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We consider a model of strongly correlated electrons in 1D called the t-J model, which was
solved by graded Algebraic Bethe ansatz. We use it to design graded tensor networks which can be
contracted approximately to obtain a Matrix Product State. As a proof of principle, we calculate
observables of ground states and excited states of finite lattices up to 18 lattice sites.

I. INTRODUCTION

Spin chains have been extensively studied as models
for describing quantum systems. The Heisenberg XXX
model, for instance, was first studied through the means
of coordinate Bethe ansatz by Bethe1.
Models of strongly correlated electrons, such as the

Hubbard model and t-J model, can also be solved by the
Bethe ansatz2,3. In fact, the t-J model is an approxima-
tion of the strongly repulsive Hubbard model4. These
models describe an important physical phenomena: spin
and charge separation. The electron becomes unessen-
tial in this picture, and instead we have spin-waves and
holons (holons carry electric charge with no spin).
On the other hand, the description of quantum states

using tensor networks has been very successful in recent
literature. For instance, The extremely successful density
matrix renormalization group (DMRG)5,6 finds its roots
in the one-dimensional matrix product states (MPS)7,8.
MPS have also been applied to the field of quantum infor-
mation and condensed matter physics9–12. For describing
the ground state of higher-dimensional systems, the pro-
jected entangled pair states (PEPS)13 were introduced
and proved to be useful for the numerical study of ground
states of two-dimensional systems14,15. The Multiscale
Entanglement Renormalization Ansatz (MERA)16,17 al-
lows the description and numerical study of critical sys-
tems.
For the Heisenberg XXX model, it can be easily seen

from the tensor network description of the Bethe eigen-
states that the eigenstates can be described as MPS (see
Katsura and Maruyama18). Katsura and Maruyama also
showed that the alternative formulation of the Bethe
Ansatz by Alcaraz and Lazo19–21 is equivalent to the al-
gebraic Bethe ansatz. Indeed, previous work by three
of the co-authors of this paper has managed to use the
tensor network formulation of the Heisenberg XXX/XXZ
models for periodic and open boundary conditions to ob-
tain correlations for 50 sites with good precision22.
If we simply consider the property of translational in-

variance in the t-J model, it is possible to construct an
MPS with periodic boundary conditions that has a vir-
tual bond dimension that is the square root of the vir-
tual dimension of the original MPS, following Verstraete
et al23. In this sense, the MPS with periodic bound-
ary conditions is a more memory-efficient representation

of the t-J model. However, the representation of arbi-
trary excited states (which can be directly obtained from
the Bethe equations) in such a MPS is nontrivial, and
is currently still an area of active research24. In addi-
tion, the MPS derived from the Algebraic Bethe ansatz
has open boundary conditions, which employs algorithms
with high numerical stability due to the lack of necessity
for matrix inversions.

As such, this paper is devoted to the tensor network de-
scription and numerical calculation of observables of the
eigenstates of the t-J model, using the Algebraic Bethe
ansatz. We first describe the solution of the t-J model,
then we proceed with the description of the tensor net-
work and finally we would describe the numerical algo-
rithm used and show the numerical results of the corre-
lation functions.

In order to solve t-J model, the Bethe ansatz (and
correspondingly, the tensor network) of the XXX/XXZ
model needs to be generalized by two steps: nesting and
grading. Nesting means that when solving the Bethe
ansatz, we find that a second Bethe ansatz nested within
the first naturally appears. This is equivalent to diago-
nalizing the charge degrees and spin degrees of freedom in
two separate steps2,3,25. Grading, on the other hand, is
used to account for the fermionic nature of the electrons.

Using the tensor network description of the t-J model,
computation of observables such as correlation functions
can be done for both ground states and excited states
at various fillings, overcoming a major hurdle of DMRG
methods, which can mainly deal with ground states only.
Correlation functions for the t-J model have been de-
scribed in the double scaling limit for the t-J model26,27

algebraically. Additionally, correlation functions have
also been described using determinant representations28,
but they are highly difficult to evaluate numerically.

Since existing algebraic methods already suffice in the
thermodynamic limit, we focus on the intermediate range
of lattice lengths that are large enough to lie beyond
the range of exact diagonalization, yet small enough to
be qualitatively different from the thermodynamic limit.
This regime is of major interest in current experiments
with optical lattices and ion traps29,30. As such, we have
performed computations of the correlation functions of
the eigenstates up to 18 lattice sites as a proof of princi-
ple.
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II. ALGEBRAIC BETHE ANSATZ FOR THE T-J
MODEL

In this section, we briefly outline the derivation of the
algbraic Bethe ansatz for the t-J model, following Essler
and Korepin3.

A. Preliminaries

In the t-J model, electrons on a lattice of length L
are described by operators cj,σ, j = 1, · · · , L, σ = ±1,

which follow the anticommutation relations {c†i,σ, cj,τ} =

δi,jδσ,τ . The state |0〉 (Fock vacuum) satisfies cj,σ |0〉 = 0.
The Hilbert space of the Hamiltonian (3) is constrained
to exclude double occupancy, thus there are three possi-
ble electronic states at a given lattice site i:

|0〉i , |↑〉i = c†i,1 |0〉i , |↓〉i = c†i,−1 |0〉 . (1)

We define the operators:

ni,σ = c†j,σcj,σ, ni = ni,1 + ni,−1, N =
L∑

j=1

nj

Sj = c†j,1cj,−1, S =

L∑

j=1

Sj

S†
j = c†j,−1cj,1, S† =

L∑

j=1

S†
j

Sz
j = 1

2 (nj,1 − nj,−1), Sz =

L∑

j=1

Sz
j

(2)

The t-J Hamiltonian is given by

H =
L∑

j=1

{
−tP

∑

σ=±1

(c†j,σcj+1,σ +H.c.)P

+J(Sj · Sj+1 − 1
4njnj+1)

