded as the anomaly requiring an extra
dimensional bulk.

? Non-perturbative effects: We know that the famil-

iar Adler-Bell-Jackiw anomaly of chiral fermions,3,4 ob-
served in the pion decay in particle-physics can be cap-
tured by the perturbative 1-loop Feynman diagram.
However, importantly, the result is non-perturbative, be-
ing exact from low energy IR to high energy UV. This
effect can be further confirmed via Fujikawa’s path in-
tegral method55 non-perturbatively. Instead of the well-
known chiral fermionic anomalies, do we have bosonic
anomalies with these non-perturbative effects?

Indeed, yes, we will show two other kinds of bosonic
anomalies with non-perturbative effects with symmetry-
breaking gapped edges (the case •(2)): One kind of conse-
quent anomalies for Type II SPTs under ZN1

symmetry-
breaking domain walls is the induced fractional ZN2

charge trapped near 0D kink of gapped domain walls.
Amazingly, through a fermionization/bosonization pro-
cedure, we can apply the field-theoretic Goldstone-
Wilczek method to capture the 1-loop Feynman dia-
gram effect non-perturbatively, as this fractional charge
is known to be robust without higher-loop diagram-
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FIG. 2: The intuitive way to view the bulk-boundary corre-
spondence for edge modes of SPTs (or intrinsic topological or-
der) under the flux insertion, or equivalently the monodromy
defect / branch cut (blue dashed line) modifying the bulk and
the edge Hamiltonians. SPTs locate on a large sphere with
two holes with flux-in and flux-out, is analogous to, a Laugh-
lin type flux insertion through a cylinder, inducing anomalous
edge modes(red arrows) moving along the opposite directions
on two edges.

matic corrections.42 We will term this a Type II bosonic
anomaly.

The second kind of anomalies for symmetry-breaking
gapped edge (the case •(2)) is that the edge is gapped
under ZN1

symmetry-breaking domain walls, with a
consequent degenerate zero energy ground states
due to the projective representation of other symme-
tries ZN2

× ZN3
. The zero mode degeneracy is found

to be gcd(N1, N2, N3)-fold. We will term this a Type III
bosonic anomaly.

The paper is organized as follows. In Sec.II, we
start with some basic results in group cohomology
and its n-cocycles. The readers who are not familiar
with group cohomology may either take the chance
to learn the basics, or skip it and proceed to Sec.III.
We set up Type I,22 II, III SPT lattice construction
in Sec.III, its matrix product operators and its low
energy field theory. Remarkably, the Type III non-onsite
symmetry transformation is distinct from the Type
I, Type II; it introduces a new quantum number, a
different charge vector coupling Q for the conserved
current term. Although the Type III symmetry G is
Abelian, its symmetry transformation operator has
a non-commutative non-Abelian feature thus yielding
degenerate zero energy modes. In Sec.IV and V, we
study the physical observables for bosonic anomalies of
these SPT: induced fractional quantum numbers and
degenerate zero energy modes. In Sec.VI, we work on
the twisted sector : the effect of gauge flux insertion
through a 1D ring effectively captured by using a branch
cut or so-called monodromy defect43 modifying the
original Hamiltonian.22 The twisted non-onsite sym-
metry transformation and twisted lattice Hamiltonians
are studied, which spectral shift response under flux
insertion provides physical observables to distinguish
different SPTs,22,44 applicable for all Type I, Type II,
Type III SPTs. Our main results are summarized in
Table I, II, III.

Group Cohomology Bosonic Anomalies and Physical Observables

3-cocycle p in H3(G,U(1)) induced fractional charge degenerate zero energy modes ∆̃(P̃) under flux/monodromy

Type I p1: Eq.(8) ZN1 No No Yes

Type II p12: Eq.(9) ZN12 Yes. p12
N12

of ZN2 charge. No Yes

Type III p123: Eq.(10) ZN123 No Yes. N123 degeneracy. Yes

TABLE I: A summary of bosonic anomalies as 1D edge physical observables to detect the 2+1D SPT of G =
ZN1 × ZN2 × ZN3 symmetry, here we use pi, pij , pijk to label the SPT class index in the third cohomology group
H3(G,U(1)). For Type II class p12 ∈ ZN12 , we can use a unit of ZN1-symmetry-breaking domain wall to induce a p12

N12

fractional ZN2 charge, see Sec.IV. For Type III class p123 ∈ ZN123 , we can either use ZN1-symmetry-breaking domain
wall or use ZN1-symmetry-preserving flux insertion67 (effectively a monodromy defect) through 1D ring to trap N123

multiple degenerate zero energy modes, see Sec.V. For Type I class p1 ∈ ZN1
, our proposed physical observable is

the energy spectrum (or conformal dimension ∆̃(P̃) as a function of momentum P, see Ref.22) shift under the flux
insertion. This energy spectral shift also works for all other (Type II, Type III) classes, see Sec.VI. This table serves
as topological invariants for Type I, II, III bosonic SPT in the context of Ref.43.

(NOTE: Our notation for finite cyclic group is either ZN or ZN , though mathematically they are the same. We
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denote ZN for the symmetry group G, the discrete gauge
ZN flux, or the ZN variables. We denote ZN only for
the classes of SPT classification. In addition, we denote
n + 1D as n dimensional space and 1 dimensional time,
and denote nD as n dimensional space. We also denote
gcd(Ni, Nj) ≡ Nij and gcd(Ni, Nj , Nl) ≡ Nijl with gcd
standing for the greatest common divisor.)

II. GROUP COHOMOLOGY AND COCYCLES

In this section, we will gather the information known
and predicted by the group cohomology approach.5 First,
it has been predicted that the d+ 1-D bosonic SPTs can
be constructed by a mathematical object: the (d + 1)-
th Borel cohomology group Hd+1(G,U(1)) of G over G-
module U(1).5,33 (It is almost complete classification for
bosons, if without considering time-reversal symmetry.)
The SPT classification itself as Hd+1(G,U(1)) also forms
a group structure. Throughout the paper, we study a
generic cyclic group G =

∏m
i=1 ZNi = ZN1

×ZN2
×ZN3

×
. . . . It is generic enough in the sense that any finite
Abelian group is isomorphic to such a finite cyclic group
G. We can thus compute its third cohomology group(see
also Ref.5,45),

H3(G,U(1)) =
∏

1≤i<j<l≤m

ZNi×Zgcd(Ni,Nj)×Zgcd(Ni,Nj ,Nl).

(2)
Here gcd(Ni, Nj , . . . ) stands for the greatest common
divisor among the numbers (Ni, Nj , . . . ). For simplic-
ity, we denote gcd(Ni, Nj) ≡ Nij and gcd(Ni, Nj , Nl) ≡
Nijl. This cohomology group predicts that there are
ZNi×ZNij×ZNijl distinct classes for SPTs. One can find
explicit 3-cocycles, such that each distinct 3-cocycles la-
bels the distinct classes in SPTs. (More generally, (d+1)-
cocycles for (d+1)-th cohomology groupHd+1(G,U(1)).)
The n-cochain is a mapping ω(A1, A2, . . . , An): Gn →
U(1) (which inputs Ai ∈ G, i = 1, . . . , n, and outputs a
U(1) phase). The n-cochains satisfy the group multipli-
cation rules:

(ω1 · ω2)(A1, . . . , An) = ω1(A1, . . . , An) · ω2(A1, . . . , An),
(3)

thus form an Abelian group. The n-cocycles is a n-
cochain additionally satisfying the n-cocycle-conditions
δω = 1. The 3-cocycle-condition (a pentagon relation) is

δω(A,B,C,D) =
ω(B,C,D)ω(A,BC,D)ω(A,B,C)

ω(AB,C,D)ω(A,B,CD)
= 1

(4)

with A,B,C,D ∈ G. One should check that the distinct
3-cocycles are not equivalent by 3-coboundaries, i.e. any
ω1(A,B,C) is equivalent to ω2(A,B,C) if they are iden-
tified by a 3-coboundaries δΩ(A,B,C).

ω1(A,B,C)

ω2(A,B,C)
= δΩ(A,B,C) =

Ω(B,C)Ω(A,BC)

Ω(AB,C)Ω(A,B)
(5)

with some 2-cochain Ω(B,C). The 3-cochain forms a
group C3, the 3-cochain satisfies the 3-cocycle condi-
tions Eq.(4) further forms a subgroup Z3, and the 3-
coboundaries satisfies Eq.(5) further forms a subgroup
B3 (since δ2Ω(A,B,C) = 1). Overall

B3 ⊂ Z3 ⊂ C3 (6)

The third cohomology group is exactly a kernel Z3 (the
group of 3-cocycles) mod out image B3 (the group of
3-coboundary) relation:

H3(G,U(1)) = Z3/B3. (7)

For any finite Abelian group G, we can derive the dis-
tinct 3-cocycles satisfying Eq.(4) (but not identified as
3-coboundary by Eq.(5)):

ω
(i)
I (A,B,C) = exp

(2πipi
N2
i

ai(bi + ci − [bi + ci])
)

(8)

ω
(ij)
II (A,B,C) = exp

(2πipij
NiNj

ai(bj + cj − [bj + cj ])
)

(9)

ω
(ijl)
III (A,B,C) = exp

( 2πipijl
gcd(Ni, Nj , Nl)

aibjcl

)
, (10)

so-called Type I, Type II, Type III 3-cocycles45 respec-
tively. Here A,B,C ∈ G. We denote that A =
(a1, a2, a3, . . . ), where ai ∈ ZNi , and similarly for B,C.
And [bi+ci] are defined as the (bi+ci)modNi, the module
elements in ZNi . In Table II, we summarize some data
of group cohomology and their corresponding realization
as SPT by using (i) quantum lattice model, (ii) matrix
product states, and (iii) quantum field theory approach.
In Sec.III, we will demonstrate their explicit construc-
tion for Type I, Type II, Type III 3-cocycles and their
corresponding Type I, Type II, Type III SPTs.
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3-cocycle min. symm. group G H3(G,U(1)) lattice model’s S; H MPO’s S field theory’s S

Type I p1: Eq.(8) ZN ZN Eq.(27); Eq.(37) Eq.(19) Eq.(42)

Type II p12: Eq.(9) ZN1 × ZN2 ZN1 × ZN2 × ZN12 Eq.(28); Eq.(37) Eq.(19) Eq.(42)

Type III p123: Eq.(10) ZN1 × ZN2 × ZN3

∏
1≤i<j≤3

ZNi × ZNij × ZN123 Eq.(31); Eq.(37) Eq.(20) Eq.(47)

TABLE II: Given a generic finite Abelian global symmetry group (isomorphic to a cyclic group G =
∏m
i=1 ZNi =

ZN1
×ZN2

×ZN3
×. . . ), here we provide the data of group cohomology and their corresponding realization as symmetry

protected topological (SPT) states by using (i) quantum lattice models, (ii) matrix product operators(MPO), and
(iii) quantum field theory approach. The classification labels p1, p12, pijk belong to the Type I ZN class, Type II ZN12

(≡ Zgcd(N1,N2)) class, Type III ZN123
(≡ Zgcd(N1,N2,N3)) class (all labeled in blue color in the table) respectively.

III. SPTS WITH ZN1 × ZN2 × ZN3 SYMMETRY

1

2
M

M-1

3

...

..
.

FIG. 3: The illustration of 1D lattice model with M -sites on
a compact ring.

We will now go further to consider the edge modes of
lattice Hamiltonian with G = ZN1

× ZN2
× ZN3

sym-
metry on a compact ring with M sites (Fig.3). Since
there are at most three finite Abelian subgroup indices
shown in Eq.(8),(9),(10), such a finite group with three
Abelian discrete subgroups is the minimal example con-
taining necessary and sufficient information to explore fi-
nite Abelian SPTs. Such a symmetry-group G may have
nontrivial SPT class of Type I, Type II and Type III
SPTs. Apparently the Type I SPTs studied in our pre-
vious work happen,22 which are the class of pu ∈ ZNu in
H3(ZN1

×ZN2
×ZN3

,U(1)) of Eq.(2). Here and below we
denote u, v, w ∈ {1, 2, 3} and u, v, w are distinct. We will
also introduce is the new class where ZNu and ZNv rotor
models “talk to each other.” This will be the mixed Type
II class puv ∈ ZNuv , where symmetry transformation of
ZN1 global symmetry will affect the ZN2 rotor models,
while similarly ZN2 global symmetry will affect the ZN1

rotor models. There is a new class where three ZN1 , ZN2 ,
ZN3 rotor models directly talk to each other. This will be
the exotic Type III class p123 ∈ ZN123 , where the sym-
metry transformation of ZNu global symmetry will affect
the mixed ZNv , ZNw rotor models in a mutual way.

To verify that our model construction corresponding to
the Type I, Type II, Type III 3-cocycle in Eq.(8),(9),(10),
we will implement a technique called “Matrix Product
Operators” in Sec.III A. We would like to realize a dis-

crete lattice model in Sec.III B and a continuum field the-
ory in Sec.III C, to capture the essence of these classes of
SPTs.

A. Matrix Product Operators and Cocycles

There are various advantages to put a quantum sys-
tem on a discretize lattice, better than viewing it as
a continuum field theory. For example, one advantage
is that the symmetry transformation can be regularized
so to understand its property such as onsite or non-
onsite. Another advantage is that we can simulate our
model by considering a discretized finite system with
a finite dimensional Hilbert space. For our purpose,
to regularize a quantum system on a discrete lattice,
we will firstly use the matrix product operators (MPO)
formalism (see Ref.20,21 and Reference therein) to for-
mulate our symmetry transformations corresponding to
non-trivial 3-cocycles in the third cohomology group in
H3(ZN1

× ZN2
,U(1)) = ZN1

× ZN2
× ZN12

.
First we formulate the unitary operator S as the MPO:

S =
∑
{j,j′}

tr[T
j1j
′
1

α1α2T
j2j
′
2

α2α3 . . . T
jM j

′
M

αMα1 ]|j′1, . . . , j′M 〉〈j1, . . . , jM |.

(11)
with the its coefficient taking the trace (tr) of a se-
ries of onsite tensor T (g) on a lattice, and input a
state |j1, . . . , jM 〉 and output another state |j′1, . . . , j′M 〉.
T = T (g) is a tensor with multi-indices and with de-
pendency on a group element g ∈ G for a symmetry
group. This is the operator formalism of matrix prod-
uct states (MPS). Here physical indices j1, j2, . . . , jM and
j′1, j

′
2, . . . , j

′
M are labeled by input/output physical eigen-

values (here ZN rotor angle), the subindices 1, 2, . . . ,M
are the physical site indices. There are also virtual in-
dices α1, α2, . . . , αM which are traced in the end. Sum-
ming over all the operation from {j, j′} indices, we shall
reproduce the symmetry transformation operator S.

What MPO really helps us is that by contracting
MPO tensors T (g) of G-symmetry transformation S
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(here g ∈ G) in different sequence on the effective 1D
lattice of SPT edge modes, it can reveal the nontrivial
projective phase corresponds to the nontrivial
3-cocycles of the cohomology group.

To find out the projective phase eiθ(ga,gb,gc), below we
use the facts of tensors T (ga), T (gb), T (gc) acting on the
same site with group elements ga, gb, gc. We know a
generic projective relation:

T (ga · gb) = P †ga,gbT (ga)T (gb)Pga,gb . (12)

Here Pga,gb is the projection operator. We contract three
tensors in two different orders,

(Pga,gb⊗I3)Pgagb,gc ' eiθ(ga,gb,gc)(I1 ⊗ Pgb,gc)Pga,gbgc .
(13)

The left-hand-side contracts the a, b first then with the
c, while the right-hand-side contracts the b, c first then
with the a. Here ' means the equivalence is up to a
projection out of un-parallel states. We can derive Pga,gb
by observing that Pga,gb inputs one state and outputs two
states.73

For Type I SPT class, this MPO formalism has been
done quite carefully in Ref.21,22. Here we generalize it
to other SPTs, below we input a group element with g =
(k1, k2, k3) and k1 ∈ ZN1 , k2 ∈ ZN2 , k3 ∈ ZN3 . Without
losing generality, we focus on the symmetry Type I index
p1 ∈ ZN1 , Type II index p12 ∈ ZN12 , Type III index
p123 ∈ ZN123 . By index relabeling, we can fulfill all SPT
symmetries within the classification in Eq.(2).

