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1. Introduction

The strange metal phase of the hole-doped cuprate superconductors is the
most important realization of quantum matter not amenable to a quasipar-
ticle description [1, 2]. Apart from the well-known linear in temperature
(T ) resistivity, the strange metal has a Hall angle tan(θH) ∼ 1/T 2 [3, 4].
This combination cannot be reproduced in a Boltzmann theory of charge-
carrying quasiparticles with a long lifetime; such a theory yields a tan(θH)
inversely proportional to the resistivity, and so these observations rule out
the transport of charge by any fermionic quasiparticle, and not just those
with the same quantum numbers as the electron.

A general hydrodynamic approach to magnetotransport in strange met-
als was introduced by Hartnoll et al. in [5], and compared to Nernst mea-
surements in the strange metal of the cuprates. The main assumption of
their theory, apart from the absence of any quasiparticle excitations, was
that there was a slow mode associated with the decay of the total mo-
mentum. Such a slow mode is indeed invariably present in proposed field-
theoretic models of strange metals [6, 7], and the decay arises from perturba-
tions which break the continuous translational symmetry of the field theory
(umklapp scattering or impurities). Combining this momentum mode with
reasonable assumptions on the diffusion of the conserved U(1) charge and
energy densities, general results were obtained by Hartnoll et al. [5] for
the charge and thermoelectric transport coefficients of a two-dimensional
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strange metal in the presence of a static magnetic field, B. Note that we are
using the phrase “charge density” here to refer to the conserved density of
a global U(1) symmetry. In the application to the cuprates, there are also
long-range Coulomb interactions associated with such a conserved density,
and we will briefly discuss this in Section 4.1.

Blake and Donos [8] have recently argued that the magnetotransport
framework of Hartnoll et al. is compatible with the measurements of the
longitudinal and Hall conductivities in the cuprates, and also provided a
solvable holographic model for magnetotransport in the presence of momen-
tum relaxation.

However, an important concern is that the present derivations of the
above results for strange metals rely on models which are rather far re-
moved from the microscopic situation in the cuprates. One approach [5]
begins from a quantum critical point with a relativistic structure, and then
breaks Lorentz invariance weakly by a chemical potential, the temperature,
and the applied magnetic field; the equations were then derived using a
hydrodynamic gradient expansion restricted by the requirements of the pos-
itivity of entropy production. The other approach [5, 8] uses holographic
models of strange metals represented by gravitational theories in a spacetime
with an extra dimension, whose field theory duals are not well understood.

In the present paper, we will provide a derivation for the equations for
magnetotransport in a normal-state metal using the memory matrix ap-
proach [9, 10, 11]. Although the memory matrix framework has typically
been applied to systems where the slow relaxation of momentum dominates
magnetotransport and the diffusion of conserved quantities is negligible, we
generalize and study the case where the diffusive dynamics is not negligible
and must be consistently included in the memory matrix. In particular, we
will focus on the consequences of the diffusion of exactly conserved heat, as
well as an exactly conserved U(1) charge. Our main results may be found
in (6) and (70), though there is a large amount of notation that must be
explained, and so we defer their presentation. Our assumptions on the mo-
mentum mode, and the charge and energy diffusion will be the same as those
in [5], but we will not assume any relativistic structure on the underlying
theory. Using certain assumptions, our results agree with those of [5], and
with the recent holographic papers [12, 13, 14], and shed light into a discrep-
ancy between the two. Furthermore, our results can, in principle, be applied
directly to microscopic models appropriate for the cuprates [6, 7, 15, 16], as
we will describe more completely in Section 7.
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Figure 1: An illustration of the connections between hydrodynamics, mem-
ory matrices, and holography.

1.1. Transport Without Quasiparticles

Let us briefly review our current understanding of theoretical frameworks for
describing transport in strongly correlated systems without quasiparticles in
two (or more) spatial dimensions. An overview is also provided in Fig. 1.

The simplest way of describing transport without reference to quasi-
particles is, in fact, a very old framework – hydrodynamics. The modern
understanding of hydrodynamics is that it describes the long wavelength,
long time dynamics of a system close to thermal equilibrium, when there
are a small number of conserved quantities [17]. We will be liberal, and also
allow for some of these conserved quantities to decay on long time scales,
while still maintaining the name “hydrodynamics”. All we insist upon is
that this list of conserved quantities is finite; this is in contrast to the typi-
cal condensed matter paradigm of a Fermi liquid, where occupation numbers
at every single wave number are long lived quantities. For non-Fermi liquids,
it is believed that generic higher dimensional theories do not admit infinite
families of (nearly) conserved quantities at strong coupling.