}
(3)

where P = (1 − nj,−σ) is the projector which con-
strains the Hamiltonian to nondoubly occupied states.
t represents nearest-neighbor hopping and J represents
nearest-neighbor spin exchange and charge interactions.
Adding a term 2N−L to the Hamiltonian, and special-

izing to the value J = 2t = 2, the resultant Hamiltonian
is supersymmetric and can be written as a graded per-
mutation operator:

Hsusy = H + 2N − L

= −
L∑

j=1

Πj,j+1 (4)

The graded permutation operator permutes two adjacent
lattice sites as follows (permuting two fermions gives a

minus sign):

Πj,j+1 |0〉j |0〉j+1 = |0〉j |0〉j+1

Πj,j+1 |0〉j |σ〉j+1 = |σ〉j |0〉j+1 (5)

Πj,j+1 |τ〉j |σ〉j+1 = − |σ〉j |τ〉j+1 , σ, τ =↑, ↓

B. Grading

Consider the graded linear space V (m|n) = V m ⊕ V n,
where m and n denote the dimensions of the “even”
(V m) and “odd” (V n) parts, and ⊕ denotes the direct
sum. Let {e1, · · · , em+n} be a basis of V (m+n), such
that {e1, · · · , em} is a basis of V m and {em+1, · · · , en}
is a basis of V n. The Grassmann parities of the ba-
sis vectors are given by {ǫ1 = · · · = ǫm = 0} and
{ǫm+1 = · · · = ǫm+n = 1}. Linear operators on V (m|n)

can be represented in block form [M ∈ End(V (m|n))] :

M =

(
A B
C D

)
, ǫ

(
A 0
0 D

)
= 0, ǫ

(
0 B
C 0

)
= 1 (6)

The supertrace is defined as

str(M) = tr(A)− tr(D), (7)

where the traces on the rhs are the usual (non-graded)
operator traces in V m and V n. We now define the graded
tensor product of matrices in V (m|n)⊗V (m|n) as follows:

(F ⊗G)abcd = FabGcd(−1)ǫc(ǫa+ǫb) (8)

The identity operator I and the permutation operator Π
are defined as:

Ia1b1
a2b2

= δa1b1δa2b2 (9)

Π(v ⊗ w) = (w ⊗ v),

(Π)a1b1
a2b2

= δa1b2δa2b1(−1)ǫb1ǫb2 (10)

V (m|n) can be interpreted as the space of configurations
at every site of a lattice gas of m species of bosons and
n species of fermions. For the t-J model, we have m = 1,
n = 2, and the three allowed configurations are given by
(1).

C. Yang-Baxter equation

A matrix R(λ) fulfills a graded Yang-Baxter equation
if the following holds on V (m|n) ⊗ V (m|n) ⊗ V (m|n):

[I ⊗R(λ− µ)][R(λ)⊗ I][I ⊗R(µ)]

= [R(µ)⊗ I][I ⊗R(λ)][R(λ − µ)⊗ I] (11)

The R matrix

R(λ) = b(λ)I + a(λ)Π

a(λ) =
λ

λ+ i
, b(λ) =

i

λ+ i

(12)
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is one such matrix that fulfills (11). We can rewrite (11)
as

R12(λ− µ){[Π13R13(λ)]⊗ [Π23R23(µ)]}

= {[Π13R13(µ)]⊗ [Π23R23(λ)]}R12(λ− µ) (13)

where the indices 1, 2, 3 indicate in which of the three
tensored spaces the matrices act nontrivially. The tensor
product in (13) is between spaces 1 and 2. We now call
the third space “quantum space” and the first two spaces
“matrix spaces”. The quantum space and matrix space
are usually called “physical space” and “auxiliary space”
respectively in tensor network terms. The quantum space
represents the Hilbert space of a single lattice site.

We now define the L operator on site k as a quantum

operator valued linear operator on Hk ⊗ V
(m|n)
matrix (where

Hk ≃ V (m|n) is the Hilbert space over the kth site, and

V
(m|n)
matrix is a matrix space):

Lk(λ)
ab
αβ = Πac

αγR(λ)cbγβ = [b(λ)Π + a(λ)I]abαβ . (14)

where the Greek (Roman) indices are the “quantum in-
dices” (“matrix indices”). Rewriting (13) for the kth
quantum space,

R(λ− µ)[Lk(λ) ⊗ Lk(µ)] = [Lk(µ)⊗ Lk(λ)]R(λ − µ)
(15)

We shall now construct an integrable spin model based
on the intertwining relation (15). We first define the
monodromy matrix TL(λ) as the product (in the matrix
space) of the L operators over all of the lattice sites:

TL(λ) = LL(λ)LL−1(λ) · · ·L1(λ) (16)

TL(λ) is a quantum operator valued (m + n) × (m + n)
matrix that acts nontrivially in the graded tensor product
of all quantum spaces of the lattice. It also fulfills the
same intertwining relation as the L operators (as can be
proven by induction over the length of the lattice):

R(λ− µ)[TL(λ) ⊗ TL(µ)] = [TL(µ)⊗ TL(λ)]R(λ − µ)
(17)

Taking the supertrace of the monodromy matrix, we get
the transfer matrix τ(λ) of the spin model:

τ(λ) = str[TL(λ)] =

m+n∑

a=1

(−1)ǫa [TL(λ)]
aa (18)

As a consequence of (17), transfer matrices with differ-
ent spectral parameters commute. This implies that the
transfer matrix is the generating functional of the Hamil-
tonian.

D. Trace identities

The Hamiltonian (3) can be obtained from the transfer
matrix by taking its first logarithmic derivative at zero
spectral parameter and shifting it by a constant:

Hsusy = −i
∂ ln[τ(λ)]

∂λ

∣∣∣∣
λ=0

− L

= −
L∑

k=1

(Πk,k+1)

(19)

This implies that if the eigenvalues of the transfer
matrix τ(λ) can be obtained, the energies of the t-J
model can be obtained via the above trace identity.