We propose our T (g) tensor for Type I,21,22 II symmetry with p1 ∈ ZN1
, p12 ∈ ZN12

as

(Tφ
(1)
in ,φ

(1)
out,φ

(2)
in ,φ

(2)
out)

(p1,p12)

ϕ
(1)
α ,ϕ

(1)
β ,ϕ

(2)
α ,ϕ

(2)
β ,N1

(
2πk1

N1
) = δ(φ

(1)
out − φ

(1)
in −

2πk1

N1
)δ(φ

(2)
out − φ

(2)
in ) (14)

·
∫
dϕ(1)

α dϕ
(1)
β |ϕ

(1)
β 〉〈ϕ

(1)
α |δ(ϕ

(1)
β − φ

(1)
in )eip1k1(ϕ(1)

α −φ
(1)
in )r/N1 ·

∫
dϕ̃(2)

α dϕ̃
(2)
β |ϕ̃

(2)
β 〉〈ϕ̃

(2)
α |δ(ϕ̃

(2)
β − φ̃

(2)
in )eip12k1(ϕ̃(2)

α −φ̃
(2)
in )r/N1 .

We propose the Type III T (g) tensor with p123 ∈ ZN123 as

(Tφ
(1)
in ,φ

(1)
out,φ

(2)
in ,φ

(2)
out,φ

(3)
in ,φ

(3)
out)

(p123)

ϕ
(1)
α ,ϕ

(1)
β ,ϕ

(2)
α ,ϕ

(2)
β ,ϕ

(3)
α ,ϕ

(3)
β ,N1,N2,N3

(
2πk1

N1
,

2πk2

N2
,

2πk3

N3
)

=
∏

u,v,w∈{1,2,3}

∫
dϕ(u)

α |φ
(u)
in 〉〈ϕ

(u)
α | exp[i p123ε

uvwku
(ϕ

(v)
α φ

(w)
in )r

Nu

N1N2N3

2π gcd(N1, N2, N3)
] · |φ(u)

out〉〈φ
(u)
in |. (15)

Here we consider a lattice with both φ(u), ϕ(u) as ZNu
rotor angles. The tilde notation φ̃(u), ϕ̃(u), for exam-
ple on φ̃(2), means that the variables are in units of
2π
N12

, but not in 2π
N2

unit (The reason will become explicit
later when we regularize the Hamiltonian on a lattice in
Sec.III B).

Take Eq.(14), by computing the projection operator
Pga,gb via Eq.(12), we derive the projective phase from
Eq.(13):

eiθ(ga,gb,gc) = eip1
2π
N mc

ma+mb−[ma+mb]N
N = ω

(i)
I (mc,ma,mb)

(16)
which the complex projective phase indeed induces the

Type I 3-cocycle ω
(i)
I (mc,ma,mb) of Eq.(8) in the third

cohomology groupH3(ZN ,U(1)) = ZN . (Up to the index
redefinition p1 → −p1.) We further derive the projective
phase as Type II 3-cocycle of Eq.(9),

eiθ(ga,gb,gc) = eip12(
2πm

(1)
c

N1
)
(

(m(2)
a +m

(2)
b )−[m(2)

a +m
(2)
b ]N2

)
/N2

= ω
(ij)
II (m3,m1,m2) (17)

up to the index redefinition p12 → −p12. Here [ma+mb]N
with subindex N means taking the value module N .

Take Eq.(15), we can also derive the projective phase
eiθ(ga,gb,gc) of Type III T (g) tensor as

eiθ(ga,gb,gc) = ei2πp123ε
uvw
(
m

(u)
c
Nu

m
(v)
a
Nv

m
(w)
b
Nw

)
N1N2N3
N123

' ω(uvw)
III (mc,ma,mb). (18)

Adjust p123 index (i.e. setting only the p123 index in

m
(1)
c m

(2)
a m

(3)
b to be nonzero, while others p213 = p312 =

0), and compute Eq.(13) with only p123 index, we can
recover the projective phase reveals Type III 3-cocycle in
Eq.(10).

By Eq.(11), we verify that T (g) of Type I, II in Eq.(14)

renders the symmetry transformation operator S
(p1,p12)
N1

:

S
(p1,p12)
N1

=

M∏
j=1

ei2πL
(1)
j /N1 · exp[i

p1

N1
(φ

(1)
j+1 − φ

(1)
j )r]

· exp[i
p12

N1
(φ̃

(2)
j+1 − φ̃

(2)
j )r]. (19)

here j are the site indices, from 1 to M shown in Fig.3.
By Eq.(11), we verify that T (g) of Type III in

Eq.(15) renders the symmetry transformation operator
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S
(p123)
N1,N2,N3

:

S
(p123)
N1,N2,N3

=

M∏
j=1

(

M∏
u,v,w∈{1,2,3}

ei2πL
(u)
j /Nu ·W III

j,j+1). (20)

with

W III
j,j+1 ≡

∏
u,v,w∈{1,2,3}

e

(
i
N1N2N3
2πN123

εuvw
p123
Nu

(
φ
(v)
j+1φ

(w)
j

))
.

(21)
For both Eq.(19) and Eq.(20), there is an onsite piece

〈φ(u)
j |e

i2πL
(u)
j /Nu |φ(u)

j 〉 and also extra non-onsite symme-

try transformation parts: namely, exp[i p1N1
(φ

(1)
j+1−φ

(1)
j )r],

exp[ip12N1
(φ̃

(2)
j+1− φ̃

(2)
j )r], and W III

j,j+1. We introduce an an-

gular momentum operator L
(u)
j conjugate to φ

(u)
j , such

that the ei2πL
(u)
j /Nu shifts the rotor angle by 2π

Nu
unit,

from |φ(u)
j 〉 to |φ(u)

j + 2π
Nu
〉. The subindex r means that

we further regularize the variable to a discrete compact
rotor angle.

Meanwhile p1 = p1 mod N1, p12 = p12 mod N12 and
p123 = p123 mod N123, these demonstrate that our MPO
construction fulfills all classes in Eq.(2) as we desire. So
far we have achieved the SPT symmetry transformation
operators Eq.(19),(20) via MPO. Other technical deriva-
tions on MPO formalism are preserved in Supplemental
Materials.

B. Lattice model

To construct a lattice model, we require the minimal
ingredients: (i) ZNu operators (with ZNu variables). (ii)
Hilbert space (the state-space where ZNu operators act
on) consists with ZNu variables-state. Again we denote
u = 1, 2, 3 for ZN1 ,ZN2 ,ZN3 symmetry. We can naturally
choose the ZNu variable ωu ≡ ei 2π/Nu , such that ωNuu =
1. Here and below we will redefine the quantum state and
operators from the MPO basis in Sec.III A to a lattice
basis via:

φ
(u)
j → φu,j , L

(u)
l → Lu,l. (22)

The natural physical states on a single site are the ZNu
rotor angle state |φu = 0〉, |φu = 2π/Nu〉, . . . , |φu =
2π(Nu − 1)/Nu〉.

One can find a dual state of rotor angle state |φu〉,
the angular momentum |Lu〉, such that the basis from
|φu〉 can transform to |Lu〉 via the Fourier transforma-

tion, |φu〉 =
∑Nu−1
Lu=0

1√
Nu
eiLuφu |Lu〉. One can find two

proper operators σ(u), τ (u) which make |φu〉 and |Lu〉
their own eigenstates respectively. With a site index j

(j = 1, ...,M), we can project σ
(u)
j , τ

(u)
j operators into

the rotor angle |φu,j〉 basis, so we can derive σ
(u)
j , τ

(u)
j

operators as Nu ×Nu matrices. Their forms are :

σ
(u)
j =


1 0 0 0

0 ωu 0 0

0 0
. . . 0

0 0 0 ωNu−1
u


j

= 〈φu,j |eiφ̂
(u)
j |φu,j〉 (23)

τ
(u)
j =


0 0 0 . . . 0 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
... 0 0 . . . 1 0


j

= 〈φu,j |ei2πL̂
(u)
j /N |φu,j〉,

(24)
Operators and variables satisfy the analogue property
mentioned in Ref.22, such as (τ (u))Nuj = (σ(u))Nuj = 11,

τ
(u)†
j σ

(u)
j τ

(u)
j = ωu σ

(u)
j . It also enforces the canoni-

cal conjugation relation on φ̂(u) and L̂(u) operators, i.e.

[φ̂
(u)
j , L̂

(v)
l ] = i δ(j,l)δ(u,v) with the symmetry group in-

dex u, v and the site indices j, l. Here |φ〉 and |L〉 are

eigenstates of φ̂ and L̂ operators respectively.
The linear combination of all |φ1〉 |φ2〉 |φ3〉 states form

a complete N1 × N2 × N3-dimensional Hilbert space on
a single site.

1. symmetry transformations

Type I, II ZN1 × ZN2 symmetry transformations

Firstly we warm up with a generic ZN lattice model
realizing the SPT edge modes on a 1D ring with M sites
(Fig.3). It has been emphasized in Ref.5,21 that the SPT
edge modes have a special non-onsite symmetry trans-
formation, which means that its symmetry transforma-
tion cannot be written as a tensor product form on each
site, thus U(g)non-onsite 6= ⊗iUi(g). In general, the sym-
metry transformation contain a onsite part and another
non-onsite part. The trivial class of SPT (trivial bulk
insulator) with unprotected gapped edge modes can be

achieved by a simple Hamiltonian as −λ
∑M
j=1(τj + τ †j ).

(Notice that for the simplest Z2 symmetry, the τj opera-
tor reduces to a spin operator (σz)j .) The simple way to
find an onsite operator which this Hamiltonian respects

and which acts at each site is the
∏M
j=1 τj , a series of τj .

On the other hand, to capture the non-onsite symme-
try transformation, we can use a domain wall variable in
Ref.22, where the symmetry transformation contains in-
formation stored non-locally between different sites (here
we will use the minimum construction: symmetry stored
non-locally between two nearest neighbored sites). Based
on the understanding of previous work,18,21,22 we propose
this non-onsite symmetry transformation Uj,j+1 with a
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domain wall (Ndw)j,j+1 operator acting non-locally on
site j and j + 1 as,

Uj,j+1 ≡ exp
(
i
p

N

2π

N
(δNdw)j,j+1

)
≡ exp[i

p

N
(φ1,j+1−φ1,j)r],

(25)
The justification of non-onsite symmetry operator
Eq.(25) realizing SPT edge symmetry is based on
MPO formalism already done in Sec.III A. The do-
main wall operator (δNdw)j,j+1 counts the number of
units of ZN angle between sites j and j + 1, so in-
deed (2π/N)(δNdw)j,j+1= (φ1,j+1−φ1,j)r. The subindex
r means that we need to further regularize the vari-
able to a discrete ZN angle. Here we insert a p index,
which is just an available free index with p = p mod N .
From Sec.III A, p is indeed the classification index for
the p-th of ZN class in the third cohomology group
H3(ZN ,U(1)) = ZN .

Now the question is how should we fully regularize this

Uj,j+1 operator into terms of ZN operators σ†j and σj+1.
We see the fact that the N -th power of Uj,j+1 renders a
constraint

UNj,j+1 = (exp[iφ1,j ]
† exp[iφ1,j+1])p = (σ†jσj+1)p. (26)

(Since exp[ iφ1,j ]ab = 〈φa|e iφj |φb〉 = σab,j .) More explic-
itly, we can write it as a polynomial ansatz Uj,j+1 =

exp[ i
N

∑N−1
a=0 qa (σ†jσj+1)a]. The non-onsite symmetry

operator Uj,j+1 reduces to a problem of solving polyno-
mial coefficients qa by the constraint Eq.(26). Indeed we
can solve the constraint explicitly, thus the non-onsite
symmetry transformation operator acting on a M -site
ring from j = 1, . . . ,M is derived:

Uj,j+1 = e
−i 2π

N2 p

{
(N−1

2 )11+
∑N−1
a=1

(σ
†
j
σj+1)a

(ωa−1)

}
. (27)

For a lattice SPTs model with G = ZN1
× ZN2

, we
can convert MPO’s symmetry transformation Eq.(19) to
a lattice variable via Eq.(27). We obtain the ZNu symme-
try transformation (here and below u, v ∈ {1, 2}, u 6= v):

• S(pu,puv)
Nu

≡
M∏
j=1

ei2πLu,j/Nu · exp[i
pu
Nu

(φu,j+1 − φu,j)r]

· exp[i
puv
Nu

(φ̃v,j+2 − φ̃v,j)r]

=

M∏
j=1

τ
(u)
j · U (Nu,pu)

j,j+1 · U (Nu,puv)
j,j+2

=

M∏
j=1

τ
(u)
j · e

(−i 2π
N2
u
pu

{
(Nu−1

2 )11+
∑Nu−1
a=1

(σ
(u)†
j

σ
(u)
j+1

)a

((ωu)a−1)

}
)

·e
(−i 2π

NuvNu
puv

{
(Nuv−1

2 )11+
∑Nuv−1
a=1

(σ̃(v)†j
σ̃
(v)
j+2)

a

ωauv−1

}
)
. (28)

The operator is unitary, i.e. S
(pu,puv)
Nu

S
(pu,puv)†
Nu

= 1. Here

σM+j ≡ σj . The intervals of rotor angles are

φ1,j ∈ {n
2π

N1
|n ∈ Z}, φ2,j ∈ {n

2π

N2
|n ∈ Z},

φ̃1,j , φ̃2,j ∈ {n
2π

N12
|n ∈ Z}. (29)

where φ1,j is ZN1 angle, φ2,j is ZN2 angle, φ̃1,j and φ̃2,j

are ZN12 angles (recall gcd (N1, N2) ≡ N12). There are
some remarks on our above formalism:
(i) First, the ZN1 , ZN2 symmetry transformation Eq.(28)
including both the Type I indices p1, p2 and also Type II
indices p12 and p21. Though p1, p2 are distinct indices,
but p12 and p21 indices are the same index, p12 + p21 →
p12. The invariance p12 + p21 describes the same SPT
symmetry class.
(ii) The second remark, for Type I non-onsite symmetry
transformation (with p1 and p2) are chosen to act on the
nearest-neighbor sites (NN: site-j and site-j+1); but the
Type II non-onsite symmetry transformation (with p12

and p21) are chosen to be the next nearest-neighbor sites
(NNN: site-j and site-j+2). The reason is that we have to
avoid the nontrivial Type I and Type II symmetry trans-
formations cancel or interfere with each other. Though
in the Sec.III C, we will reveal that the low energy field
theory description of non-onsite symmetry transforma-
tions for both NN and NNN having the same form in the
continuum limit. In the absence of Type I index, we can
have Type II non-onsite symmetry transformation act on
nearest-neighbor sites.
(iii) The third remark, the domain wall picture men-
tioned in Eq.(25) of Sec.III for Type II p12 class still hold.
But here the lattice regularization is different for terms
with p12, p21 indices. In order to have distinct Zgcd (N1,N2)

class with the identification p12 = p12 mod N12. We
will expect that, performing the Nu times ZNu symme-
try transformation on the Type II puv non-onsite piece,
renders a constraint

(U
(Nu,puv)
j,j+2 )Nu = (σ̃

(v)†
j σ̃

(v)
j+2)puv , (30)

To impose the identification p12 = p12 mod N12 and
p21 = p21 mod N12 so that we have distinct Zgcd (N1,N2)

classes for the Type II symmetry class (which leads to

impose the constraint (σ̃
(1)
j )N12 = (σ̃

(2)
j )N12 = 11), we can

regularize the σ̃
(1)
j , σ̃

(2)
j operators in terms of Zgcd (N1,N2)

variables. With ω12 ≡ ω21 ≡ ei
2π
N12 , we have ωN12

12 = 1.