Hydrodynamics proves to be a very powerful framework for describing
the dynamics of systems without reference to quasiparticles. However, we
must emphasize that hydrodynamics is an incomplete description. It pro-
vides a set of constraints that any (to date) reasonable (2+1)-dimensional
quantum field theory at finite density and temperature, which is approxi-
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mately translation invariant, must obey, and a universal framework within
which we can interpret a microscopic calculation. But it does not give us
particular values or temperature dependence for any microscopic coefficients.

So now we need a way of obtaining microscopic coefficients. A traditional
framework for doing this is the memory matrix framework [9, 10]; see [11] for
a thorough review. We will review it in this paper, but for now we emphasize
that it is in principle an exact, microscopic calculation. Its usefulness is that
it can be efficiently approximated in a hydrodynamic regime where there are
only a few quantities which do not quickly relax to thermal equilibrium.

The main purpose of this paper is to clarify and sharpen the connections
between the memory matrix framework for transport, and hydrodynamic
descriptions of transport. In particular, we will not need to add a phe-
nomenological momentum relaxation time in hydrodynamics, and compute
this coefficient separately using the memory matrix formalism. We will also
point out the microscopic computations which allow us to compute all phe-
nomenological coefficients within hydrodynamics.

There has also been, in recent years, a third framework which allows for
transport computations: gauge-gravity duality. This allows one to study a
strongly coupled “large N matrix” quantum field theory, directly at finite
temperature and density, in real time, by studying a classical gravity theory
in one higher dimension, in particular black hole backgrounds. Ref. [18] has
recently shown the equivalence between holographic and memory function
calculations in zero magnetic field, in the regime where momentum relax-
ation is slow (this provides the bottom arrow in Fig. 1). One advantage
of holographic methods is that the calculations are formally valid beyond
the regimes of validity of hydrodynamics or memory functions. However,
we point out in this paper that a wide variety of holographic results for
transport, computed in regimes where hydrodynamics need not be valid,
can nonetheless be understood within the framework we derive.

1.2. Outline of the Paper

We will begin in Section 2 by recalling the main hydrodynamic results of
[5] for electrical transport in a simple manner, and using notation suitable
for our memory matrix approach. The basic memory matrix formalism will
be introduced in Section 3, along with its physical interpretation. Section 4
contains our main new results on magnetotransport in the memory matrix
formalism under the simplifying assumption that the diffusion of heat has
decoupled from the diffusion of charge and relaxation of momentum: this
simplification will help us to elucidate many of the subtleties that arise in
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the memory matrix framework when describing magnetotransport. Section 5
relaxes the assumption that heat diffusion decouples, and Section 6 describes
thermal and thermoelectric transport.

2. Hydrodynamics

Let us begin by computing electrical transport in a generic quantum field
theory without quasiparticles, describable by hydrodynamics, following the
approach of [5]. More precisely, we focus on a theory with exactly conserved
energy and U(1) charge, and approximately conserved momentum, where
the only dynamics on long time scales are momentum relaxation on the
time scale τ , and charge/energy diffusion on the time scales λ2/D, with λ
the wavelength of the fluctuation and D an eigenvalue of the generalized
diffusion matrix coupling heat and charge diffusion.1

We wish to compute the electrical conductivity matrix, defined as

Ji = σijEj . (1)

We assume that we have an isotropic, parity-symmetric theory in two spatial
dimensions, which constrains

σxx = σyy, (2a)

σxy = −σyx. (2b)

Momentum conservation within a hydrodynamic framework – accounting
for momentum relaxation – gives us the equation

∂tΠx + ∂xP = −Πx

τ
+QEx +BεijJ

j (3)

where Q is the background “charge” density, τ is the momentum relaxation
time, B is the external magnetic field, P is the pressure and Πx is the x-
momentum density; a precise definition of Q, applicable to lattice models,
appears later in (27). We have assumed that the velocities relevant for
hydrodynamics are small and may be treated non-relativistically. As we are
interested in perturbing the system with a spatially homogeneous electric
field, oscillating at frequency ω, momentum conservation simplifies to(

−iω +
1

τ

)
Mδvi = QδEi +BεijδJj (4)

1Note that with momentum relaxation, there is no longer a propagating sound mode
as k → 0, so indeed the dynamics of charge and energy become governed by diffusion.
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whereM is the analogue of “mass density” (namely, the momentum density
at small velocities isMδvi). The memory matrix definition ofM is in (26).
The momentum relaxation time, τ , is – like all thermodynamic coefficients
– undetermined within hydrodynamics. Unlike thermodynamic coefficients
likeM and Q, however, τ is extrinsic and sensitive to the precise mechanism
by which momentum relaxes, as we will see explicitly within the memory
matrix formalism.