E. Algebraic Bethe ansatz with FFB grading (Lai
representation)

Let the Hilbert space at the kth site of the lattice be
spanned by the three vectors e1 = (100), e2 = (010), and
e3 = (001). In this section we consider a grading such
that e1 and e2 are fermionic and e3 is bosonic, represent-
ing the spin-down and spin-up electrons and the empty
site respectively.
This means that their Grassmann parities are ǫ1 =

ǫ2 = 1 and ǫ3 = 0. We choose the reference state in the
kth quantum space |0〉k and the vacuum |0〉 of the whole
lattice to be purely bosonic, i.e.,

|0〉n =



0
0
1


 , |0〉 = ⊗L

n=1 |0〉n (20)

This choice of grading implies that R(µ) = b(µ)I+a(µ)Π
can be written explicitly as:
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R(λ) =




b(λ)− a(λ) 0 0 0 0 0 0 0 0
0 b(λ) 0 −a(λ) 0 0 0 0 0
0 0 b(λ) 0 0 0 a(λ) 0 0
0 −a(λ) 0 b(λ) 0 0 0 0 0
0 0 0 0 b(λ)− a(λ) 0 0 0 0
0 0 0 0 0 b(λ) 0 a(λ) 0
0 0 a(λ) 0 0 0 b(λ) 0 0
0 0 0 0 0 a(λ) 0 b(λ) 0
0 0 0 0 0 0 0 0 1




(21)

The L operator is defined by (14) and is of the form

Ln(λ) =




a(λ)− b(λ)e11n −b(λ)e21n b(λ)e31n
−b(λ)e12n a(λ) − b(λ)e22n b(λ)e32n
b(λ)e13n b(λ)e23n a(λ) + b(λ)e33n


 , (22)

where (eabn )αβ = δaαδbβ are quantum operators in the
nth quantum space. The monodromy matrix (16) can be
represented as

TL(λ) = LL(λ)LL−1(λ) · · ·L1(λ)

=




A11(λ) A12(λ) B1(λ)
A21(λ) A22(λ) B2(λ)
C1(λ) C2(λ) D(λ)


 , (23)

which is a quantum operator valued 3 × 3 matrix. For
clarity, we write (23) explicitly in component form:

{[TL(λ)]
ab}α1···αL

β1···βL

= LL(λ)
acL
αLβL

LL−1(λ)
cLcL−1

αL−1βL−1
· · ·

· · ·L1(λ)
c2c1
α1β1

(−1)
∑L

j=2
(ǫαj

+ǫβj
)
∑j−1

i=1
ǫαi

(24)

Note that the physical (greek) indices are subjected to
the minus signs from the graded tensor product, while
the matrix (latin) indices are not, as they are summed
over (and not tensored). The transfer matrix is then
given as

τ(µ) = str[TL(µ)] = −A11(µ)−A22(µ) +D(µ) (25)

We will now solve for a set of eigenstates of the trans-
fer matrix using the Nested Algebraic Bethe ansatz
(NABA). C1(λ) and C2(λ) can be interpreted as creation
operators (of odd Grassmann parity). We now make the
following Ansatz for the eigenstates of τ(µ):

|λ1, · · · , λn|F 〉 = Ca1
(λ1)Ca2

(λ2) · · ·Can
(λn) |0〉F

an···a1 ,
(26)

where aj = 1, 2, and F an···a1 is a function of the spectral
parameters λ.

When solving for the eigenstates of τ(µ), we would
need to solve a second, nested Bethe ansatz that specifies

F an···a1 . As such, we define:

r(µ)abcd = b(µ)δabδcd − a(µ)δadδbc

= b(µ)Iabcd + a(µ)[Π(1)]abcd (27)

L
(1)
k = b(λ)Π(1) + a(λ)I(1)

= Π(1)r(λ)

=

(
a(λ) − b(λ)e11k −b(λ)e21k

−b(λ)e12k a(λ) − b(λ)e22k

)
(28)

T (1)
n (µ) = L(1)

n (µ− λn)L
(1)
n−1(µ− λn−1)

· · ·L
(1)
2 (µ− λ2)L

(1)
1 (µ− λ1) (29)

=

(
A(1)(µ) B(1)(µ)
C(1)(µ) D(1)(µ)

)
, (30)

τ (1)(µ) = str[T (1)
n (µ)]

= −A(1)(µ)−D(1)(µ), (31)

r(µ) satisfies a (graded) Yang-Baxter equation:

r(λ − µ)a2c2
a3c3

r(λ)a1b1
c2d2

r(µ)d2b2
c3b3

= r(µ)a1c1
a2c2

r(λ)c2d2

a3b3
r(λ − µ)c1b1d2b2

(32)

and the following intertwining relation:

r(λ − µ)[T (1)
n (λ) ⊗ T (1)

n (µ)] = [T (1)
n (µ)⊗ T (1)

n (λ)]r(λ − µ).
(33)

L(1) and r(µ) can be interpreted as the L operator and
R matrix of a (inhomogeneous) fundamental spin model

describing two species of fermions, with T
(1)
n as the mon-

odromy matrix and τ
(1)
n as the transfer matrix. For the

nested reference states, we choose:

|0〉
(1)
k =

(
0
1

)
, |0〉 = ⊗n

k=1 |0〉
(1)
k (34)
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We now make the following Ansatz for the eigenstates of
τ (1)(µ):

∣∣∣λ(1)
1 , · · · , λ(1)

n1

〉
= C(1)(λ

(1)
1 )C(1)(λ

(1)
2 ) · · ·C(1)(λ(1)

n1
) |0〉

(1)
,

(35)

This state can be written as
∣∣∣λ(1)

1 , · · · , λ
(1)
n1

〉
an···a1

in com-

ponent form, which is directly identifiable with F an···a1 .