The σ̃
(u)
j matrix has Nu ×Nu components, for u = 1, 2.

It is block diagonalizable with Nu
N12

subblocks, and each
subblock with N12 × N12 components. Our regulariza-

tion provides the nice property: τ
(1)†
j σ̃

(1)
j τ

(1)
j = ω12 σ

(1)
j

and τ
(2)†
j σ̃

(2)
j τ

(2)
j = ω12 σ

(2)
j . Use the above procedure to

regularize Eq.(19) on a discretized lattice and solve the
constraint Eq.(30), we obtain an explicit form of lattice-
regularized symmetry transformations Eq.(28). For more
details on our lattice regularization, see Supplemental
Materials.
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Type III symmetry transformations

To construct a Type III SPT with a Type III 3-cocycle
Eq.(10), the key observation is that the 3-cocycle inputs,
for example, a1 ∈ ZN1

, b2 ∈ ZN2
, c3 ∈ ZN3

and outputs a
U(1) phase. This implies that the ZN1

symmetry trans-
formation will affect the mixed ZN2

, ZN3
rotor models,

etc. This observation guides us to write down the tensor
T (g) in Eq.(15) and we obtain the symmetry transforma-

tion S
(p)
N = S

(p123)
N1,N2,N3

as Eq.(20):

• S
(p123)
N1,N2,N3

=

M∏
j=1

(

M∏
u,v,w∈{1,2,3}

τ
(u)
j ·W III

j,j+1). (31)

There is an onsite piece τj ≡ 〈φj |ei2πL
(u)
j /N |φj〉 and

also an extra non-onsite symmetry transformation part
W III
j,j+1. This non-onsite symmetry transformation

W III
j,j+1, acting on the site j and j + 1, is defined by the

following, and can be further regularized on the lattice:

• W III
j,j+1 =

∏
u,v,w∈{1,2,3}

(
σ

(v)†
j σ

(v)
j+1

)εuvwp123 log(σ
(w)
j

)NvNw

2πN123
.

(32)
here we separate ZN1

,ZN2
,ZN3

non-onsite symmetry
transformation to W III

j,j+1;N1
,W III

j,j+1;N2
,W III

j,j+1;N3
respec-

tively. Eq.(31),(32) are fully regularized in terms of ZN
variables on a lattice, although they contain anomalous
non-onsite symmetry operators.73

2. lattice Hamiltonians

We had mentioned the trivial class of SPT Hamiltonian
(the class of p = 0) for 1D gapped edge:

H
(0)
N = −λ

M∑
j=1

(τj + τ †j ) (33)

Apparently, the Hamiltonian is symmetry preserving re-

spect to S
(0)
N ≡

∏M
j=1 τj , i.e. S

(0)
N H

(0)
N (S

(0)
N )−1 = H

(0)
N .

In addition, this Hamiltonian has a symmetry-preserving
gapped ground state.

To extend our lattice Hamiltonian construction to
p 6= 0 class, intuitively we can view the nontrivial SPT
Hamiltonians as close relatives of the trivial Hamiltonian
(which preserves the onsite part of the symmetry trans-
formation with p = 0), which satisfies the symmetry-
preserving constraint, i.e.

S
(p)
N H

(p)
N (S

(p)
N )−1 = H

(p)
N , (34)

More explicitly, to construct a SPT Hamiltonian of
ZN1×ZN2×ZN3 symmetry obeying translation and sym-
metry transformation invariant (here and below u, v, w ∈

{1, 2, 3} and u, v, w are distinct):

• [H
(pu,puv,puvw)
N1,N2,N3

, T ] = 0, (35)

• [H
(pu,puv,puvw)
N1,N2,N3

, S
(p)
N ] = 0 (36)

Here T is a translation operator by one lattice site, sat-
isfying T †Xj T = Xj+1, j = 1, ...,M, for any operator
Xj on the ring such that XM+1 ≡ X1. Also T satisfies
TM = 11. We can immediately derive the following SPT
Hamiltonian satisfying the rules,

• H(pu,puv,puvw)
N1,N2,N3

≡ −λ
M∑
j=1

N−1∑
`=0

(
S

(p)
N

)−`
(τj+τ

†
j )
(
S

(p)
N

)`
+. . . ,

(37)

where we define our notations: S
(p)
N ≡∏

u,v,w∈{1,2,3} S
(pu,puv,puvw)
Nu

and τj ≡ τ
(1)
j ⊗

11N2×N2
⊗ 11N3×N3

+ 11N1×N1
⊗ τ

(2)
j ⊗ 11N3×N3

+

11N1×N1 ⊗ 11N2×N2 ⊗ τ
(3)
j . Here τj is a matrix of

(N1 ×N2 ×N3)× (N1 ×N2 ×N3)-components. The

tower series of sum over power of (S
(p)
N ) over (τj+τ †j ) will

be shifted upon S
(p)
N H

(p)
N (S

(p)
N )−1, but the overall sum of

this Hamiltonian is a symmetry-preserving invariant.

C. Field Theory

From a full-refualrized lattice model in the previous
section, we attempt to take the low energy limit to realize
its corresponding field theory, by identifying the commu-

tation relation [φ̂
(u)
j , L̂

(v)
l ] = i δ(j,l)δ(u,v) (here j, l are the

site indices, u, v ∈ {1, 2, 3} are the ZN1
, ZN2

, ZN3
rotor

model indices) in the continuum as

[φu(x1),
1

2π
∂xφ

′
v(x2)] = i δ(x1 − x2)δ(u,v) (38)

which means the ZN1
, ZN2

, ZN3
lattice operators

φ̂
(1)
j , L̂

(1)
l , φ̂

(2)
j , L̂

(2)
l , φ̂

(3)
j , L̂

(3)
l and field operators φ1, φ

′
1,

φ2, φ
′
2, φ3, φ

′
3 are identified by

φ̂
(u)
j → φu(xj), L̂

(u)
l → 1

2π
∂xφ

′
u(xl). (39)

We view φu and φ′u as the dual rotor angles as before,
the relation follows as Sec.III C. We have no difficulty to
formulate a K matrix multiplet chiral boson field theory
(non-chiral ‘doubled’ version of Ref.70’s action) as

SSPT,∂M2 =
1

4π

∫
dt dx

(
KIJ∂tφI∂xφJ−VIJ∂xφI∂xφJ

)
+. . . .

(40)
requiring a rank-6 symmetric K-matrix,

KSPT =
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
. (41)

with a chiral boson multiplet φI(x) = (φ1(x), φ′1(x),
φ2(x), φ′2(x), φ3(x), φ′3(x)). The commutation re-
lation Eq.(38) becomes: [φI(x1),KI′J∂xφJ(x2)] =
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2πiδII′δ(x1 − x2). The continuum limit of Eq.(28)
becomes46

• S(pu,puv)
Nu

= exp[
i

Nu
(

∫ L

0

dx ∂xφ
′
u + pu

∫ L

0

dx ∂xφu

+0

∫ L

0

dx ∂xφ
′
v + puv

∫ L

0

dx ∂xφ̃v)] (42)

Notice that we carefully input a tilde on some φ̃v fields.
We stress the lattice regularization of φ̃v is different from
φv, see Eq.(29), which is analogous to σ̃(1), σ̃(2) and
σ(1), σ(2) in Sec.III B 1. We should mention two remarks:
First, there are higher order terms beyond SSPT,∂M2 ’s
quadratic terms when taking continuum limit of lattice.
At the low energy limit, it shall be reasonable to drop
higher order terms. Second, in the nontrivial SPT class
(some topological terms pi 6= 0, pij 6= 0), the det(V ) 6= 0
and all eigenvalues are non-zeros, so the edge modes are
gapless. In the trivial insulating class (all topological
terms p = 0), the det(V ) = 0, so the edge modes may
be gapped (consistent with Sec.III B 2). Use Eq.(38),
we derive the 1D edge global symmetry transformation

S
(pu,puv)
Nu

, for example, S
(p1,p12)
N1

and S
(p2,p21)
N2

,46

S
(p1,p12)
N1


φ1(x)

φ′1(x)

φ̃2(x)

φ̃′2(x)

(S
(p1,p12)
N1

)−1 =


φ1(x)

φ′1(x)

φ̃2(x)

φ̃′2(x)

+
2π

N1


1

p1

0

p12

.
(43)

S
(p2,p21)
N2


φ̃1(x)

φ̃′1(x)

φ2(x)

φ′2(x)

(S
(p2,p21)
N2

)−1 =


φ̃1(x)

φ̃′1(x)

φ2(x)

φ′2(x)

+
2π

N2


0

p21

1

p2

.
(44)

We can see how p12, p21 identify the same index by doing
a M matrix with M ∈ SL(4,Z) transformation on the
K matrix Chern-Simons theory, which redefines the φ
field, but still describe the same theory. That means:
K → K ′ = MTKM and φ → φ′ = M−1φ, and so the
symmetry charge vector q → q′ = M−1q. By choosing

M =

( 1 0 0 0
p1 1 p21 0
0 0 1 0
p12 0 p2 1

)
, then the basis is changed to

K ′ =

( 2p1 1 p12+p21 0
1 0 0 0

p12+p21 0 2p2 1
0 0 1 0

)
, q′1 =

(
1
0
0
0

)
, q′2 =

(
0
0
1
0

)
.

The theory labeled by KSPT, q1, q2 is equivalent to the
one labeled by K ′, q′1, q

′
2. Thus we show that p12 +p21 →

p12 identifies the same index. There are other ways using
the gauged or probed-field version of topological gauge
theory (either on the edge or in the bulk) to identify the
gauge theory’s symmetry transformation,26 or the bulk
braiding statistics47 to determine this Type II classifica-
tion p12 mod(gcd(N1, N2)).

The nontrivial fact that when p12 = N12 is a triv-
ial class, the symmetry transformation in Eq.(43) may
not go back to the trivial symmetry under the condition∫ L

0
dx ∂xφ̃1 =

∫ L
0
dx ∂xφ̃2 = 2π, implying a soliton can

induce fractional charge (for details see Sec.IV).

Our next goal is deriving Type III symmetry transfor-
mation Eq.(20). By taking the continuum limit of

ε(u=1,2,3)(v)(w)φ
j+1,(v)
in φ

j,(w)
in (45)

=
(
(φ
j+1,(v)
in − φj,(v)

in )φ
j,(w)
in − (φ

j+1,(w)
in − φj,(w)

in )φ
j,(v)
in

)
→
(
∂xφ

(v)
in (x)φ

(w)
in (x)− ∂xφ(w)

in (x)φ
(v)
in (x)

)
(46)

we can massage the continuum limit of Type III symme-
try transformation Eq.(20) to (gcd(N1, N2, N3) ≡ N123)

• S(p123)
N1,N2,N3

=
∏

u,v,w∈{1,2,3}

exp
[ i

Nu
(

∫ L

0

dx ∂xφ
′
u)
]
· exp

[
i
N1N2N3

2πN123

p123

Nu

∫ L

0

dx εuvw∂xφv(x)φw(x)
]

(47)

Here u, v, w ∈ {1, 2, 3} are the label of the symmetry
group ZN1

, ZN2
, ZN3

’s indices. Though this Type III
class is already known in the group cohomology sense,
this Type III field theory symmetry transformation re-
sult is entirely new and not yet been well-explored in the
literature, especially not yet studied in the field theory
in the SPT context. Our result is an extension along the
work of Ref.24,26.

The commutation relation leads to

[φI(xi),KI′JφJ(xj)] = −2πi δII′ h̃(xi − xj). (48)

Here h̃(xi − xj) ≡ h(xi − xj) − 1/2, where h(x) is the
Heaviside step function, with h(x) = 1 for x ≥ 0 and

h(x) = 0 for x < 0. And h̃(x) is h(x) shifted by 1/2,

i.e. h̃(x) = 1/2 for x ≥ 0 and h(x) = −1/2 for x < 0.
The shifted 1/2 value is for consistency condition for the
integration-by-part and the commutation relation. Use
these relations, we derive the global symmetry transfor-

mation S
(p123)
N1,N2,N3

acting on the rotor fields φu(x), φ′u(x)

(here u ∈ {1, 2, 3}) on the 1D edge by
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(S
(p123)
N1,N2,N3

)φu(x)(S
(p123)
N1,N2,N3

)
−1

= φu(x) +
2π

Nu
(49)

(S
(p123)
N1,N2,N3

)φ′u(x)(S
(p123)
N1,N2,N3

)
−1

= φ′u(x)− εuvwQ 2π

Nv
(2φw(x)− (φw(L) + φw(0))

2
) (50)

where one can define a Type III symmetry charge Q ≡
p123

N1N2N3

2πN123
. Here the 1D edge is on a compact circle with

the length L, here φw(L) are φw(0) taking value at the
position x = 0 (also x = L). (In the case of infinite 1D
line, we shall replace φw(L) by φw(∞) and replace φw(0)
by φw(−∞). ) But φw(L) may differ from φw(0) by 2πn
with some number n if there is a nontrivial winding, i.e.

φw(L) = φw(0) + 2πn = 2π
nw
Nw

+ 2πn, (51)

where we apply the fact that φw(0) is a ZNw ro-
tor angle. So Eq.(50) effectively results in a
shift +εuvwp123

Nu
N123

(2πnw + πNwn) and a ro-

tation εuvwQ 2π
Nv

(2φw(x)). Since Nu
N123

is neces-
sarily an integer, the symmetry transformation

(S
(p123)
N1,N2,N3

)φ′u(x)(S
(p123)
N1,N2,N3

)
−1

will shift by a 2π

multiple if p123
Nu
N123

Nwn is an even integer.

By realizing the field theory symmetry transformation,
we have obtained all classes of SPT edge field theory
within the group cohomology H3(ZN1×ZN2×ZN3 ,U(1))
with pu ∈ ZNu , puv ∈ ZNuv , p123 ∈ ZN123 .

IV. TYPE II BOSONIC ANOMALY:
FRACTIONAL QUANTUM NUMBERS
TRAPPED AT THE DOMAIN WALLS

We now apply the tools we develop in Sec.III to cap-
ture physical observables for these SPTs. We propose
the experimental/numerical signatures for certain SPT
with Type II class p12 6= 0 with (at least) two symmetry
group ZN1

× ZN2
, also as a way to study the physical

measurements for Type II bosonic anomaly. We show
that when the ZN1

symmetry is broken by ZN1
domain

wall created on a ring, there will be some fractionalized
ZN2

charges induced near the kink. We will demonstrate
our field theory method can easily capture this effect.