(4) gives us an equation relating δvi, δJi and δEi – our perturbatively
small quantities within linear response. δJi may be expressed in terms of
δvi and δEi, in an isotropic and parity-symmetric (up to magnetic fields)
theory, as

δJi = Qδvi + σq (δEi +Bεijδvj) . (5)

Here σq is an intrinsic “quantum critical” conductivity which measures
charge transport independent of the momentum mode; a precise definition
relating it to the charge diffusivity appears later. Combining (4) and (5) we
may relate δJi to δEi, and we find

σxx =
(τ−1 − iω)Mσq +Q2 +B2σ2

q

Q2B2 + ((τ−1 − iω)M+B2σq)2
M
(

1

τ
− iω

)
, (6a)

σxy =
2(τ−1 − iω)Mσq +Q2 +B2σ2

q

Q2B2 + ((τ−1 − iω)M+B2σq)2
BQ. (6b)

The answer simplifies when B = 0 to the form σxy = 0 (by parity symmetry)
and

σxx = σq +
Q2τ

M(1− iωτ)
. (7)

Though in a system without Galilean invariance one might be concerned
that the Qs in (4) and (5) need not be the same, we will carefully define Q
via the memory matrix framework and show that (6) is indeed (at leading
order) correct.

These results were first derived in [5], for the case of a quantum critical
theory, and were argued in [8] to be compatible with Hall angle measure-
ments in the strange metal of the cuprates. In fact, the structure here is
identical, and is valid for any isotropic theory, whether or not it is Lorentz
invariant. We even need not assume that diffusive charge and heat fluctua-
tions are decoupled (as would be the case when the underlying theory has
charge conjugation symmetry) – heat transport could only alter the equa-
tions above if temperature gradients were non-vanishing, which (by assump-
tion) does not happen. It is a simple task to compute additional thermal
and thermoelectric coefficients, but we will not do so using hydrodynamics.
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We remarked previously that the dynamics which governs σij is the only
dynamics in the system occuring on long time scales. However, the expres-
sions for σij are rather complex! This is because there are four slow time
scales in the problem: the slow driving time scale 1/ω, and the three time
scales associated with the specific quantum field theory, and its realization:
τ , 1/ωc, and 1/ωq, where ωc is the cyclotron frequency

ωc =
QB
M

, (8)

and ωq is a “quantum frequency” given by

ωq =
Q2

Mσq
. (9)

Within hydrodynamics, and the memory function formalism, we only work
to leading order in ω – but to all orders in the dimensionless numbers ωτ ,
ω/ωc, ω/ωq.

As τ−1 scales with the strength of the coupling to the operator which
breaks translational symmetry (as we will explicitly see later), and ωc ∼ B, it
is evident in what physical limit these two quantities would be perturbatively
small. It is less clear how ωq would generically be perturbatively small. One
mechanism is that the densities of the theory (Q and M) are small (with
Q/M, the strong-coupling analogoue of the fixed charge-to-mass ratio of the
electron, fixed). Another is that σq is anomalously large – though this should
not be a consequence of weak coupling (i.e., long-lived quasiparticles), for
our framework to be valid.

We should also comment that recently, this result has been obtained holo-
graphically at ω = 0 [8] (though it is not expressed in terms of thermo/hydrodynamic
quantities) in a set-up which is formally valid even when τ is comparable to
τm – the time scale associated with microscopic dynamics, and the break-
down of hydrodynamics. The limiting case (7), also at ω = 0, is found
in various holographic set-ups in [19, 20, 21]. It is an interesting question
whether or not this is a pathological feature of the holographic mechanism
of strong momentum relaxation, or a signature that the “hydrodynamic”
regime of strongly coupled transport persists far beyond our first expecta-
tions.

3. Memory Function Formalism

Let us now briefly review the memory function framework. As we empha-
sized in the introduction, the method works best when quasiparticles are
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not long-lived, and the only conserved (or approximately conserved) quan-
tities are charge, energy and momentum. In recent years this has become
a method of choice for studying transport in condensed matter systems
without quasiparticles [5, 22, 6, 7], including using gauge-gravity duality
[23, 24, 25, 26, 27]. We work in units with ~ = 1.