Due to our choice of grading, we find that n = Ne =
N↑ + N↓ and n1 = N↓. Using fundamental commuta-
tion relations from (17) for the first level Bethe ansatz
and (33) for the nested level, we can obtain the eigenval-
ues of the transfer matrix through the machinery of the
Algebraic Bethe ansatz as:

ν(µ, {λj}, F ) = [a(µ)]L
Ne∏

j=1

1

a(µ− λj)
ν(1)(µ)

+

Ne∏

j=1

1

a(λj − µ)

ν(1)(µ) = −




N↓∏

i=1

1

a(µ− λ
(1)
i )

Ne∏

j=1

a(µ− λj)

a(λj − µ)

(36)

+

Nh∏

i=1

1

a(λ
(1)
i − µ)

Ne∏

j=1

a(µ− λj)


 . (37)

If we define the shifted spectral parameters λ̃k = λk +
i/2, we can write the resultant Bethe equations which

constrain the above eigenvalues as:

[
λ̃k − i/2

λ̃k + i/2

]L
=

N↓∏

j=1

λ̃k − λ
(1)
j − i/2

λ̃k − λ
(1)
j + i/2

, k = 1, · · · , Ne

Ne∏

k=1

λ̃k − λ
(1)
p − i/2

λ̃k − λ
(1)
p + i/2

=

N↓∏

j=1
j 6=p

λ
(1)
j − λ

(1)
p − i

λ
(1)
j − λ

(1)
p + i

, p = 1, · · · , n1

(38)

Using the trace identities (19), we can obtain the energy
eigenvalues from the transfer matrix eigenvalues:

Esusy =

Ne∑

j=1

1

λ̃2
j + 1/4

− L

= −2

Ne∑

j=1

cos(kj) + 2Ne − L,

(39)

where we have reparameterized λ̃j = 1
2 cot(kj/2). The

Bethe equations (38) and the energy (39) were also de-
rived by Schlottmann31 and Lai32 independently.

F. Algebraic Bethe ansatz with BFF grading
(Sutherland representation)

In this section we consider a grading with Grassmann
parities ǫ2 = ǫ3 = 1 (fermionic) and ǫ1 = 0 (bosonic),
representing the spin-down, spin-up electrons and the
empty site respectively. We choose the reference state
of the whole lattice to be fermionic with all spins up:

|0〉n =



0
0
1


 , |0〉 = ⊗L

n=1 |0〉n (40)

This choice of grading implies that R and L can be writ-
ten as

R(λ) =




1 0 0 0 0 0 0 0 0
0 b(λ) 0 a(λ) 0 0 0 0 0
0 0 b(λ) 0 0 0 a(λ) 0 0
0 −a(λ) 0 b(λ) 0 0 0 0 0
0 0 0 0 b(λ)a(λ) 0 0 0 0
0 0 0 0 0 b(λ) 0 −a(λ) 0
0 0 a(λ) 0 0 0 b(λ) 0 0
0 0 0 0 0 −a(λ) 0 b(λ) 0
0 0 0 0 0 0 0 0 b(λ)− a(λ)




(41)

Ln(λ) =




a(λ) + b(λ)e11n b(λ)e21n b(λ)e31n
b(λ)e12n a(λ) − b(λ)e22n −b(λ)e32n
b(λ)e13n −b(λ)e23n a(λ)− b(λ)e33n


 . (42)

The monodromy matrix is partitioned as before in (23), which now gives the transfer matrix

τ(µ) = A11(µ)−A22(µ)−D(µ) (43)
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We make the following Ansatz for the eigenstates of τ(µ):

|λ1, · · · , λn|F 〉 = Ca1
(λ1)Ca2

(λ2) · · ·Can
(λn) |0〉F

an···a1 . (44)

When solving for the eigenstates of τ(µ), we would need to solve a second, nested Bethe ansatz that specifies F an···a1 .
As such, we define:

τ (1)(µ)b1···bna1···an
= (−1)ǫcL(1)

n (µ− λn)
ccn−1

bnan
L
(1)
n−1(µ− λn−1)

cn−1cn−2

bn−1an−1
· · ·L

(1)
1 (µ− λ1)

c1c
b1a1

(−1)ǫc
∑n−1

i=1
(ǫbi+1)

∑n−1

i=1
ǫci (ǫbi+1),

(45)

Here all the indices ci and c are summed over. τ (1)(µ) is
the transfer matrix of an inhomogeneous spin model of a
boson and fermion on a lattice of n sites. Our reference
state |0〉 is now of fermionic nature and we have to define
a graded tensor product reflecting this fact:

(F⊗G)abcd = FabGcd(−1)(ǫc+1)(ǫa+ǫb) (46)

In terms of this tensor product, the transfer ma-
trix τ (1)(µ) given by (50) can be obtained as

L
(1)
k = b(λ)Π

(1)
BF + a(λ)I(1)

=

(
a(λ) + b(λ)e11k b(λ)e21k

b(λ)e12k a(λ)− b(λ)e22k

)
, (47)

τ (1)(µ)b1···bna1···an
= str[T (1)

n (µ)]

= str[L(1)
n (µ− λn)⊗L

(1)
n−1(µ− λn−1)⊗

· · · ⊗L
(1)
1 (µ− λ1)] (48)

where ΠBF is the permutation matrix for the grading
ǫ1 = 0, ǫ2 = 1. In (48) we have explicitly written the
tensor product ⊗ between the quantum spaces over the
sites of the inhomogeneous model (and the L operators
are multiplied within the matrix space).
To solve the nesting we first have to note that, due

to our change of tensor product, the nested L operators
L(1)(λ) are now interwined by the R matrix

r̂(µ)abcd = b(µ)δabδcd + a(µ)δadδbc(−1)ǫa+ǫc+ǫaǫc . (49)

The intertwining relation

r̂(λ− µ)[T
(1)
L (λ)⊗T

(1)
L (µ)] = [T

(1)
L (µ)⊗T

(1)
L (λ)]r̂(λ− µ)

(50)

together with the choice of vacuum,

|0〉
(1)
k =

(
0
1

)
, |0〉 = ⊗

n
k=1 |0〉

(1)
k (51)

can be analyzed similar to what was done in previous
section. It can be shown that they represent a model
of the permutation type with BF grading. Due to our
choice of grading, we find that n = Nh+N↓ and n1 = Nh

respectively, where Nh = N −Ne is the number of holes.
Using fundamental commutation relations from (17)

for the first level Bethe ansatz and (50) for the nested

level, we can obtain the eigenvalues of the transfer matrix
through the machinery of the Algebraic Bethe ansatz as