A. Field theory approach: fractional ZN charge
trapped at the kink of ZN symmetry-breaking

Domain Walls

Consider the ZN1
domain wall is created on a ring (the

ZN1
symmetry is broken), then the ZN1

domain wall can
be captured by φ1(x) for x ∈ [0, L) takes some constant
value φ0 while φ1(L) shifted by 2π n1

N1
away from φ0. This

means that φ1(x) has the fractional winding number:∫ L

0

dx ∂xφ1 = φ1(L)− φ1(0) = 2π
n1

N1
, (52)

Also recall Eq.(42) that the Type II p21 6= 0 (and p1 =
0, p2 = 0) ZN2

symmetry transformation

S
(p2,p21)
N2

= exp[
i

N2
(p21

∫ L

0

dx ∂xφ̃1 +

∫ L

0

dx ∂xφ
′
2)], (53)

can measure the induced ZN2
charge on a state |Ψdomain〉

with this domain wall feature as

S
(p2,p21)
N2

|Ψdomain〉 = exp[
i p21

N2
(φ̃1(L)− φ̃1(0))]|Ψdomain〉

= exp[(2πi
n12 p21

N12N2
)]|Ψdomain〉. (54)

We also adopt two facts that: First,
∫ L

0
dx ∂xφ̃1 = 2π n12

N12

with some integer n12, where the φ̃1 is regularized in a
unit of 2π/N12. Second, as ZN2

symmetry is not bro-
ken, both φ2 and φ′2 have no domain walls, then the

above evaluation takes into account that
∫ L

0
dx ∂xφ

′
2 =

0. This implies that induced charge is fractionalized
(n12/N12)p21 (recall p12, p21 ∈ ZN12 ) ZN2 charge. This
is the fractional charge trapped at the configuration of a
single kink in Fig.4.

On the other hand, one can imagine a series of
N12 number of ZN1-symmetry-breaking domain wall
each breaks to different vacuum expectation value(v.e.v.)
where the domain wall in the region [0, x1),[x1, x2), . . . ,
[xN12−1, xN12

= L) with their symmetry-breaking φ1

value at 0, 2π 1
N12

, 2π 2
N12

, . . . , 2πN12−1
N12

. This means

a nontrivial winding number, like a soliton effect (see

Fig.5),
∫ L

0
dx ∂xφ̃1 = 2π and S

(p2,p21)
N2

|Ψdomain wall〉 =
exp[(2πi p21N2

)]|Ψdomain wall〉 capturing p21 integer units of
ZN2

charge at N12 kinks for totally N12 domain walls, in
the configuration of Fig.5. In average, each kink captures
the p21/N12 fractional units of ZN2

charge.
Similarly, we can consider the ZN2

domain wall is cre-
ated on a ring (the ZN2

symmetry is broken), then the
ZN2

domain wall can be captured by φ2(x) soliton profile
for x ∈ [0, L). We consider a series of N12 number of ZN2

-
symmetry-breaking domain walls, each breaks to differ-

ent v.e.v. (with an overall profile of
∫ L

0
dx ∂xφ̃2 = 2π).

By S
(p1,p12)
N1

|Ψdomain wall〉 = exp[(2πi p12N1
)]|Ψdomain wall〉,

the N12 kinks of domain wall captures p12 integer units
of ZN1

charge for totally N12 domain wall, as in Fig.5.
In average, each domain wall captures p12/N12 fractional
units of ZN1

charge.



13

FIG. 4: We expect some fractional charge trapped near a
single kink around x = 0 (i.e. x = 0 + ε) and x = L (i.e.
x = 0− ε) in the domain walls. For ZN1 -symmetry breaking
domain wall with a kink jump ∆φ1 = 2π n12

N12
, we predict

that the fractionalized (n12/N12)p21 units of ZN2 charge are
induced.

FIG. 5: A nontrivial winding
∫ L

0
dx ∂xφ(x) = 2π. This is

like a soliton a soliton (or particle) insertion. For N12 number
of ZN1 -symmetry breaking domain walls, we predict that the
integer p21 units of total induced ZN2 charge on a 1D ring. In
average, each kink captures a p21/N12 fractional units of ZN2

charge.

B. Goldstone-Wilczek formula and Fractional
Quantum Number

It is interesting to view our result above in light of the
Goldstone-Wilczek (G-W) approach.42 We warm up by
computing 1/2-fermion charge found by Jackiw-Rebbi48

using G-W method We will then do a more general case
for SPT. The construction, valid for 1D systems, works
as follows.

Jackiw-Rebbi model: Consider a Lagrangian describ-
ing spinless fermions ψ(x) coupled to a classical back-
ground profile λ(x) via a term λψ†σ3ψ. In the high tem-
perature phase, the v.e.v. of λ is zero and no mass is gen-
erated for the fermions. In the low temperature phase,
the λ acquires two degenerate vacuum values ±〈λ〉 that
are related by a Z2 symmetry. Generically we have

〈λ〉 cos
(
φ(x)− θ(x)

)
, (55)

where we use the bosonization dictionary ψ†σ3ψ →
cos(φ(x)) and a phase change ∆θ = π captures the exis-
tence of a domain wall separating regions with opposite
values of the v.e.v. of λ. From the fact that the fermion
density ρ(x) = ψ†(x)ψ(x) = 1

2π∂xφ(x) (and the current

Jµ = ψ†γµψ = 1
2π ε

µν∂νφ), it follows that the induced

FIG. 6: A profile of several domain walls, each with kinks
and anti-kinks(in blue color). For ZN1 symmetry-breaking
domain wall, each single kink can trap fractionalized ZN2

charge. However, overall there is no nontrivial winding,∫ L
0
dx ∂xφ1(x) = 0 (i.e. no net soliton insertion), so there

is no net induced charge on the whole 1D ring.

charge Qdw on the kink by a domain wall is

Qdw =

∫ x0+ε

x0−ε
dx ρ(x) =

∫ x0+ε

x0−ε
dx

1

2π
∂xφ(x) =

1

2
,

(56)
where x0 denotes the center of the domain wall.

Type II Bosonic Anomalies: We now consider the
case where the ZN1 symmetry is spontaneously broken
into different “vacuum” regions. This can be captured
by an effective term in the Hamiltonian of the form

Hsb = −λ cos
(
φ1(x)− θ(x)

)
, λ > 0, (57)

and the ground state is obtained, in the large λ limit, by
phase locking φ1 = θ, which opens a gap in the spectrum.

Different domain wall regions are described by different
choices of the profile θ(x), as discussed in Sec.IV A. In
particular, if we have θ(x) = θk(x) and θk(x) = (k −
1) 2π/N12, for x ∈ [(k−1)L/N12, kL/N12), k = 1, ..., N12.
then we see that that, a domain wall separating regions k
and k+ 1 (where the phase difference is 2π/N12) induces
a ZN2

charge given by

δ Qk,k+1 =

∫ kL/N12+ε

kL/N12−ε
dx δρ2(x)

=
1

2π

∫ kL/N12+ε

kL/N12−ε
dx

p12

N2
∂xφ1 =

p12

N2N12
. (58)

This implies a fractional of p12/N12 induced ZN2 charge
on a single kink of ZN1-symmetry breaking domain walls,
consistent with Eq.(54).

Some remarks follow: If the system is placed on a ring,
(i) First, with net soliton (or particle) insertions, then the
total charge induced is non-zero, see Fig.5.
(ii) Second, without net soliton (or particle) insertions,
then the total charge induced is obviously zero, as domain
walls necessarily come in pairs with opposite charges on
the kink and the anti-kink, see Fig.6.
(iii) One can also capture this bosonic anomaly in the
fermionized language using the 1-loop diagram under
soliton background,42 shown in Fig.7.
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1

I. PLOTS

v1

v2

v4

v3

v′
3

FIG. 1: The topology of the action of Ag
v3 .

g1

g2

g4

g3

g′
3

FIG. 2: The topology of the action of Ag
v3 . Jµ

FIG. 7: In the fermionized language, one can capture the
anomaly effect on induced (fractional) charge/current under
soliton background by the 1-loop diagram.42 With the solid
line — represents fermions, the wavy line :: represents the
external (gauge) field coupling to the induced current Jµ (or
charge J0), and the dashed line - - represents the scalar soli-
ton (domain walls) background. Here in Sec.IV B, instead of
fermionizing the theory, we directly address in the bosonized
language to capture the bosonic anomaly.

(iv) A related phenomena has also been examined re-
cently where fractionalized boundary excitations cause
that the symmetry-broken boundary cannot be prolifer-
ated to restore the symmetry.66

C. Lattice approach: Projective phase observed at
Domain Walls

Now we would like to formulate a fully regularized lat-
tice approach to derive the induced fractional charge,
and compare to the complementary field theory done in
Sec.IV A and Goldstone-Wilczek approach in Sec.IV B.
Below our notation follows Sec.III. Recall that in the
case of a system with onsite symmetry, such as ZN ro-
tor model on a 1D ring with a simple Hamiltonian of

∑
j(σj + σ†j ), there is an on-site symmetry transforma-

tion S =
∏
j τj acting on the full ring. We can simply

take a segment (from the site r1 to r2) of the symme-
try transformation defined as a D operator D(r1, r2) ≡∏r2
j=r1

τj . The D operator does the job to flip the mea-

surement on 〈σ`〉. What we mean is that 〈ψ|σ`|ψ〉 and
〈ψ′|σ`|ψ′〉 ≡ 〈ψ|D†σ`D|ψ〉 = ei2π/N 〈ψ|σ`|ψ〉 are distinct
by a phase ei2π/N as long as ` ∈ [r1, r2]. Thus D operator
creates domain wall profile.

For our case of SPT edge modes with non-onsite sym-
metry studied here, we are readily to generalize the
above and take a line segment of non-onsite symmetry
transformation with symmetry ZNu (from the site r1

to r2) and define it as a DNu operator, DNu(r1, r2) ≡∏r2
j=r1

τ
(u)
j

∏r2
j=r1

Uj,j+1W
III
j,j+1 (from the expression of

SNu , with the onsite piece τ
(u)
j and the non-onsite piece

Uj,j+1 in Eq.(28) and Wj,j+1 in Eq.(32)). This D oper-
ator effectively creates domain wall on the state with a
kink (at the r1) and anti-kink (at the r2) feature, such
as in Fig.6. The total net charge on this type of domain
wall (with equal numbers of kink and anti-kinks) is zero,
due to no net soliton insertion (i.e. no net winding, so∫ L

0
∂xφdx = 0). However, by well-separating kinks and

anti-kinks, we can still compute the phase gained at each
single kink.73 We consider the induced charge measure-
ment by S(D|ψ〉), which is (SDS†)S|ψ〉 = ei(Θ0+Θ)D|ψ〉,
where Θ0 is from the initial charge (i.e. S|ψ〉 ≡ eiΘ0 |ψ〉)
and Θ is from the charge gained on the kink. The mea-
surement of symmetry S producing a phase eiΘ, implies a
nontrivial induced charge trapped at the kink of domain
walls. We compute the phase at the left kink on a domain
wall for all Type I, II, III SPT classes, and summarize
them in Table III.

SPT class eiΘL of DNu |ψ〉 acted by ZNv symmetry Sv eiΘL of DNu |ψ〉 under a soliton
∫ L

0
dx ∂xφu = 2π Fractional charge

Type I p1 S
(p1)
N1

D
(p1)
N1

S
(p1)†
N1

→ eiΘL = e
i
2πp1
N2

1 S
(p1)
N1

(D
(p1)
N1

)N1S
(p1)†
N1

→ eiΘL = e
i
2πp1
N1 No

Type II p12 S
(p12)
N2

D
(p12)
N1

S
(p12)†
N2

→ eiΘL = e
i 2π
N2

p12
N12 S

(p12)
N2

(D
(p12)
N1

)N12S
(p12)†
N2

→ eiΘL = e
i
2πp12
N2 Yes (Eq.(54),(58))

Type III p123 S
(p123)
N2

D
(p123)
N1

S
(p123)†
N2

→ eiΘL = e
i
2πp123n3
N123 S

(p123)
N2

(D
(p123)
N1

)N123S
(p123)†
N2

→ eiΘL = 1 No

TABLE III: The phase eiΘL on a domain wall Du acted by ZNv symmetry Sv. This phase is computed at the left kink
(the site r1). The first column shows SPT class labels p. The second and the third columns show the computation
of phases. The last column interprets whether the phase indicates a nontrivial induced ZN charge. Only Type II
SPT class with p12 6= 0 contains nontrivial induced ZN2 charge with a unit of p12/N12 trapped at the kink of ZN1 -
symmetry breaking domain walls. Here n3 is the exponent inside the W III matrix, n3 = 0, 1, . . . , N3 − 1 for each
subblock within the total N3 subblocks.73 N12 ≡ gcd(N1, N2) and N123 ≡ gcd(N1, N2, N3).

In Table III, although we obtain eiΘL for each type, but there are some words of caution for interpreting it.
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(i) For Type I class, with the ZN1
-symmetry breaking

domain wall, there is no notion of induced ZN1
charge

since there is no ZN1
-symmetry (already broken) to re-

spect.

(ii) (D
(p)
N )n captures n units of ZN -symmetry-breaking

domain wall. The calculation S
(p)
N (D

(p)
N )nS

(p)†
N renders a

eiΘL phase for the left kink and a eiΘR = e−iΘL phase
for the right anti-kink. Our formalism is analogous to
Ref.66, where we choose the domain operator as a seg-
ment of symmetry transformation. For Type II class, if

we have operators (D
(p12)
N1

)0 acting on the interval [0, x1),

while (D
(p12)
N1

)1 acting on the interval [x1, x2), . . . , and

(D
(p12)
N1

)N12 acting on the interval [xN12−1, xN12 = L),
then we create the domain wall profile shown in Fig.6.
It is easy to see that due to charge cancellation on

each kink/anti-kink, the S
(p12)
N2

(D
(p12)
N1

)N12S
(p12)†
N2

mea-
surement on a left kink captures the same amount of

charge trapped by a nontrivial soliton:
∫ L

0
dx ∂xφu =

2π.73

(iii) For Type II class, we consider ZN1
-symmetry break-

ing domain wall (broken to a unit of ∆φ1 = 2π/N12),
and find that there is induced ZN2

charge with a unit
of p12/N12, consistent with field theory approach in

Eq.(54),(58). For a total winding is
∫ L

0
dx ∂xφ1 = 2π,

there is also a nontrivial induced p12 units of ZN2
charge.

Suppose a soliton generate this winding number 1 domain
wall profile, even if p12 = N12 is identified as the trivial
class as p12 = 0, we can observe N12 units of ZN2

charge,
which is in general still not N2 units of ZN2 charge. This
phenomena has no analogs in Type I, and can be traced
back to the discussion in Sec.III C.
(iv) For Type III class, with a ZN1-symmetry break-
ing domain wall: On one hand, the ΘL phase written in
terms of ZN2 or ZN3 charge unit is non-fractionalized but
integer. On the other hand, we will find in Sec.V B that
the ZN2

, ZN3
symmetry transformation surprisingly no

longer commute. So there is no proper notion of induced
ZN2

, ZN3
charge at all in the Type III class.

V. TYPE III BOSONIC ANOMALY:
DEGENERATE ZERO ENERGY MODES
(PROJECTIVE REPRESENTATION)

We apply the tools we develop in Sec.II,III to study the
physical measurements for Type III bosonic anomaly.