Let us consider the set of operators A,B,C, . . . in a time-translation
invariant theory, and correlation functions of the form

CAB(t− t′) = (A(t)|B(0)) ≡ T
1/T∫
0

dλ
〈
A(t)†B(iλ)

〉
(10)

with averages over thermal and quantum fluctuations denoted in 〈· · · 〉. The
Laplace transform of this expression can be shown to be

CAB(z) =
T

iz

[
GR
AB(z)−GR

AB(i0)
]
. (11)

The retarded Green’s function (in real space) is defined as:

GR
AB(x, t) ≡ iΘ(t)〈[A(x, t), B(0, 0)]〉 (12)

where Θ is the Heaviside step function. The momentum dependence of the
Green’s functions have been suppressed in (11) as we will only be interested
in the conductivities, evaluated at zero momentum. As standard, we take
z to lie in the upper half of the complex plane. We are only computing
thermoelectric transport coefficients, for which GR

AB(ω → 0) ∼ iωσAB, with
σAB strictly finite; thus for us, GR

AB(i0) = 0 and can be neglected. Up
to the overall factor of temperature, we recognize CAB(z) in (11) as a gen-
eralized conductivity between the operators A and B, σAB. Some formal
manipulations on a Hilbert space of operators using the inner product (10)
give

σAB(z) ≡ 1

T
CAB(z) = χAC [M(z) +N − izχ]−1

CDχDB, (13)

where χAB is the static susceptibility between the operators A and B:2

χAB ≡ GR
AB(ω = 0) =

1

T
(A|B), (14)

2Differing conventions appear in the literature [28]. This definition of the (overall sign
of the) retarded Green’s function is much more standard [24, 26] and is the common choice
in condensed matter physics.
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the memory matrix MAB is defined as

MAB(z) =
i

T

(
Ȧ
∣∣∣q(z − qLq)−1q

∣∣∣Ḃ) , (15)

L = [H, ◦] is the Liouvillian operator with H the Hamiltonian, q is the
projection operator

q = 1− 1

T

∑
AB

χ−1
AB|A)(B|, (16)

and
NAB ≡ χAḂ = −χȦB. (17)

Note that NAB vanishes identically in a time-reversal invariant theory.
We will show that for the magnetotransport problem of interest in this

paper, the memory matrix effectively truncates to a 6 × 6 matrix, given as
m = M +N − iωχ in (56).

3.1. Hydrodynamic Interpretation

The usefulness of the memory function formalism arises when the infinite
dimensional matrix M has a finite number of parametrically small eigen-
values. This allows us to truncate the matrix to a small, finite dimensional
object.

To give some physical intuition into (13), let us consider the dynamics of
long-lived conserved quantities from the viewpoint of hydrodynamics. Let
XA denote quantities which are conserved on very long time scales, and
let UA be the conjugate thermodynamic variable. For simplicity, we define
XA by shifting XA by a constant so that in equilibrium, 〈XA〉 = 0. In
thermodynamics, we can then relate

XA = χABUB, (18)

where χ is the same static susceptibility matrix as before, and we drop
expectation values within hydrodynamics. The transport equations read

ẊA = −MABUB −NABUB + FA, (19)

where NAB, as before, is the static susceptibility between Ȧ and B, MAB is a
(for now arbitrary, but symmetric) matrix which denotes the weak relaxation
of XA into an external bath, and FA is an external driving force. Now, we
relate FA to the “thermodynamic field” EA which drives XA by

FA = χABEB. (20)
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EA should be interpreted as “the net U̇A” imposed on the system. Combin-
ing these equations together at frequency ω, we obtain

XA = σABEB (21)

where σAB is given by (13).
One aspect of the memory function framework that is now much clearer

is the physical role of the memory matrix. Defining the memory matrix as

MAB ≡ τ−1
ACχCB, (22)

in an undriven, time reversal invariant theory (where N = 0), we find

ẊA = −τ−1
ABXB. (23)

Evidently, the memory matrix encodes relaxation times for the average val-
ues of the operators A of interest. It is now evident why we choose the op-
erators A,B, . . . to be almost conserved quantities. In this case, the matrix
τ−1 will have parametrically small eigenvalues, and as the memory matrix
enters the conductivity via an inverse, these quantities will dominate the
conductivity.

This derivation is rather abstract, so let us give a simple example to
clarify the thermodynamic structure of these equations: the dynamics of a
point particle of mass m on a one dimensional line, subject to weak friction,
but no potential energy. In this case, the momentum p is long lived. The
thermodynamic conjugate variable is the velocity v, and so the susceptibility
is simply the mass. Npp = 0, as there is no generic proportionality coefficient
between p and v̇, and so we are left with ṗ = F−Mppv. Of course if Mpp = 0
we simply have Newton’s Law, F = ṗ = mv̇; otherwise, Mpp 6= 0 provides a
frictional force which dissipates momentum into an external bath.