ν(µ, {λj}, F ) = [a(µ)]L
Nh+N↓∏

j=1

1

a(µ− λj)
ν(1)(µ)

−

Nh+N↓∏

j=1

1

a(µ− λj)

(
a(µ)

a(−µ)

)L

ν(1)(µ) =

Nh∏

l=1

1

a(µ− λ
(1)
j )




Nh+N↓∏

j=1

a(µ− λj)

−

Nh+N↓∏

j=1

a(µ− λj)

a(λj − µ)




(52)

If we define the shifted spectral parameters

λ̃j = λj − i/2, λ̃
(1)
j = λ

(1)
j − i, (53)

we obtain Sutherland’s33 form of the Bethe equations:

[
λ̃k − i/2

λ̃k + i/2

]L
=

Nh+N↓∏

m=1
m 6=l

λ̃l − λ̃m − i

λ̃l − λ̃m + i

Nh∏

j=1

λ̃l − λ̃
(1)
j − i/2

λ̃l − λ̃
(1)
j + i/2

,

l = 1, · · · , Nh +N↓,

1 =

Nh+N↓∏

k=1

λ̃j − λ̃
(1)
k − i/2

λ̃j − λ̃
(1)
k + i/2

, k = 1, · · · , Nh

(54)

Using the trace identities (19), we can obtain the energy
eigenvalues as:

Esusy = L−

Nh+N↓∑

j=1

1

λ̃2
j + 1/4

= L− 2(Nh +N↓)− 2

Ne∑

j=1

cos(kj),

(55)

where we have reparameterized λ̃j =
1
2 tan(kj/2)
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III. TENSOR NETWORK DESCRIPTION OF
THE BETHE ANSATZ

A. Tensor network form

We now represent the above NABA in tensor network
form. If we leave the considerations for grading aside
first, the (abstract) form of the tensor network is the same
for both Lai and Sutherland representation (only actual
mathematical representation differs). We proceed below
to first consider the general form of the tensor network
for both representations without considering the grad-
ing, after which we then consider the grading in detail in
Sec. IV.
We represent each L operator L(λ)abαβ (a tensor with

four indices) as shown in Fig. 1a. We construct the trans-
fer matrix TL(λ) = LL(λ)LL−1(λ) · · ·L1(λ) as shown in
Fig. 1b.
For the first level Bethe ansatz, the set of creation op-

erators {C1, C2} in (23) is constructed by terminating the
ends of the transfer matrix by boundary vectors/matrices
as shown in Fig. 2. The boundary row vector (001) on
the left selects the third row of the transfer matrix T (λ).
The matrix K, which selects the first and second column
of T (λ), is defined as:

K =



1 0
0 1
0 0


 (56)

We call the matrix K the connector for it will be the
bridge between the first level and nested Bethe ansatz.
For the nested Bethe ansatz, the creation operator
C(1)(λ) in (30) is constructed by terminating the ends
of the transfer matrix by boundary vectors (0 1) on the
left and (1 0)⊺ on the right (selecting the second row and
first column respectively) as shown in Fig. 3.

(a) L operator
L(λ) (b) Monodromy matrix T (λ)

FIG. 1: Tensor network representation of L(λ) and T (λ)

Now, we can construct the general tensor network form
of the Algebraic Bethe ansatz for both representations,
as shown in Fig. 4, where we define:

ω
(1)
ab = λ(1)

a − λb (57)

{n, n1} =

{
{Ne, N↓}, Lai representation
{Nh +N↓, Nh}, Sutherland representation

(58)

FIG. 2: Creation operators {C1(λ), C2(λ)}

FIG. 3: Nested creation operator C(1)(λ)

The tensor network is split into two main parts: the
first level Bethe ansatz and the nested Bethe ansatz. The
first level and the nested level are connected by contract-
ing the indices a1, · · · , an of Cai

of the creation opera-
tors in the first level with the wavefunction of the nested
level, as shown in (26). The matrix K in Fig. 4 (as de-
fined in (56)) selects the two first level creation operators
{C1, C2} and connects them to the corresponding index
of the wavefunction in the nested Bethe ansatz.
The bond dimension of each bond in the tensor net-

work for the first level Bethe ansatz is 3, while that for
the nested level is 2.

IV. GRADING IN TERMS OF TENSOR
NETWORKS

In this section, we explicitly consider the grading for
both representations in detail. The tensor product is
graded by assigning Grassmann parities to the basis vec-
tors, which represents the fermionic nature of the t-J
model. This introduces minus signs which are shown ex-
plicitly in (24) and (45). These minus signs are non-local
at first glance, as the exponent of the minus sign of each
element in the monodromy matrix depends on the pari-
ties of the indices to its right. However, in order to per-
form the approximate contraction of the tensor network
(described in Sec. V) in a sequential manner, we have
to localize these minus signs. The graded Bethe ansatz
can be mapped to a graded tensor network, which can be
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FIG. 4: Tensor Network representation, without grading

further mapped to a non-graded tensor network in which
the virtual bond dimension is doubled to localize the mi-
nus signs. We describe two ways to perform the mapping
in the following.

A. Method 1

In this method we shall write the monodromy matrices
in a recursive form such that the minus signs are included

locally in the L operators. Using such a representation
in the form of matrices allows us to contract the tensor
network efficiently, especially in languages like Matlab
which matrix computations are designed for speed.