A. Field theory approach: Degenerate zero energy
modes trapped at the kink of ZN

symmetry-breaking Domain Walls

We propose the experimental/numerical signature for
certain SPT with Type III symmetric class p123 6= 0 un-
der the case of (at least) three symmetry group ZN1 ×
ZN2 × ZN3 . Under the presence of a ZN1 symmetry-

breaking domain wall (without losing generality, we can
also assume it to be any ZNu), we can detect that the
remained unbroken symmetry ZN2

, ZN3
carry projective

representation. More precisely, under the ZN1
domain-

wall profile,∫ L

0

dx ∂xφ1 = φ1(L)− φ1(0) = 2π
n1

N1
, (59)

we compute the commutator between two unbroken sym-
metry operators Eq.(47):

S
(p231)
N2

S
(p312)
N3

= S
(p312)
N3

S
(p231)
N2

ei
2π n1
N123

p123 (60)

[logS
(p231)
N2

, logS
(p312)
N3

] = i
2π n1

N123
p123, (61)

where we identify the index (p231 + p312) → p123 as the
same one. This non-commutative relation Eq.(60) in-

dicates that S
(p231)
N2

and S
(p312)
N3

are not in a linear rep-
resentation, but in a projective representation of ZN2

,
ZN3

symmetry. This is analogous to the commutator
[Tx, Ty] of magnetic translations Tx, Ty along x, y direc-
tion on a T2 torus for a filling fraction 1/k fractional
quantum hall state (described by U(1)k level-k Chern-
Simons theory):49

eiTxeiTy = eiTyeiTxei 2π/k (62)

[Tx, Ty] = −i 2π/k, (63)

where one studies its ground states on a T2 torus with
a compactified x and y direction gives k-fold degener-
acy. The k degenerate ground states are |ψm〉 with
m = 0, 1, . . . , k − 1, while |ψm〉 = |ψm+k〉. The ground

states are chosen to satisfy: eiTx |ψm〉 = ei 2πmk |ψm〉,
eiTy |ψm〉 = |ψm+1〉. Similarly, for Eq.(60) we have a T2

torus compactified in φ2 and φ3 directions, such that:
(i) There is a N123-fold degeneracy for zero energy modes
at the domain wall. We can count the degeneracy by
constructing the orthogonal ground states: consider the

eigenstate |ψm〉 of unitary operator S
(p231)
N2

, it implies that

S
(p231)
N2

|ψm〉 = ei
2π n1
N123

p123m|ψm〉. S
(p312)
N3

|ψm〉 = |ψm+1〉.
As long as gcd(n1 p123, N123) = 1, we have N123-fold de-
generacy of |ψm〉 with m = 0, . . . , N123 − 1.
(ii) Eq.(60) means the symmetry is realized projectively
for the trapped zero energy modes at the domain wall.

We observe these are the signatures of Type III bosonic
anomaly. This Type III anomaly in principle can be
also captured by the perspective of decorated ZN1

domain
walls of Ref.23 with projective ZN2

× ZN3
-symmetry.

B. Cocycle approach: Degenerate zero energy
modes from ZN symmetry-preserving monodromy

defect (branch cut) - dimensional reduction from 2D
to 1D

In Sec.V B, we had shown the symmetry-breaking do-
main wall would induce degenerate zero energy modes for
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Type III SPT. In this section, we will further show that,
a symmetry-preserving ZN1

flux insertion (or a mon-
odromy defect or branch cut modifying the Hamiltonian
as in Ref.22,43) can also have degenerate zero energy
modes. This is the case that, see Fig.8, when we put
the system on a 2D cylinder and dimensionally reduce it
to a 1D line along the monodromy defect. In this case
there is no domain wall, and the ZN1 symmetry is not
broken (but only translational symmetry is broken near
the monodromy defect / branch cut).

= 

A 

g2 g2' 

g1 g1' 

= 

g1 g1' 

g2 g2' 

g3' g3 

A 

B 
C B 

(a) (b) (c) 
A 

A 

= B

(d) 

FIG. 8: (a) The induced 2-cocycle from a 2+1D M3 = M2×
I1 topology with a symmetry-preserving ZNu flux A insertion
(b) Here M2 = S1 × I1 is a 2D spatial cylinder, composed
by A and B, with another extra time dimension I1. Along
the B-line we insert a monodromy defect of ZN1 , such that A
has a nontrivial group element value A = g1′g

−1
1 = g2′g

−1
2 =

g3′g
−1
3 ∈ ZN1 . The induced 2-cocycle βA(B,C) is a nontrivial

element in H2(ZNv × ZNw ,U(1)) = ZNvw (here u, v, w cyclic
as εuvw = 1), thus which carries a projective representation.
(c) A monodromy defect can viewed as a branch cut induced
by a ΦB flux insertion (both modifying the Hamiltonians).
(d) This means that when we do dimensional reduction on
the compact ring S1 and view the reduced system as a 1D
line segment, there are N123 degenerate zero energy modes
(due to the nontrivial projective representation).

In the below discussion, we will directly use 3-cocycles
ω3 from cohomology group H3(G,U(1)) to detect the
Type III bosonic anomaly. For convenience we use the
non-homogeneous cocycles (the lattice gauge theory co-
cycles), though there is no difficulty to convert it to ho-
mogeneous cocycles (SPT cocycles). The definition of
the lattice gauge theory n-cocycles are indeed related to
SPT n-cocycles:5,43,50–52

ωn(A1, A2, . . . , An) = νn(A1A2 . . . An, A2 . . . An, . . . , An, 1)

= νn(Ã1, Ã2, . . . , Ãn, 1) (64)

here Ãj ≡ AjAj+1 . . . An. For 3-cocycles

ω3(A,B,C) = ν3(ABC,BC,C, 1) (65)

⇒ ω3(g01, g12, g23) = ω3(g0g
−1
1 , g1g

−1
2 , g2g

−1
3 )

= ν3(g0g
−1
3 , g1g

−1
3 , g2g

−1
3 , 1) = ν3(g0, g1, g2, g3)

Here A = g01, B = g12, C = g23, with gab ≡ gag
−1
b .

We use the fact that SPT n-cocycle νn belongs to the G-
module, such that for r are group elements of G, it obeys

r · νn(r0, r1, . . . , rn−1, 1) = ν(rr0, rr1, . . . , rrn−1, r) (here
we consider only Abelian group G =

∏
i ZNi). In our

case, we do not have time reversal symmetry, so group
action g on the G-module is trivial.

In short, there is no obstacle so that we can simply use
the lattice gauge theory 3-cocycle ω(A,B,C) to study the
SPT 3-cocycle ν(ABC,BC,C, 1). Our goal is to design a
geometry of 3-manifold M3 = M2 × I1 with M2 the 2D
cylinder with flux insertion (or monodromy defect) and
with the I1 time direction (see Fig.8(a)) with a sets of
3-cocycles as tetrahedra filling this geometry (Fig.9). All
we need to do is computing the 2+1D SPT path integral
ZSPT (i.e. partition function) using 3-cocycles ω3,43

ZSPT = |G|−Nv
∑
{gv}

∏
i

(ω3
si({gvag−1

vb
})) (66)

Here |G| is the order of the symmetry group, Nv is the
number of vertices, ω3 is 3-cocycle, and si is the expo-
nent 1 or −1(i.e. †) depending on the orientation of each
tetrahedron(3-simplex). The summing over group ele-
ments gv on the vertex produces a symmetry-perserving
ground state. We consider a specific M3, a 3-complex of
Fig.8(a), which can be decomposed into tetrahedra (each
as a 3-simplex) shown in Fig.9. There the 3-dimensional
spacetime manifold is under triangulation (or cellulariza-
tion) into three tetrahedra.

We now go back to remark that the 3-cocycle condition
in Eq.(4) indeed means that the path integral ZSPT on
the 3-sphere S3 (as the surface the 4-ball B4) will be
trivial as 1. The 3-coboundary condition in Eq.(5) means
to identify the same topological terms (i.e. 3-cocycle) up
to total derivative terms. There is a specific way (called
the branching structure) to determine the orientation of
tetrahedron, thus to determine the sign of s for 3-cocycles
ω3

s by the determinant of volume, s ≡ det( ~v32, ~v31, ~v30).
Two examples of the orientation with s = +1,−1 are:

g0 g1

g3

g2

=
g0

g1

g2

g3

g0g1
−1 g1g2

−1

g2g3
−1

g0g2
−1

g1g3
−1

g0g3
−1

(67)

= ω3(g0g1
−1, g1g2

−1, g2g3
−1) (68)

g1 g0

g3

g2

=
g1

g0

g2

g3

g0g1
−1 g0g2

−1

g2g3
−1

g1g2
−1

g0g3
−1

g1g3
−1

(69)

= ω3
−1(g0g1

−1, g1g2
−1, g2g3

−1). (70)
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Here we define the numeric ordering g1′ < g2′ < g3′ <
g4′ < g1 < g2 < g3 < g4, and our arrows connect from
the higher to lower ordering.

Now we can compute the induced 2-cocycle (the dimen-

sional reduced 1+1D path integral) with a given inserted
flux A, determined from three tetrahedra of 3-cocycles,
see Fig.9 and Eq.(71).
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C 

ABC 

A 

AC ABA 
-1 

FIG. 9: The triangulation of a M3 = M2 × I1 topology (here M2 is a spatial cylinder composed by the A and B direction,
with a I1 time) into three tetrahedra with branched structures.

βA(B,C) ≡
g1 g2

g1′

g3

�

g2 g2′

g1′

g3

�

g1′ g2′

g3′

g3

(71)

=
ω(A,B,C)−1 · ω(ABA−1, A,C)

ω(ABA−1, ACA−1, A)
=

ω(B,A,C)

ω(A,B,C)ω(B,C,A)
=

ω(g1g
−1
2 , g1′g

−1
1 , g2g

−1
3 )

ω(g1′g
−1
1 , g1g

−1
2 , g2g

−1
3 )ω(g1g

−1
2 , g2g

−1
3 , g1′g

−1
1 )

(72)

We show that among the Type I, II, III 3-cocycles dis-
cussed in Sec.II, only when ω3 is the Type III 3-cocycle
ωIII (of Eq.10), this induced 2-cochain is nontrivial (i.e.
a 2-cocycle but not a 2-coboundary). In that case,

βA(B,C) = exp[i
2π

N123
(b1a2c3 − a1b2c3 − b1c2a3)] (73)

If we insert ZN1 flux A = (a1, 0, 0), then we shall com-
pare Eq.(73) with the nontrivial 2-cocycle ω2(B,C) in
H2(ZN2 × ZN3 ,U(1)) = ZN23 ,

ω2(B,C) = exp[i
2π

N23
(b2c3)]. (74)

The βA(B,C) is indeed nontrivial 2-cocycle as ω2(B,C)
in the second cohomology group H2(ZN2 × ZN3 ,U(1)).
Below we like to argue that this Eq.(74) implies the pro-
jective representation of the symmetry group ZN2

×ZN3
.

Our argument is based on two facts. First, the di-
mensionally reduced SPTs in terms of spacetime parti-
tion function Eq.(74) is a nontrivial 1+1D SPTs.72 We
can physically understand it from the symmetry-twist
as a branch-cut modifying the Hamiltonian51,72 (see also
Sec.VI). Second, from Ref.5’s Sec VI, we know that the
1+1D SPT symmetry transformation ⊗xUx(g) along the

1D’s x-site is dictated by 2-cocycle. The onsite tensor
S(g) ≡ ⊗xUx(g) acts on a chain of 1D SPT renders

S(g)|αL, . . . , αR〉 =
ω2(α−1

L g−1, g)

ω2(α−1
R g−1, g)

|gαL, . . . , gαR〉, (75)

where αL and αR are the two ends of the chain, with
g, αL, αR, · · · ∈ G all in the symmetry group. We can
derive the effective degree of freedom on the 0D edge
|αL〉 forms a projective representation of symmetry, we
find:

S(B)S(C)|αL〉

=
ω2(α−1

L C−1B−1, B)ω2(α−1
L C−1, B)

ω2(α−1
L C−1B−1, BC)

S(BC)|αL〉

= ω2(B,C)S(BC)|αL〉 (76)

In the last line, we implement the 2-cocycle condition

of ω2: δω2(a, b, c) = ω2(b,c)ω2(a,bc)
ω2(ab,c)ω2(a,b) = 1. The projective

representation of symmetry transformation S(B)S(C) =
ω2(B,C)S(BC) is explicitly derived, and the projective
phase is the 2-cocycle ω2(B,C) classified byH2(G,U(1)).
Interestingly, the symmetry transformations on two
ends together will form a linear representation, namely
S(B)S(C)|αL, . . . , αR〉 = S(BC)|αL, . . . , αR〉.5
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The same argument holds when A is ZN2
flux or ZN3

flux. From Sec.V, the projective representation of sym-
metry implies the nontrivial ground state degeneracy if
we view the system as a dimensionally-reduced 1D line
segment as in Fig.8(d). From the N123 factor in Eq.(73),
we conclude there is N123-fold degenerated zero energy
modes.

We should make two more remarks:
(i) The precise 1+1D path integral is actually sum-
ming over gv with a fixed flux A as ZSPT =
|G|−Nv

∑
{gv};fixed A βA(B,C), but overall our discussion

above still holds.
(ii) We have used 3-cocycle to construct a symmetry-
preserving SPT ground state under ZN1

flux insertion.
We can see that indeed a ZN1 symmetry-breaking do-
main wall of Fig.10 can be done in almost the same cal-
culation - using 3-cocycles filling a 2+1D spacetime com-
plex(Fig.10(a)). Although there in Fig.10(a), we need to
fix the group elements g1 = g2 on one side (in the time in-
dependent domain wall profile, we need to fix g1 = g2 =
g3) and/or fix g′1 = g′2 on the other side. Remarkably,
we conclude that both the ZN1

-symmetry-preserving
flux insertion and ZN1

symmetry-breaking domain
wall both provides a N123-fold degenerate ground states
(from the nontrivial projective representation for the
ZN2

, ZN3
symmetry). The symmetry-breaking case is

consitent with Sec.V B.
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FIG. 10: The ZN1 symmetry breaking domain wall along
the red × mark and/or orange + mark, which induces N123-
fold degenerate zero energy modes. The situation is very simi-
lar to Fig.8 (however, there was ZN1 symmetry-preserving
flux insertion). We show that both cases the induced 2-
cochain from calculating path integral ZSPT renders a non-
trivial 2-cocycle of H2(ZN2 × ZN3 ,U(1)) = ZN23 , thus carry-
ing nontrivial projective representation of symmetry.

VI. TYPE I, II, III CLASS OBSERVABLES:
FLUX INSERTION AND NON-DYNAMICALLY
“GAUGING” THE NON-ONSITE SYMMETRY

With the Type I, Type II, Type III SPT lattice model
built in Sec.III, in principle we can perform numerical
simulations to measure their physical observables, such
as (i) the energy spectrum, (ii) the entanglement entropy
and (iii) the central charge of the edge modes. Those are

the physical observables for the “untwisted sectors”, and
we would like to further achieve more physical observ-
ables on the lattice, by applying the parallel discussion
in Ref.22, using ZN gauge flux insertions through the 1D
ring. The similar idea can be applied to detect SPTs
numerically.44 The gauge flux insertion on the SPT edge
modes (lattice Hamiltonian) is like gauging its non-onsite
symmetry in a non-dynamical way. We emphasize that
gauging in a non-dynamical way because the gauge flux
is not a local degree of freedom on each site, but a global
effect. The Hamiltonian affected by gauge flux insertions
can be realized as the Hamiltonian with twisted bound-
ary conditions, see an analogy made in Fig.11. Another
way to phrase the flux insertion is that it creates a mon-
odromy defect43 (or a branch cut) which modify both the
bulk and the edge Hamiltonian. Namely, our flux inser-
tion acts effectively as the symmetry-twist51,72 modifying
the Hamiltonian. Here we outline the twisted boundary
conditions on the Type I, Type II, Type III SPT lattice
model of Sec.III.

= 

(a) (b) 

FIG. 11: (a) Thread a gauge flux ΦB through a 1D ring
(the boundary of 2D SPT). (b) The gauge flux is effectively
captured by a branch cut (the dashed line in the blue color).
Twisted boundary condition is applied on the branch cut. The
(a) and (b) are equivalent in the sense that both cases cap-
ture the equivalent physical observables, such as the energy
spectrum.
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FIG. 12: The illustration of an effective 1D lattice model
with M -sites on a compact ring under a discrete ZN flux
insertion. Effectively the gauge flux insertion is captured by
a branch cut located between the site-M and the site-1. This
results in a ZN variable ω insertion as a twist effect modifying
the lattice Hamiltonian around the site-M and the site-1.

We firstly review the work done in Ref.22 of Type I
SPT class and then extends it to Type II, III class. (We
leave some tedious calculation to Appendix.D.) We aim
to build a lattice model with twisted boundary conditions
to capture the edge modes physics in the presence of a
unit of ZN flux insertion. Since the gauge flux effectively
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introduces a branch cut breaking the translational sym-
metry of T (as shown in Fig. 11), the gauged (or twisted)

Hamiltonian, say H̃
(p)
N , is not invariant respect to trans-

lational operator T , say [H̃
(p)
N , T ] 6= 0. The challenge of

constructing H̃
(p)
N is to firstly find a new (so-called mag-

netic or twisted) translation operator T̃ (p) incorporating
the gauge flux effect at the branch cut, in Fig. 11 (b) and
in Fig.12, say the branch cut is between the site-M and
the site-1. We propose two principles to construct the
twisted lattice model. The first general principle is that
a string of M units of twisted translation operator T̃ (p)

renders a twisted symmetry transformation S̃
(p)
N incorpo-

rating a ZN unit flux,

• S̃(p)
N ≡ (T̃ (p))M = S̃

(p)
N ·(U

(N,p)
M,1 [σ†Mσ1])−1·U (N,p)

M,1 [ωσ†Mσ1],

(77)

with the unitary operator (T̃ (p)), i.e. (T̃ (p))†T̃ (p) =

11. We clarify that U
(N,p)
M,1 is from Eq.(27), where

U
(N,p)
M,1 [. . . ] ≡ U (N,p)

M,1 ◦ [. . . ] means U
(N,p)
M,1 is a function of

. . . variables. For example, U
(N,p)
M,1 [ωσ†Mσ1] means that

the variable σ†Mσ1 in Eq.(27) is replaced by ωσ†Mσ1 with
an extra ω insertion. The second principle is that the
twisted Hamiltonian is invariant in respect of the twisted
translation operator, thus also invariant in respect of
twisted symmetry transformation, i.e.

• [H̃
(p)
N , T̃ (p)] = 0, [H̃

(p)
N , S̃

(p)
N ] = 0. (78)

We solve Eq.(77) by finding the twisted lattice translation
operator

T̃ (p) = T (U
(N,p)
M,1 (σ†Mσ1))τ1, (79)

for each p ∈ ZN classes. For the s units of ZN flux, we
have the generalization of T̃ (p) from a unit ZN flux as,

T̃ (p)|s = T (U
(N,p)
M,1 [σ†Mσ1])s τs1 . (80)

Indeed, there is no difficulty to extend this construc-
tion to Type II, III classes. For Type II SPT classes
(with nonzero indices p12 and p21 of Eq.(28), while
p1 = p2 = 0) the non-onsite symmetry transforma-
tion can be reduced from NNN to NN coupling term

U
(N1,p12)
j,j+2 → U

(N1,p12)
j,j+1 , also from U

(N2,p21)
j,j+2 → U

(N2,p21)
j,j+1 .

The Type II twisted symmetry transformation has
exactly the same form as Eq.(77) except replacing the
U . For Type III SPT classes, the Type III twisted
symmetry transformation also has the same form as
Eq.(77) except replacing the U to W in Eq.(32). The
second principle in Eq.(78) also follows.

Twisted Hamiltonian
The twisted Hamiltonian H̃

(p1,p2,p12)
N1,N2

can be readily

constructed from H
(p1,p2,p12)
N1,N2

of Eq. (37), with the con-

dition Eq.(78). (An explicit example for Type I SPT 1D
lattice Hamiltonian with a gauge flux insertion has been
derived in Ref. 22, which we shall not repeat here.)

Notice that the twisted non-trivial Hamiltonian breaks
the SPT global symmetry (i.e. if p 6= 0 mod(N), then

[H̃
(p)
N , S

(p)
N ] 6= 0), which can be regarded as the sign of

ZN anomaly.37 On the other hand, in the trivial state

p = 0, Eq. (77) yields S̃
(p=0)
N = S

(p=0)
N =

∏M
j=1 τj , where

the twisted trivial Hamiltonian still commutes with the
global ZN onsite symmetry, and the twisted boundary
effect is nothing but the usual toroidal boundary condi-
tions.53 (See also a discussion along the context of SPT
and the orbifolds.54)

The twisted Hamiltonian provides distinct low en-
ergy spectrum due to the gauge flux insertion (or the
symmetry-twist). The energy spectrum thus can be phys-
ical observables to distinguish SPTs. Analytically we
can use the field theoretic mode expansion for multi-
plet scalar chiral bosons ΦI(x) = φ0I + K−1

IJ PφJ
2π
L x +

i
∑
n 6=0

1
nαI,ne

−inx 2π
L , with zero modes φ0I and winding

modes PφJ satisfying the commutator [φ0I , PφJ ] = iδIJ .
The Fourier modes satisfies a generalized Kac-Moody
algebra: [αI,n, αJ,m] = nK−1

IJ δn,−m. The low energy
Hamiltonian, in terms of various quadratic mode expan-
sions, becomes

H =
(2π)2

4πL
[VIJK

−1
Il1K

−1
Jl2Pφl1Pφl2+

∑
n 6=0

VIJαI,nαJ,−n]+. . .

(81)
Following the procedure outlined in Ref.22 with gauge
flux (compared to the ungauged case in Ref.23), taking
into account the twisted boundary conditions, we expect
the conformal dimension of gapless edge modes of cen-
tral charge c = 1 free bosons labeled by the primary
states |n1,m1, n2,m2〉 (all parameters are integers) with
the same compactification radius R for Type I and Type
II SPTs (for simplicity, we assume N1 = N2 ≡ N):

∆̃
(p1,p2,p12)
N (n1,m1, n2,m2;R) (82)

=
1

R2

(
n1 +

p1

N
+
p12

N

)2

+
R2

4

(
m1 +

1

N

)2

+
1

R2

(
n2 +

p2

N
+
p21

N

)2

+
R2

4

(
m2 +

1

N

)2

which is directly proportional to the energy of twisted
Hamiltonian. (p12 or p21 can be used interchangeably.)

The conformal dimension ∆̃
(p1,p2,p12)
N (Pu,Puv) is intrin-

sically related to the SPT class labels: p1, p2, p12, and is
a function of momentum Pu ≡ (nu + pu

N + puv
N )(mu + 1

N )

and Puv ≡ (nu + pu
N + puv

N )(mv + 1
N ). Remarkably, for

Type III SPTs, the nature of non-commutative symmetry
generators will play the key rule, as if the gauged con-
formal field theory (CFT) and its correspoinding gauged
dynamical bulk theory has non-Abelian features, we will
leave this survey for future works. The bottom line is
that different classes of SPT’s CFT spectra respond to
the flux insertion distinctly, thus we can in principle dis-
tinguish Type I, II and III SPTs.
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VII. CONCLUSION

Quantum anomalies have recently been emphasized to
be intimately related to classifying and characterizing
symmetry-protected topological states (SPTs) and topo-
logically ordered states.37 While fermionic anomalies are
more familiar to the high-energy particle physics com-
munities (such as Adler-Bell-Jackiw anomaly,3,4 see Sup-
plemental Material73), the bosonic anomalies in our work
are less discussed in the literature. For particle physicists,
one may attempt to compute the anomaly through (i) a
1-loop Feynman diagram of chiral fermions3,4 or (ii) Fu-
jikawa path integral method55 by a Jacobi integral mea-
sure variation under the symmetry transformation. How-
ever, here, in our work, we instead seek another route,
a fully bosonic language, to capture bosonic anomalies.
We ask what are the anomalous signals for these bosonic
anomalies. The result is summarized in Table I.

Since some recent papers also discuss the issues of
anomalies in the context of SPTs or condensed matter
setting36,57–60,62–64 we shall stress the meaning of quan-
tum anomaly more clearly. We shall also ask:

“How does the bosonic anomaly of our study relate
to the context of the known quantum anomaly in
the language of high energy physics?”

To answer this question, we have defined,

The quantum anomaly is the obstruction of a sym-
metry of a theory to be fully-regularized for the full
quantum theory as an onsite symmetry on the UV-
cutoff lattice in the same spacetime dimension.

First, this understanding is consistent with the cases of
ABJ anomaly, where the symmetry of a classical action
cannot be a symmetry of any regularization of the full
quantum theory. For example, in chiral U(1)-anomaly at
quantum level, the axial U(1)A symmetry is in conflict
with the vector U(1)V symmetry conservation.3,4,55

Second, one can further ask, “how can we fully regular-
ize the edge theory with bosonic anomalies on the same
spacetime dimension(1+1D) if it has quantum anoma-
lies?” The answer is that, “because the (anomalous)
symmetry is realized as a non-onsite symmetry instead of
as a onsite symmetry, we can still realize the edge theory
on the lattice anomalously.” Again, this agrees with our
result and the known previous work.5,19,21,22,56 This regu-
larization with non-onsite symmetry indeed is analogues
to the Ginsparg-Wilson fermion approach65 dealing with
the fermion doubling problem for chiral fermions using
non-onsite symmetry.56 The non-onsite symmetry is an
anomalous symmetry ; thus that is why it is difficult to
gauge the non-onsite symmetry locally and dynamically
(see Ref.56 for a connection between Ginsparg-Wilson
fermions and SPTs).

Furthermore, another way to understand the anomaly
is that one can regularize the quantum theory with onsite
symmetry, if the regularization is done with an extra di-
mensional bulk5 (thus not in the same spacetime dimen-

sion as the boundary). Again, this realization agrees with
the quantum anomaly picture leaking quantum numbers
through an extra dimensional bulk, shown in Fig.2.

Let us now summarize the Type I, II, III bosonic
anomalies using the above understanding. To detect
Type II bosonic SPTs, we find that the classic model
studied by Jackiw-Rebbi48 or Goldstone-Wilczek42 offers
a similar prototype observable. More precisely, the in-
duced fractional quantum number is found in p12

class in G = ZN1 × ZN2 symmetry. For Type II SPTs,
the ZN1-symmetry-breaking domain wall will gap the
edge and then induce a p12

N12
fractional unit of ZN2

charge

(Fig.4). The fermionized language shown in Fig.7, can
capture the 1-loop effect analogous to ABJ anomaly’s 1-
loop calculation.3,4

Type III SPTs’ bosonic anomaly provides different
phenomena. The N123-fold degenerate ground states
are induced from either the symmetry-breaking domain
wall on the 1D edges (Fig.10) or the symmetry-preserving
monodromy defect connecting edges through the bulk of
a cylinder (which can be viewed as a dimensional-reduced
1D line system in Fig.8). We show that the induced pro-
jective representation of symmetry under the above two
circumstances implies the N123-fold degenerate zero en-
ergy modes.67

We shall stress that the Type III edge’s symmetry
transformation provides a new kind of symmetry charge
Q coupling as Q

∫
εuvw∂xφv(x)φw(x)dx in the current

term Eq.(47), which is rather distinct from the con-
ventional symmetry charge q coupling as q

∫
∂xφu(x)dx.

While the work done in Ref.24,26 cannot accommodate
Type III class (p123 6= 0) SPTs, our approach with a
new charge vector Q goes beyond previous work; thus
we expect to obtain the new refined classification for the
field theory also for other finite symmetry groups using
Eq.(47) and its generalizatoin.

For Type II and Type III SPT classes, we can char-
acterize them by dimensional reduction to a lower di-
mensional boundary, and look for its induced quantum
number or topological defects(similar effects happen in
Majorana zero modes for free-fermion SPT cases68). For
Type I class p1 ∈ ZN1 , however, the physical observ-
ables we found so far is a bulk probe, instead of having
a dimensional-reduction to a lower dimensional system
trapped with nontrivial quantum number. For Type I
SPT probe, either the flux insertion goes through the
bulk cylinder, or the branch cut/monodromy defects con-
nects from the edges to the bulk (Fig.2). One can cal-

culate the conformal dimension ∆̃(P)(both analytically
and numerically) as a function of momentum P69 in the
twisted sector under monodromy defects, and one can
show that each SPT class has distinct spectral shift.22

Meanwhile, this type of probe such as flux inser-
tion/monodromy defect which connects from the bound-
ary to the bulk is essentially a signal of edge anomalous
physics. In a sense, we develop an effective 1D lattice
Hamiltonian with non-onsite symmetry which signals the
existence of higher dimensional bulk, just like the edge
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chiral boson theory signals the bulk Chern-Simons the-
ory. Only through a “ non-dynamically” gauge-flux inser-
tion, are we able to achieve gauging the non-onsite sym-
metry effectively with a monodromy defect branch cut,
shown in Fig.10,2. This provides yet another way to in-
terpret the edge anomaly - the 1D edge modified twisted
Hamiltonian incorporating a branch cut does not pre-

serve the original symmetry G (i.e. [H̃
(p)
N , S

(p)
N ] 6= 0 in

Sec.VI). However, one can readily check the full bulk-

edge Hamiltonian description H̃
(p)
N,cilinder such as a cylin-

der with two edges in Fig.2 will preserve the symmetry

G (i.e. [H̃
(p)
N,cilinder, S

(p)
N ] = 0).

We emphasize that, thanks to realizing the symmetry
as a non-onsite symmetry on the lattice, all our SPT
edge lattice constructions are successfully regularized
on discrete space lattice with finite dimensional Hilbert
space on the 1D ring. All our lattice models are ready for
performing numerical simulations. For future directions,
it will be interesting to numerically study its physical
observables to detect the distinct SPT classes, and
also to study the charge transport with two edges on
the cylinder talking to each other by quantum number
pumping process in Fig.2. This may require a full
construction of the extra dimensional 2D bulk lattice,
which can address what we mean by quantum anomalies
as some lower dimensional theory leaks certain quantum
numbers to an extra dimensional bulk .
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Supplemental Materials

Appendix A: Chiral Fermionic Adler-Bell-Jackiw
Anomalies and Topological Phases

In contrast to the bosonic anomalies of discrete sym-
metries studied in our main text, here we present a chi-
ral fermionic anomaly (ABJ anomalies3,4) of a continu-
ous U(1) symmetry realized in topological phases in con-
densed matter.

Specifically we consider an 1+1D U(1) quantum
anomaly realization through 1D edge of U(1) quantum

Hall state, such as in Fig.13. We can formulate a Chern-
Simons action S =

∫ (
K
4π a ∧ da + q

2πA ∧ da
)

with an
internal statistical gauge field a and an external U(1)
electromagnetic gauge field A. Its 1+1D boundary is de-
scribed by a (singlet or multiplet-)chiral boson theory of
a field Φ (ΦL on the left edge, ΦR on the right edge).
Here the field strength F = dA is equivalent to the ex-
ternal U(1) flux in the flux-insertion thought experiment
threading through the cylinder (see a precise derivation
in the Appendix of Ref.22). Without losing generality, let
us first focus on the boundary with only one edge mode.
We derive its equations of motion as

∂µ j
µ
b =

σxy
2
εµν Fµν = σxy ε

µν ∂µAν = Jy, (A1)

∂µ jL = ∂µ(
q

2π
εµν∂νΦL) = ∂µ(qψ̄γµPLψ) = +Jy, (A2)

∂µ jR = −∂µ(
q

2π
εµν∂νΦR) = ∂µ(qψ̄γµPRψ) = −Jy.(A3)

We show the Hall conductance from its definition Jy =
σxyEx in Eq.(A1), as σxy = qK−1q/(2π).

y 
x 

Jb Jb 
Jy 

Quantum Hall or SPT State 

FIG. 13: For topological phases, the anomalous current Jb
of the boundary theory along x direction leaks to Jy along
y direction in the extended bulk system. ΦB-flux insertion
dΦB/dt = −

∮
E · dL induces the electric Ex field along the

x direction. The effective Hall effect dictates that Jy =
σxyEx = σxyε

µν ∂µAν , with the effective Hall conductance
σxy probed by an external U(1) gauge field A.