1. Lai representation

In Lai representation, the graded tensor products in
the first level Bethe ansatz produce non-local minus signs
as shown in (24). However, since the nested Bethe ansatz
consist of a system of two fermions (in which the minus
signs cancel), the graded tensor products do not produce
any explicit (non-local) minus signs.
We introduce the following notation:

εk = ǫαk
+ ǫβk

(59)

Lk(λ)
ab
αkβk

∣∣
εk=y

= Lk(λ)
ab
αkβk

δεk,y, y = 0, 1 (60)

The delta function picks out only the quantum operators
of the desired Grassmann parity (εk = 0 or 1). In Lai
representation, the fermionic (εk = 1) operators are Ca

and Bb in (23) (a, b = 1, 2), and the rest are bosonic
(εk = 0). The original L operator is simply expressed
by Lk(λ) = Lk(λ)|εk=0 + Lk(λ)|εk=1. We define the
following primed L operator and monodromy matrix:

L′
k(λ)

ab
αβ = Lk(λ)

ab
αβ(−1)ǫα (61)

{[T ′
L(λ)]

ab}α1···αL

β1···βL

= L′
L(λ)

acL
αLβL

L′
L−1(λ)

cLcL−1

αL−1βL−1
· · ·L′

1(λ)
c2c1
α1β1

(−1)
∑L

j=2
(ǫαj

+ǫβj
)
∑j−1

i=1
ǫαi (62)

Now, we can write (24) in a recursive form that allows the minus signs to be localized:



{[Tk+1(λ)]

ab}α1···αk+1

β1···βk+1

{[T ′
k+1(λ)]

ab}α1···αk+1

β1···βk+1


 =



Lk+1(λ)

ack+1

αk+1βk+1

∣∣∣
εk+1=0

Lk+1(λ)
ack+1

αk+1βk+1

∣∣∣
εk+1=1

L′
k+1(λ)

ack+1

αk+1βk+1

∣∣∣
εk+1=1

L′
k+1(λ)

ack+1

αk+1βk+1

∣∣∣
εk+1=0



(
{[Tk(λ)]

ck+1b}α1···αk

β1···βk

{[T ′
k(λ)]

ck+1b}α1···αk

β1···βk

)
(63)

The minus signs are absorbed locally into the definition of L′
k(λ). The L operators are now embedded in a larger

matrix space, which we call the external matrix space. To use this construction to handle the grading, we would have
to alter our tensor network so to include the external matrix space.

K ′ is defined as:

K ′ =

(
1
1

)
⊗



1 0
0 1
0 0


 (64)

The boundary vectors on the left of Fig. 5 and K ′ live in
the space V (0|2) ⊗ V (1|2), where the first space V (0|2) is
the external matrix space and the second space V (1|2) is
the matrix space.

2. Sutherland representation

For Sutherland representation, the graded tensor prod-
ucts in both the first level and nested Bethe ansatz pro-
duce minus signs. The minus signs produced by the ten-
sor product in the first level Bethe ansatz is exactly the
same as in Lai representation as shown in (24). However,
due to the choice of grading in Sutherland representation,
the fermionic (εk = 1) operators are B1, C1, A12 and A21

in (23), and the rest are bosonic (εk = 0). Nevertheless,
the form of the recursion relation of the first level mon-
odromy matrix for Sutherland representation is exactly
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FIG. 5: Graded Tensor Network for Lai representation

the same as (63) in Lai representation. Now, for the graded tensor product (45) in the nested
Bethe ansatz, we introduce the following:

L
(1)′
k (λ)abαβ = L

(1)
k (λ)abαβ(−1)ǫα (65)

{[T
(1)′
L (λ)]ab}α1···αL

β1···βL

= L
(1)′
L (λ)acLαLβL

L
(1)′
L−1(λ)

cLcL−1

αL−1βL−1
· · ·L

(1)′
1 (λ)c2c1α1β1

(−1)
∑L

j=2
(ǫαj

+ǫβj
)
∑j−1

i=1
(ǫαi

+1) (66)

Now, we can write (45) in a recursive form that allows the minus signs to be localized:



{[T

(1)
k+1(λ)]

ab}α1···αk+1

β1···βk+1

{[T
(1)′
k+1(λ)]

ab}α1···αk+1

β1···βk+1


 =



L
(1)
k+1(λ)

ack+1

αk+1βk+1

∣∣∣
εk+1=0

L
(1)
k+1(λ)

ack+1

αk+1βk+1

∣∣∣
εk+1=1

L
(1)′
k+1(λ)

ack+1

αk+1βk+1

∣∣∣
εk+1=1

L
(1)′
k+1(λ)

ack+1

αk+1βk+1

∣∣∣
εk+1=0






{[T

(1)
k (λ)]ck+1b}α1···αk

β1···βk

{[T
(1)′
k (λ)]ck+1b}α1···αk

β1···βk


 (67)

The minus signs in the nested Bethe ansatz are absorbed locally into the definition of L
(1)′
k (λ). To use this

construction to handle the grading, we would have to alter our tensor network so to include the external matrix space
(in both the first level and nested Bethe ansatz for Sutherland representation).

The boundary vectors on the left of Fig. 6 and K ′ live
in the space V (1|1) ⊗ V (1|2), where the first space V (1|1)

is the external matrix space and the second space V (1|2)

is the matrix space, of the first level L(1) operators. The
boundary vectors to the top and bottom of the nested
Bethe ansatz live similarly in the space V (1|1) ⊗ V (1|1),
where the first space is the external matrix space and
the second space is the matrix space, of the nested L(1)

operators.

B. Method 2

In this method, following along the lines of34–37, we in-
clude the grading by doubling the virtual bond dimension
to keep track of the Grassmann parities.

1. Lai representation

In Lai representation, the grading of the first level
Bethe network can also be handled by adding an ex-
tra bond that carries the parity information of the in-
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FIG. 6: Graded Tensor Network for Sutherland representation

dices, denoted by the dotted lines in Fig. 5. The par-
ity bond pm at the mth site satisfies the relation pm =
pm−1 + ǫkm

(mod 2), where p0 = 0. In addition, these
parity bonds, which store local information about the
minus signs of (24), satisfy the recursive relation

(−1)
∑m

j=2
(ǫkj+ǫlj )

∑j−1

i=1
ǫki = (−1)

∑m−1

j=2
(ǫkj+ǫlj )

∑j−1

i=1
ǫki

× (−1)(ǫkm+ǫlm )pm (68)

As such, in the tensor network picture with grading,
each L operator Lm becomes a tensor with 6 indices: 2
horizontal indices of dimension 3 describing the matrix
space, 2 vertical indices km and lm of dimension 3 describ-
ing the physical space and 2 parity indices pm−1 and pm
of dimension 2. Because of the recursive relation (68),
the nonlocal minus signs of (24) can be reproduced by
multiplying each L operator with (−1)(ǫkm+ǫlm )pm .