Jµ

=

FIG. 14: In the fermionic language, the 1+1D chiral fermions
(represented by the solid line) and the external U(1) gauge
field (represented by the wavy curve) contribute to a 1-loop
Feynman diagram correction to the axial current jµA. This
leads to the non-conservation of jµA as the anomalous current
∂µ j

µ
A = εµν(qK−1q/2π)Fµν .

Here jb stands for the edge current. A left-moving cur-
rent jL = jb is on one edge, and a right-moving current
jR = −jb is on the other edge, shown in Fig.13. By
bosonization, we convert a compact bosonic phase Φ to
the fermion field ψ. The vector current is jL + jR ≡ jV,
and the U(1)V current is conserved. The axial current
is jL − jR ≡ jA, and we derive the famous ABJ U(1)A
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anomalous current in 1+1D (or Schwinger’s 1+1D quan-
tum electrodynamic [QED] anomaly71).

∂µ j
µ
V = ∂µ (jµL + jµR) = 0, (A4)

∂µ j
µ
A = ∂µ (jµL − j

µ
R) = σxyε

µν Fµν . (A5)

This simple bulk-edge derivation is consistent with field
theory 1-loop calculation through Fig.14. It shows that
the combined boundary theory on the left and right edges
(living on the edges of a 2+1D U(1) Chern-Simons the-
ory) can be viewed as an 1+1D anomalous world of
Schwinger’s 1+1D QED.71 This is an example of chiral
fermionic anomaly of a continuous U(1) symmetry when
K is an odd integer. (When K is an even integer, it
becomes a chiral bosonic anomaly of a continuous U(1)
symmetry.)

Appendix B: Matrix Product Operators and Lattice
Regularization

In this Appendix, we provide detailed calculations
about the Matrix Product Operators (MPO) for-
malism. Contracting three neighbored sites tensor
T (ga), T (gb), T (gc) of G-symmetry transformation S
(with g ∈ G) in different order will render a relative pro-
jective phase. Importantly, if this phase is nontrivial 3-
cocycle, then it readily verifies that our lattice construc-
tion maps to the nontrivial class of cohomology group.
We also show the details of lattice regularizations in
Sec.III.

We now formulate the unitary operator S
(p)
N as the

MPO with the form:

S
(p)
N =

∑
{j,j′}

tr[T
j1j
′
1

α1α2T
j2j
′
2

α2α3 . . . T
jM j

′
M

αMα1 ]|j′1, . . . , j′M 〉〈j1, . . . , jM |.

(B1)
This is the operator formalism of matrix product
states (MPS). Here physical indices j1, j2, . . . , jM and

j′1, j
′
2, . . . , j

′
M are labeled by input/output physical eigen-

values (here ZN rotor angle), the subindices 1, 2, . . . ,M
are the physical site indices. There are also virtual in-
dices α1, α2, . . . , αM which are traced in the end. Sum-
ming over all the operation from {j, j′} indices, we shall

reproduce the symmetry transformation operator S
(p)
N .

To find out the projective phase eiθ(ga,gb,gc), we use the
facts of tensors T (ga), T (gb), T (gc) acting on the same
site with group elements ga, gb, gc. There is a generic
projective relation

T (ga · gb) = P †ga,gbT (ga)T (gb)Pga,gb . (B2)

Here Pga,gb is the projection operator. We contract three
tensors in two different orders,

(Pga,gb⊗I3)Pgagb,gc ' eiθ(ga,gb,gc)(I1 ⊗ Pgb,gc)Pga,gbgc .
(B3)

The left-hand-side contracts the a, b first then with the
c, while the right-hand-side contracts the b, c first then
with the a. Here ' means the equivalence is up to a pro-
jection out of un-parallel states. If the projective phase
eiθ(ga,gb,gc) happens to be the nontrivial 3-cocycle in a
cohomology group, then we reach our goal - this veri-
fies that our SPT lattice constructions (thus also the low
energy field theory) maps to the nontrivial class of the
cohomology group H3(G,U(1)). This is the emphasis of
this Appendix.

1. Type I and II classes

We first write down the σ̃
(1)
j , σ̃

(2)
j operators in the lat-

tice regularization for Type II symmetry transformation
in Sec.III B:

σ̃
(u)
j =



(
1 0 0 0
0 ωuv 0 0
0 0 . 0
0 0 0 ωgcd(Nu,Nv)−1

uv

)
0 0 0

0

(
1 0 0 0
0 ωuv 0 0
0 0 . 0
0 0 0 ωgcd(Nu,Nv)−1

uv

)
0 0

0 0
. . . 0

0 0 0

(
1 0 0 0
0 ωuv 0 0
0 0 . 0
0 0 0 ωgcd(Nu,Nv)−1

uv

)


j

= 〈φu,j |eiφ̃u,j |φu,j〉,(B4)

The σ̃
(u)
j matrix has Nu ×Nu components. It is block

diagonalizable with Nu
N12

subblocks, and each subblock

with N12×N12 components. We now verify that our sym-
metry transformations Eq.(28)(thus the lattice Hamil-
tonian Eq.(37)) corresponds to non-trivial 3-cocycles in
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the third cohomology group in H3(ZN1
× ZN2

,U(1)) =
ZN1
× ZN2

× Zgcd(N1,N2). In this subsection we will fo-
cus on p1, p2 Type I and p12 Type II class. The test
below will verify that we indeed construct lattice model
of the nontrivial SPT of the p12 class with pu ∈ ZNu ,
p12 ∈ Zgcd(N1,N2).

The tensor T (g) and the unitary operator S
(p1,p12)
N1

·
S

(p2,p21)
N2

as the matrix product operators (MPO) already

appeared in the main text, we should not repeat it here.
To find out the projective phase eiθ(ga,gb,gc) of three ten-
sors T (ga), T (gb), T (gc) acting on three neighbored sites,
we follow the fact in Eq.(12), and derive the Type I, II
projection operator:

P
(p)
N1,N2

≡ P (p)

N1,N2,(m
(1)
a ,m

(1)
b ),(m

(2)
a ,m

(2)
b )

=

∫
dφ′

(1)
in dφ

′(2)
in (|φ′(1)

in +
2πm

(1)
b

N1
〉|φ′(1)

in 〉〈φ′
(1)
in |)(|φ′

(2)
in +

2πm
(2)
b

N2
〉|φ′(2)

in 〉〈φ′
(2)
in |)

·eip1φ
′(1)
in

(
[m(1)

a +m
(1)
b ]N1−(m(1)

a +m
(1)
b )
)
/N1 · eip2φ

′(1)
in

(
[m(2)

a +m
(2)
b ]N2−(m(2)

a +m
(2)
b )
)
/N2

·e
ip21(φ̃′

(1)
in )r

(
[m(2)

a +m
(2)
b ]N2

−(m(2)
a +m

(2)
b )

)
/N2 · e

ip12(φ̃′
(2)
in )r

(
[m(1)

a +m
(1)
b ]N1

−(m(1)
a +m

(1)
b )

)
/N1

, (B5)

where [ma + mb]N with subindex N means taking the

value module N . Pg1,g2 inputs one state 〈φ′(1)
in |〈φ′

(2)
in |

and outputs two states (|φ′(1)
in +

2πm
(1)
b

N1
〉|φ′(1)

in 〉)(|φ′
(2)
in +

2πm
(2)
b

N2
〉|φ′(2)

in 〉). To derive the projective phase

eiθ(ga,gb,gc), we start by contracting T (gb) and T (gc)
firstly, and then the combined tensor contracts with
T (ga) gives:

(I1 ⊗ Pgb,gc)Pga,gbgc =

∫
dφ′′

(1)
in dφ

′′(2)
in (|φ′′(1)

in +
2π(m

(1)
b +m

(1)
c )

N1
〉a|φ′′

(1)
in +

2πm
(1)
c

N1
〉b|φ′′

(1)
in 〉c〈φ′′

(1)
in |abc)

·(|φ′′(2)
in +

2π(m
(2)
b +m

(2)
c )

N2
〉a|φ′′

(2)
in +

2πm
(2)
c

N2
〉b|φ′′

(2)
in 〉c〈φ′′

(2)
in |abc)

·eip1φ
′′(1)
in

(
(m(1)

a +m
(1)
b +m(1)

c )N1−m(1)
a −m

(1)
b −m

(1)
c

)
/N1 · eip2φ

′′(2)
in

(
(m(2)

a +m
(2)
b +m(2)

c )N2−m(2)
a −m

(2)
b −m

(2)
c

)
/N2

·eip21(φ̃′′
(1)
in )r

(
(m(2)

a +m
(2)
b +m(2)

c )N2
−m(2)

a −m
(2)
b −m

(2)
c

)
/N2 · eip12(φ̃′′

(2)
in )r

(
(m(1)

a +m
(1)
b +m(1)

c )N1
−m(1)

a −m
(1)
b −m

(1)
c

)
/N1 (B6)

which inputs one state 〈φin| and outputs three states
|φin + 2π

N (mb + mc)〉, |φin + 2π
N mc〉 and |φin〉. Similarly

we can derive (Pga,gb ⊗ I3)Pgagb,gc by contracting T (ga)
and T (gb) firstly, and then the combined tensor contracts
with T (gc). By computing Eq.(B3), with only p1 index
(i.e. setting p2 =p12 = 0), we can derive Type I 3-cocycle:

eiθ(ga,gb,gc) = eip1(
2πm

(1)
c

N1
)
(m

(1)
a +m

(1)
b

)N2
−(m

(1)
a +m

(1)
b

)

N1

= ω
(i)
I (mc,ma,mb). (B7)

By computing Eq.(B3) with only p21 index (i.e. setting
p1 =p2 =p12 = 0), we can recover Type II 3-cocycle,

eiθ(ga,gb,gc) = eip21(
2πm

(1)
c

N1
)
(

[m(2)
a +m

(2)
b ]N2

−(m(2)
a +m

(2)
b )
)
/N2

= ω
(ij)
II (mc,ma,mb), (B8)

up to the index redefinition p21 → −p12. We
thus derive that the projective phase eiθ(ga,gb,gc)

from MPS tensors corresponds to the group coho-
mology approach.5 From here we learn that the in-
serted p12 and p21 are indeed the same indices

because eip21(
2πm

(1)
c

N1
)
(

(m(2)
a +m

(2)
b )N2

−(m(2)
a +m

(2)
b )
)
/N2 and

eip12(
2πm

(2)
c

N2
)
(

(m(1)
a +m

(1)
b )N1

−(m(1)
a +m

(1)
b )
)
/N1 are equivalent

3-cocycles up to 3-coboundaries,45 meanwhile p12 =
p12 mod gcd(N1, N2). This demonstrates that our lat-
tice construction fulfills all Zgcd(N1,N2) Type II classes of
SPT with ZN1

×ZN2
-symmetry, and also Type I ZN1

,ZN2

classes as we desired.
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2. Type III class

We first motivate our construction of matrix product
operators by observing that Type III 3-cocycle in Eq.(10)
inputs, for example, a1 ∈ ZN1 , b2 ∈ ZN2 , c3 ∈ ZN3

and outputs a U(1) phase. This implies that the ZN1

symmetry transformation will affect the mixed ZN2 , ZN3

rotor models, while similarly ZN2 , ZN3 global symmetry

will cause the same effect. This observation guides us to
write down the tensor T (g) and the symmetry transfor-

mation S
(p)
N = S

(p123)
N1,N2,N3

defined in Sec.III A. We propose

the tensor T (g) and S
(p123)
N1,N2,N3

already in the main text,
which we shall not repeat. Let us first understand how
to regularize the symmetry operator on the lattice.

Lattice Regularization

We derive the non-onsite symmetry transformation W III
j,j+1, acting on the site j and j + 1 as:

• W III
j,j+1 =

∏
u,v,w∈{1,2,3}

exp
(

i
N1N2N3

2π gcd(N1, N2, N3)
εuvw

p123

Nu

(
φ
j+1,(v)
in φ

j,(w)
in

))
(B9)

=
∏

(v,w)=(2,3),(3,1),(1,2)

e
ip123

(
(φ
j+1,(v)
in −φj,(v)in )φ

j,(w)
in −(φ

j+1,(w)
in −φj,(w)

in )φ
j,(v)
in

)
NvNw

2π gcd(N1,N2,N3) (B10)

=
∏

(v,w)=(2,3),(3,1),(1,2)

(
(σ

(v)†
j σ

(v)
j+1)φ

j,(w)
in ((σ

(w)
j σ

(w)†
j+1 )φ

j,(v)
in )

)p123 NvNw
2π gcd(N1,N2,N3)

(B11)

=
∏

u,v,w∈{1,2,3}

(
σ

(v)†
j σ

(v)
j+1

)εuvwp123 log(σ
(w)
j

)NvNw

2πi gcd(N1,N2,N3)

(B12)

≡W III
j,j+1;N1

·W III
j,j+1;N2

·W III
j,j+1;N3

(B13)

where we separate ZN1
,ZN2

,ZN3
non-onsite symmetry transformation to W III

j,j+1;N1
,W III

j,j+1;N2
,W III

j,j+1;N3
respectively.

More explicitly, we have ZN1
non-onsite symmetry transformation:

W III
j,j+1;N1

= e
ip123

(
(φ
j+1,(2)
in −φj,(2)in )φ

j,(3)
in −(φ

j+1,(3)
in −φj,(3)in )φ

j,(2)
in

)
N2N3

2π gcd(N1,N2,N3) (B14)

=
(

(σ†2,jσ2,j+1)log(σ3,j)((σ3,jσ
†
3,j+1)log(σ2,j))

)p123 N2N3
2πi gcd(N1,N2,N3)

, (B15)

and W III
j,j+1;N2

,W III
j,j+1;N3

have the analogous forms. We first attempt to regularize this W III
j,j+1 operator by defining

φ
j,(u)
in ≡ i−1 log(σu,j) = i−1


log[1] 0 0 0

0 log[ωu] 0 0

0 0
. . . 0

0 0 0 log[ωNu−1
u ]


j

=


0 0 0 0

0 2π
Nu

0 0

0 0
. . . 0

0 0 0 2π(Nu−1)
Nu


j

, (B16)

here u ∈ {1, 2, 3}. The challenge of the lattice regularization is to understand what exactly does this op-

erator (σ†v,jσv,j+1)
p123

log(σw,j)NvNw

2πi gcd(N1,N2,N3) in Eq.(32) mean on the lattice. Without losing generality, let us take(
(σ†v,jσ2,j+1)log(σ3,j)

)p123 N2N3
2πi gcd(N1,N2,N3)

in W III
j,j+1;N1

of Eq.(B14) as an example. The answer to this question is

that we should view how this operator acts on the combined ZN2
×ZN3

states: |φ(2)〉⊗ |φ(3)〉. The W III
j,j+1;N1

operator

is a ((N2)2 × (N3)2) × ((N2)2 × (N3)2)-component matrix acting on the (N2)2 × (N3)2-dimensional Hilbert space

spanned by the all |φ(2)
j 〉 ⊗ |φ

(2)
j+1〉 ⊗ |φ

(3)
j 〉 ⊗ |φ

(3)
j+1〉 states at the site j and j + 1. The key is regularizing this operator
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W III
j,j+1;N1

explicitly, using Eq.(B16) as

(σ
(2)†
j σ

(2)
j+1)

p123 log(σ3,j)N2N3
2πi gcd(N1,N2,N3) =


(σ

(2)†
j σ

(2)
j+1)

log[1]
0 0 0

0 (σ
(2)†
j σ

(2)
j+1)

log[ω3]
0 0

0 0
. . . 0

0 0 0 (σ
(2)†
j σ

(2)
j+1)

log[ω
N3−1
3 ]



p123N2N3
2πi gcd(N1,N2,N3)

j

(B17)

=


(σ

(2)†
j σ

(2)
j+1)0 0 0 0

0 (σ
(2)†
j σ

(2)
j+1)

p123N2
gcd(N1,N2,N3) 0 0

0 0
. . . 0

0 0 0 (σ
(2)†
j σ

(2)
j+1)

p123N2(N3−1)

gcd(N1,N2,N3)


j

(B18)

We emphasize that each sub-block involving (σ†2,jσ2,j+1) is a (N2)2 × (N2)2-component matrix. (Here σ2,j+1 is a

N2 ×N2-component matrix.) There are totally N3 ×N3 sub-blocks. We recall that σ2 are operators defined in this

manner in Eq.(23), i.e. σ2 ∼ eiφ
(2)

, with φ(2) a ZN2
variable. Thus, the operator in each sub-block has the form

(W III
j,j+1;N1

) =
(

(σ†2,jσ2,j+1)n3N2((σ3,jσ
†
3,j+1)n2N3)

) p123
gcd(N1,N2,N3)

(B19)

The notation nu(above u = 2 or 3) denotes an integer which corresponds to the ZNu values for |φ(u) = nu(2π/Nu)〉 state
in different sub-blocks. First, we notice that p123 is identified by p123 = p123 mod gcd(N1, N2, N3). In addition, when
p123 is a multiple of gcd(N1, N2, N3), we have (W III

j,j+1;N1
) = 1 (here 1 really means 11N2×N2,j⊗11N2×N2,j+1⊗11N3×N3,j⊗

11N3×N3,j+1, the identity operator of ZN2
, ZN3

states on sites j, j+1). When p123 is not a multiple of gcd(N1, N2, N3),
our lattice construction represents a nontrivial non-onsite symmetry transformation (W III

j,j+1 6= 1), thus produces a
nontrivial SPT labeled by p123 ∈ Zgcd(N1,N2,N3). One may expect to full-regularize Eq.(B18), we need to solve a

constraint (W III
j,j+1;N1

)N1 analogous to Eq.(26),(30). But we do not have to: the exponent in Eq.(B18) is already an

integer, e.g. p123N2n3

gcd(N1,N2,N3) is necessarily an integer. We note that, as we expected, when p123 = gcd(N1, N2, N3),

we have (W III
j,j+1;N1

)N1 = 1; when p123 6= gcd(N1, N2, N3), we have (W III
j,j+1;N1

)N1 6= 1. Therefore, we have shown

Eq.(B18) as the fully-regularized ZN2
operator acting on the ZN2

× ZN3
states.