2. Sutherland representation

In Sutherland representation, both the first and the
nested level Bethe network are graded, and they are han-
dled by adding an extra bond that carries the parity in-
formation of the indices, denoted by the dotted lines in
both levels of the Bethe ansatz in Fig. 6. As before,
the parity bond pm at the mth site satisfies the relation
pm = pm−1 + ǫkm

(mod 2), where p0 = 0, such that the
minus signs of (24) can be localized.

C. Equivalence of the two methods

Upon joining the additional parity bonds (of dimension
2) in the second method with the bonds in the matrix
space (of dimension 3) of the original tensor network,
the L operators are now tensors of 6 by 6 in the matrix
space and 3 by 3 in the physical space, which has the
same dimensions as that of the L operators of the first
method. These two methods will then give rise to exactly
the same tensor network, producing equivalent tensors
(up to a unitary transformation). The first method can
thus be simply considered as an explicit formulation of
the joining of the parity bonds with the original bonds
in the matrix space in the second method.

V. APPROXIMATE CONTRACTION OF THE
TENSOR NETWORK

The calculation of expectation values with respect to
a Bethe eigenstate of the form of (26) is a considerably
complex problem, because it requires the contraction of
the tensor network depicted in Fig. 7.
A tensor network with such a structure also appears

in connection with the calculation of partition functions
of two-dimensional classical systems and one-dimensional
quantum systems and the calculation of expectation val-
ues with respect to PEPSs. The complexity of contract-
ing this network scales exponentially with the number
of rows M or columns N (depending on the direction of
contraction), which renders exact calculations infeasible.
Following Murg et al.22, to circumvent this problem,

we attempt to perform the contraction in an approxi-



11

FIG. 7: Tensor Network calculation of expectation
values

mative numerical way: the main idea is to consider the
network in Fig. 4 as the time evolution of MPOs (L op-
erators) acting on MPSs in a sequential order.
After each evolution step, the state remains an MPS,

but the virtual dimension is increased, by a factor of 3
(first level) or 2 (nested level). Thus, we approximate the
MPS after each evolution step by a MPS with smaller vir-
tual dimension. Of course, we must exercise caution, as
the creation operators are not unitary and the intermedi-
ate states of the evolution can be nonphysical (i.e., they
might have to be represented by an MPS with high vir-
tual dimension). We choose the order of contraction to
be such:

1. In the nested Bethe ansatz, act the n1 nested cre-

ation operators C(1)(λ
(1)
n1

) · · ·C(1)(λ
(1)
1 ) on the ini-

tial MPS |0〉
(1)

sequentially, contracting approxi-
mately to get an MPS at each step, to produce a
boundary MPS on the right of the first level Bethe
ansatz.

2. Now, in the first level Bethe ansatz, n first level cre-
ation operators C(λn) · · ·C(λ1) on the initial MPS
|0〉 sequentially, contracting approximately to get
an MPS at each step, with the right end of the
first level Bethe ansatz terminated by the bound-
ary MPS produced in the first step.

At each step in the above contraction process, we let

|Ψm〉 = Cam
(λm)

∣∣∣Ψ̃m−1

〉
, m = 1, · · · , n (69)

|Ψm1
〉
(1)

= C(1)(λ(1)
m1

)
∣∣∣Ψ̃(1)

m1−1

〉
, m1 = 1, · · · , n1 (70)

where

∣∣∣Ψ̃0

〉
= |0〉 ,

∣∣∣Ψ̃0

〉(1)
= |0〉

(1)
(71)

At each step of the first level Bethe ansatz (and simi-
larly for the nested Bethe ansatz), |Ψm〉 is approximated

by the MPS
∣∣∣Ψ̃m

〉
that has maximal bond dimension D

and is closest to
∣∣∣Ψ̃m

〉
. In other words, we try solve the

minimization problem

min(M) := min
|Ψ̃m〉∈{MPSD}

∥∥∥|Ψm〉 −
∣∣∣Ψ̃m

〉∥∥∥
2

(72)

= min
(〈

Ψ̃m|Ψ̃m

〉
− 2

〈
Ψm|Ψ̃m

〉)
, (73)

which is essentially a mimization problem of the form11

min
x1,x2,···


 ∑

k1,k2,···

(
x1
k1
x2
k2
x3
k3

· · ·
) (

x̄1
k1
x̄2
k2
x̄3
k3

· · ·
)

−
∑

k1,k2,···

(
y1k1

y2k2
y3k3

· · ·
) (

x̄1
k1
x̄2
k2
x̄3
k3

· · ·
)

 ,

(74)

where xj
kj

and yjkj
are the defining matrices of the MPS∣∣∣Ψ̃m

〉
and |Ψm〉, respectively, and kj ranges from 1 to

3 in the first level Bethe ansatz and from 1 to 2 in the
nested level. The size of the matrices xj

kj
is constrained

to D × D (except from the boundary matrices that are
constrained to 1×D and D × 1, respectively).
This minimization can be performed using the Alter-

nating Least Squares (ALS) algorithm. The ALS is an
iterative method that works as follows: after making an
initial guess of the matrices xj

kj
, all matrices are kept

fixed except those on site 1, and optimization is done
over {x1

k1
}. Writing this set of matrices as a vector x1 of

dimension dD2, this subproblem is of the form

min
x1

(
x1†N1x

1 − x1†ω1

)
, (75)

which can be minimized by solving

δ

δx1†

(
x1†N1x

1 − x1†ω1

)
= 0 =⇒ N1x

1 = ω1. (76)

This implies that the optimal x1 can be obtained by
solving a system of linear equations with coefficient ma-
trix N1 and inhomogenity ω1, both of which can be ob-
tained efficiently by contracting the the appropriate ten-
sor network11. For a MPS with open boundary condi-
tions, a gauge condition can always be found that makes
the coefficient matrix N1 equal to the identity, thus mak-
ing the solution of the system of linear equations numer-
ically stable.
At the next step, all matrices are fixed except for those

of site 2 (i.e. {x2
k2
}) and the same optimization proce-

dure is performed, and it continues optimizing for each
site until the last site is reached. The sweep direction
then changes from the last to the first site, and contin-
ues back and forth until convergence. In this way, the
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MPS approximation of the Bethe state is obtained for
the whole tensor network. The error of the approxima-
tion is well controlled in the sense that the expectation
value of the energy can always be calculated with respect

to the approximated MPS
∣∣∣Ψ̃m

〉
and compared to the ex-

act energy available from the Bethe ansatz.
There is a (mathematical) degree of freedom that can

be used to improve the approximation. This degree of
freedom is due to the fact that the set of {{λ}, {λ(1)}}
encode information about physical quantities and the or-
dering of the them should not change the final wavefunc-
tion produced. That is, permutation of order of applying
the creation operators through permutation of the set of
{{λ}, {λ(1)}} will not change the final wavefunction.
However, the intermediate states are a priori not phys-

ical ground states; i.e., there is no reason for them to lie
in the set of MPS with low bond dimension. Even so,
similar to that which is noted in Murg et al.22, there is
always an ordering of the set of λ’s such that the inter-
mediate states contain as little entanglement as possible.
We then use that ordering for doing the approximation.

VI. NUMERICAL RESULTS

Using the previously described method, we have ob-
tained numerical results for the t-J model with periodic
boundary conditions. The Lai and Sutherland represen-
tation are algebraically equivalent as proven in Essler
and Korepin3. However, for numerical computations, the
Sutherland representation works better as its tensor net-
work is smaller near half filling (which increases the max-
imum lattice length that we can work with numerically),
and its Bethe ansatz equations are more well behaved
numerically. In fact, the Bethe equations of Lai repre-
sentation blow up numerically at half filling when there
are no holes (the infinities cancel algebraically). As such,
after doing consistency checks between the two repre-
sentations, we have decided to only present the compu-
tational results of the Sutherland representation in this
section.
To implement grading, we chose to use the first method

as the explicit construction of the matrices can be more
easily checked for errors. As a proof of principle, we
obtain the correlation functions of eigenstates on lattices
of length 18 as presented below. Calculations for lattices
of larger length can be achieved through consideration
of symmetries as was done in Murg et al.22, or using
mathematical packages which which can circumvent the
default machine precision limit.

A. Electron correlator

The asymptotic behavior of the spin correlator is pre-
dicted by conformal field theory to be

Gσ(r) =
〈
c†σ(r)cσ(0)

〉
∝ r−ηcos(kF r) (77)
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FIG. 8: Spin-up correlator at 2/3 filling for ground state

where η and kF are as defined in27. This is strongly sup-
ported by our results, as can be gathered from Fig. 8. The
deviations are caused by finite size effects, though the nu-
merical results for spin-up correlator is clearly bounded
by the theoretical results.

B. Singlet pair superconducting correlators
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−9

r

P
(r

)

FIG. 9: Singlet pair superconducting correlator at 2/3
filling for ground state

The asymptotic behavior of the singlet pair correlator
is predicted by conformal field theory to be

Ps(r)
〈
c†↑(r + 1)c†↓(r)c↑(1)c↓(0)

〉
∝ r−βscos(2kF r) (78)

where βs and kF are as defined in27. This is strongly
supported by our results, as can be gathered from Fig. 9.
The numerical result of the correlator is clearly bounded
by the theoretical results, and the deviations are due to
finite size effects.
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C. Spin correlator
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FIG. 10: Spin correlator at various filling for charge
triplet state - the number in the legend shows N , the

total number of particles

The spin correlator is defined as:

χ(r) = 〈Sz(r)Sz(0)〉 , Sz(r) = (n↑(r) − n↓(r)) (79)

We consider the charge triplet state and calculate its spin
correlator, as shown in Fig. 10. It shows that an inter-
esting trend that as we decrease the number of holes in
the lattice sites (i.e. increase the filling), the variation of
the spin correlator increases, and that it tends toward a
zigzag pattern that alternates between the even and odd
lattice sites at a full lattice.

D. Charge density correlator
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FIG. 11: Charge density correlator at various filling for
charge triplet state (color online) - the number in the

legend shows N, the total number of particles

The charge density correlator is defined as:

N(r) = 〈n(r)n(0)〉 , n(r) = (n↑(r) + n↓(r)) (80)

We consider the charge triplet state and calculate its
charge density correlator, as shown in Fig. 11. It does
not fully show the trend of variation across the lattice
sites, as it is dominated by the constant term in the cor-
relator.
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FIG. 12: Normalized charge density correlator at
various filling for charge triplet state (color online) - the
number in the legend shows N , the total number of

particles

As such, we attempt to “normalize” the correlator by
setting the correlator of the first site to be zero (by sub-
tracting away the value of the correlator at the first site),
as shown in Fig. 12. This clearly shows a trend that as
N (total number of particles) increases, the magnitude
of the variation of the correlator across the lattice sites
increases, until N = 14 which is reaches a peak, then
decreases.

VII. CONCLUSIONS

Summing up, we have presented a method for approx-
imative calculation of expectation values with respect to
Bethe eigenstates of the t-J model. To achieve this, we
make use of the fact that a Bethe eigenstate is a product
of MPOs applied to an MPS. We systematically reduce
the virtual dimension after each multiplication and ob-
tain an MPS with small virtual dimension that can be
used for the calculation of any expectation value. As
a proof of principle, we have obtained the correlation
functions of eigenstates on finite length lattices with our
method.
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