It is straightforward to apply the above W III
j,j+1;N1

discussion to S
(p123)
N1,N2,N3

, W III
j,j+1. We should just regard S

(p123)
N1,N2,N3

,

W III
j,j+1 as operators acting on the Hilbert space with ZN1

× ZN2
× ZN3

states. We can show that all terms in

W III
j,j+1;N1

·W III
j,j+1;N2

·W III
j,j+1;N3

can be regularized in the same way.

Matrix Product Operators and Cocycles

Below we calculate in details on Type III analog of Eq.(B3) to derive the nontrivial projective phase in MPO
formalism, equivalent to the Type III 3-cocycles Eq.(10). We use the fact Eq.(B2) to derive the projection tensor
Pga,gb ,

P
(p)
N1,N2,N3

≡ P (p)

N1,N2,N3,(m
(1)
a ,m

(1)
b ),(m

(2)
a ,m

(2)
b ),(m

(3)
a ,m

(3)
b )

(B20)

=
∏

u,v,w∈{1,2,3}

∫
dφ′

(u)
in (|φ′(u)

in +
2πm

(u)
b

N1
〉|φ′(u)

in 〉〈φ′
(u)
in |) · e

i2πp123ε
uvwφ′

(u)
in

(
m

(v)
a
Nv

m
(w)
b
Nw

)
N1N2N3

2π gcd(N1,N2,N3)

Similar to Eq.(B5), Pg1,g2 inputs one state

〈φ′(1)
in |〈φ′

(2)
in |〈φ′

(3)
in | and outputs two states

(|φ′(1)
in +

2πm
(1)
b

N1
〉|φ′(1)

in 〉)(|φ′
(2)
in +

2πm
(2)
b

N2
〉|φ′(2)

in 〉)(|φ′
(3)
in +

2πm
(3)
b

N3
〉|φ′(2)

in 〉). For (I1 ⊗ Pgb,gc)Pga,gbgc , we start

by contracting T (gb) and T (gc) firstly, and then the
combined tensor contracts with T (ga) gives:
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(I1 ⊗ Pgb,gc)Pga,gbgc =
∏

u,v,w∈{1,2,3}

∫
dφ′′

(u)
in (|φ′′(u)

in +
2πm

(u)
b

Nu
+

2πm
(u)
c

Nu
〉a|φ′′

(u)
in +

2πm
(u)
c

Nu
〉b|φ′′

(u)
in 〉c〈φ′′

(u)
in |abc)

·ei2πp123ε
uvwφ′′

(u)
in

(
m

(v)
b
Nv

m
(w)
c
Nw

)
N1N2N3

2π gcd(N1,N2,N3) (B21)

In Eq.(B21), we have dropped an extra factor

e
i2πp123ε

uvwφ′′
(u)
in

(
m

(v)
a
Nv

[m
(w)
b

+m
(w)
c ]Nw

Nw

)
N1N2N3

2π gcd(N1,N2,N3) = 1,
because we are dealing with ZN variables so the mod-
ule relation renders the factor to be always trivial as 1.

On the other hand, to derive (Pa,b ⊗ I3)Pab,c, we start
by contracting T (ga) and T (gb) firstly, and then the com-
bined tensor contracts with T (gc):

(Pa,b ⊗ I3)Pab,c =
∏

u,v,w∈{1,2,3}

∫
dφ′′

(u)
in (|φ′′(u)

in +
2πm

(u)
b

Nu
+

2πm
(u)
c

Nu
〉a|φ′′

(u)
in +

2πm
(u)
c

Nu
〉b|φ′′

(u)
in 〉c〈φ′′

(u)
in |abc)

·ei2πp123ε
uvw(

2πm
(u)
c

Nu
)
(
m

(v)
a
Nv

m
(w)
b
Nw

)
N1N2N3

2π gcd(N1,N2,N3) · ei2πp123ε
uvwφ′′

(u)
in

(
m

(v)
a
Nv

m
(w)
b
Nw

)
N1N2N3

2π gcd(N1,N2,N3) (B22)

Compare to Eq.(B3), we can derive eiθ(ga,gb,gc) in
Eq.(B23).

Adjust p123 index (i.e. setting Eq.(15)’s p123 → p123/2,
p213 = p312 = 0 ), and compute Eq.(B3) with only p123

index, we can recover the projective phase revealing Type
III 3-cocycle:

eiθ(g1,g2,g3) = e
i2πp123ε

uvw
(
m

(u)
c
Nu

m
(v)
a
Nv

m
(w)
b
Nw

)
N1N2N3

gcd(N1,N2,N3)

' ω(uvw)
III (mc,ma,mb). (B23)

Appendix C: Induced Fractionalized Charges and
Domain Wall Operators

Here we fill in more details on computing induced frac-
tionalized charges (Type II bosonic anomaly) via lattice

domain wall operators, outlined in Sec.III.C. The symme-
try operator is S =

∏
j τj

∏
j Uj,j+1 acting on all sites

on a 1D compact ring. We define a chain of domain
wall operator from the site j = r1 to the site j = r2 as
D(r1, r2) ≡

∏r2
j=r1

τj
∏r2
j=r1

Uj,j+1 which creates a kink
at the site r1 and an anti-kink at the site r2. In the main
text, we prescribe a method to capture the fractionalized
charge at the kink/anti-kink based on:

S D(r1, r2)m S† =
[
U(ω−1σ†r1−1σr1)U†(σ†r1−1σr1)

]m
·
[
U(ωσ†r2σr2+1)U†(σ†r2σr2+1)

]m
·D(r1, r2)m (C1)

Above we express a generic onsite symmetry opera-

tor τj capturing τ
(u)
j for

∏
u ZNu -symmetry. We also ex-

press a generic non-onsite symmetry operator in terms of

Uj,j+1. An explicit calculation for Type I’s Uj,j+1 shows:[
U(ωσ†rσr+1)U†(σ†rσr+1)

]m
= e−i 2πpm

N2

∑N−1
a=1 (σ†rσr+1)

a

= ei 2πpm

N2 , (C2)[
U(ω−1σ†r−1σr)U

†(σ†r−1σr)
]m

= ei 2πpm

N2

∑N−1
a=1 (σ†r−1σr)

a

= e−i 2πpm

N2 . (C3)
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We can define
[
U(ω−1σ†r1−1σr1)U†(σ†r1−1σr1)

]m
≡ eiΘL

as the fractionalized charge phase measurement on the
left kink at r1, since this operator contribute the phase
gained exactly at the kink r1. And we can define[
U(ωσ†r2σr2+1)U†(σ†r2σr2+1)

]m
≡ eiΘR as the fraction-

alized charge phase measurement on the right kink at r2,
since this operator contribute the phase gained exactly
at the anti-kink r2. Below we explicit express a generic
non-onsite symmetry operator Uj,j+1 in terms of non-

onsite symmetry operators of Type I’s U
(Nu,pu)
j,j+1 , Type

II’s U
(Nu,puv)
j,j+1 , Type III’s W III

j,j+1, with u, v ∈ {1, 2, 3}.
The phases gained at the kink can be computed via the
quantities S D(r1, r2)m S† below:

• Type I: S
(p1)
N1

(D
(p1)
N1

)mS
(p1)†
N1

with eiΘL = e−iΘR =

e
i
2πp1
N2

1
m

• Type II: S
(p12)
N2

(D
(p12)
N1

)mS
(p12)†
N2

with eiΘL = e−iΘR =

ei
2πp12
N2N12

m .

• Type III: S
(p123)
N2

(D
(p123)
N1

)mS
(p123)†
N2

with eiΘL =

e−iΘR = ei
2πp123n3
N123

m . Here n3 = 0, 1, . . . , N3 − 1 is the
exponent for each subblock of total N3 subblocks inside
the W III matrix Eq.(B18).

The systematic interpretation of fractionalzied charge
is organized in TABLE III in the main text.

Appendix D: Twisted Sectors: Twisted Hamiltonian
and Twisted Non-Onsite Symmetry Transformation

Type II

We can adopt the discussion in Sec.VI on the twisted
translation operator T̃ (p) and the twisted symmetry

transformation S
(p)
N to Type II symmetry class. What

we will focus on is the indices p12 and p21 of Eq.(28).
We will set p1 = p2 = 0 for the sake of simplicity. With
this assumption, we can adjust the non-onsite symme-

try transformation U
(N1,p12)
j,j+2 → U

(N1,p12)
j,j+1 (from NNN to

NN), also from U
(N2,p21)
j,j+2 → U

(N2,p21)
j,j+1 . Here we explicitly

indicates that U
(N1,p12)
j,j+1 , U

(N2,p21)
j,j+1 are polynomial func-

tions of (σ̃
(2)†
j σ̃

(2)
j+1), (σ̃

(1)†
j σ̃

(1)
j+1) respectively, with σ̃(1),

σ̃(2) carefully being defined in Eq.(B4). The two princi-
ples addressed in Sec.VI for Type I still valid. The first
principle becomes defining the twisted symmetry trans-
formation:

• S̃
(p12)
N1

≡ (T̃
(p12)
N1

)M = S
(p12)
N1

·
(
U

(N1,p12)
M,1 [σ̃

(2)†
M σ̃

(2)
1 ]
)−1 · U (N1,p12)

M,1 [ω12σ̃
(2)†
M σ̃

(2)
1 ], (D1)

• S̃
(p21)
N2

≡ (T̃
(p21)
N2

)M = S
(p21)
N2

·
(
U

(N2,p21)
M,1 [σ̃

(1)†
M σ̃

(1)
1 ]
)−1 · U (N2,p21)

M,1 [ω21σ̃
(1)†
M σ̃

(1)
1 ]. (D2)

with some unitary twisted translation operator T̃
(p12)
N1

,

T̃
(p21)
N2

, where the S̃
(p12)
N1

incorporating a ZN1
flux at the

branch cut, while the S̃
(p21)
N2

incorporating a ZN2 flux at

the branch cut. Here we insert ω12 ≡ ω21 ≡ e
i 2π
gcd(N1,N2)

into the non-onsite symmetry transformation UM,1 at
the M -th and the 1-st sites to capture the branch cut
physics as Fig.12. The twisted lattice translation opera-
tors solved from Eq.(D1),(D2) are

T̃
(p12)
N1

= T · U (N1,p12)
M,1 [σ̃

(2)†
M σ̃

(2)
1 ] · τ (1)

1 , (D3)

T̃
(p21)
N2

= T · U (N2,p21)
M,1 [σ̃

(1)†
M σ̃

(1)
1 ] · τ (2)

1 . (D4)

The second principle is that the twisted Hamiltonian
is invariant respect to twisted translation operators T̃ ,
thus also invariant respect to S̃, i.e.

• [H̃
(p)
N , T̃

(p12)
N1

] = [H̃
(p)
N , S̃

(p12)
N1

]

= [H̃
(p)
N , T̃

(p21)
N2

] = [H̃
(p)
N , S̃

(p21)
N2

] = 0. (D5)

The twisted Hamiltonian H̃
(p1,p2,p12)
N1,N2

for Type I, II

can be readily constructed from H
(p1,p2,p12)
N1,N2

of Eq. (37),
with the condition in Eq.(78), Eq.(D5).

Type III

We follow the same principles to explore the Type III
twisted sectors with a flux insertion (or branch cut). We
will focus on Type III class with p123 6= 0, and other
Type I, II class indices are zeros. The first principle sug-
gests that a string of M units of twisted translation oper-

ator T̃
(p123)
N1,N2,N3

modifies Eq.(20)’s S
(p123)
N1,N2,N3

to a twisted

symmetry transformation S̃
(p123)
N1,N2,N3

≡ (T̃
(p123)
N1

)M ·
(T̃

(p123)
N2

)M ·(T̃ (p123)
N3

)M incorporating a ZN1
, ZN2

, ZN3
unit

flux respectively by,
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•S̃(p123)
N1,N2,N3

= S
(p123)
N1,N2,N3

·
(
W III
M,1[σ

(v)†
M σ

(v)
1 ]
)−1 ·W III

M,1[ω123 σ
(v)†
M σ

(v)
1 ] (D6)

where the non-onsite symmetry transformation part W III
j,j+1 ≡W III

j,j+1[σ†v,jσv,j+1] is defined in Eq.(32) as a polynomial

of σ†v,jσv,j+1, and its ω123 insertion

W III
j,j+1[ω123 σ

(v)†
j σ

(v)
j+1] ≡

∏
u,v,w∈{1,2,3}

εuvw
(
ω123 σ

(v)†
j σ

(v)
j+1

)p123 log(σ
(w)
j

)NvNv

2π gcd(N1,N2,N3)

(D7)

captures the ZNu unit flux effect by the branch cut. (In
Appendix.B 2, we show that Eq.(D6) is regularized on
the lattice.) Adopted the notation in Eq.(32), the twisted
lattice translation operator solved from Eq.(D6) is

T̃
(p123)
Nu

= T ·W III
M,1(σ̃

(v)†
M σ̃

(v)
1 ) · τ (u)

1 , (D8)

here u, v, w ∈ {1, 2, 3}.
The second principle is that the twisted Hamiltonian

is invariant respect to twisted translation operators, thus

also invariant respect to twisted symmetry transforma-
tions,

• [H̃
(p)
N , T̃

(p123)
Nu

] = 0, [H̃
(p)
N , S̃

(p123)
N1,N2,N3

] = 0. (D9)

Based on Eq.(D9), it is straightforward to construct a
Type III twisted Hamiltonian incorporating the symme-
try twist (equivalently a gauge flux) at the branch cut.
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