It is also important to understand the role played by F in this equation.
To compute the “momentum conductivity” σpp of this particle, we can inter-
pret the external driving by the force F as actually external “shaking” of the
line with acceleration aext = F/m. The conductivity relates the response of
p to an external source of the time derivative of its conjugate variable. We
find at zero frequency:

p

aext
=
mv

aext
=

mF

Mppaext
=

m2

Mpp
, (24)

in accordance with (13).
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Of course, we are probably more familiar with electrical conductivity. In
this case, the thermodynamic conjugate variable to J is a gauge potential
−A. And as −dA/dt = E, the electrical conductivity σJJ relates the re-
sponse of J to an external electric field E. In this case, as we will see in
the next section, the analogue of (19) become the hydrodynamic equations
which describe the dynamics of charge and momentum, which are a bit more
cumbersome.

The usefulness of the memory function formalism beyond the hydrody-
namic reasoning described above is that we now have explicit expressions
for the matrices M , N and χ. In particular, this will allow us to explicitly
compute τ , the momentum relaxation time. We will describe more in the
following section what the components of this matrix actually look like.

4. Dynamics of Charge and Momentum

Let us now discuss how the memory function framework produces the mag-
netohydrodynamic electrical transport described earlier. For simplicity, we
assume that charge and heat diffusion are decoupled processes at zero charge
density – we relax this assumption in Section 5. There are two slow time
scales in the problem: the time scale over which momentum relaxes tmom ∼
τ , and the time scale over which charge fluctuations diffuse away, tdiff ∼
λ2/D, with λ the wavelength of the fluctuation; on the longest length scales,
tdiff → ∞. Note that at finite charge density, there will be heat diffusion;
however, the slow diffusion of heat will not be linearly independent from the
dynamics of charge or momentum. Our goal is to compute the electrical
conductivity matrix σij at zero momentum, and small but finite frequency
ω. There are four operators associated with the long lived quantities above
which have spin 1 under the SO(2) isotropy of the system: the momentum
vector P, and charge density fluctuations ∇n. This suggests that our mem-
ory matrix should be a 4 × 4 matrix, as we should only keep track of the
(zero wave vector components) of these operators. Using the notation of the
previous section, our goal is to compute the conductivities σJxJx ≡ σxx and
σJxJy ≡ σxy.

4.1. Diffusive Transport

Let us begin with the case when the charge density Q = 0, and the magnetic
field B = 0. As B = 0, the time reversal symmetry breaking matrix N
will vanish. In this case, hydrodynamics tells us that the conductivity is
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governed solely by diffusive processes. Let us see how this arises in the
memory function framework. In this case, using the isotropy of the system,
in order to compute σxx, we need only keep track of operators with long
time dynamics which are spin 1, and oriented in the x direction: these are
∂xn and Px – both evaluated at zero wave vector.

To get started, let us compute the susceptibility matrices. Formally, we
introduce a velocity v, as a source term conjugate to the conserved momen-
tum, so that Hamiltonian maps as

H0 → H0 − vxPx, (25)

where H0 is translationally invariant, and thus commutes with Px, the total
momentum in the x-direction (we will add terms responsible for momentum
decay later). We may compute the susceptibilities χAPx by studying 〈A〉vx –
the response of the average value of A to a small external source of velocity
[17]:

χPxPx =
〈Px〉vx
vxV

≡M, (26)

where V is the spatial volume of the sample. This formally defines the
value of M; alternatively, M is related to GR

PxPx
via (14). Note that in the

earlier relativistic formalism,M was equal to the sum of the energy density
and pressure, up to coefficients proportional to the (effective) speed of light.
Analogously,

χPxJx =
〈Jx〉vx
vxV

≡ Q, (27)

defines the charge density Q. As the perturbation (25) does not break
translation invariance in n(x):

χPx∂xn = 0. (28)

Identical results hold for the yy susceptibility matrices. By spatial parity
symmetry, when B = 0, we find

χPxPy = χ∂xn∂yn = χPx∂yn = χPy∂xn = 0. (29)

In fact, we now see there is a great simplification when Q = 0, because
the P indices of the memory matrix can play no role in the computation
of σxx, as χPxJx = 0. This is a bit fast; we will see explicitly later that
the necessary components of the memory matrix MPxA do not vanish fast
enough as Q → 0 to spoil this argument.
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Next, let us compute χJx∂xn. The simplest way to proceed here is
to choose a finite momentum regulator, and then show that the trans-
port coefficients are independent of the choice of regulator, kx. We choose
n(x) = −n(kx) sin(kxx),3 and this implies that the overlap with the current
operator Jx(kx) cos(kxx), is given by

〈J〉 = −σq∇µ, (30)

as the conjugate field to n is the chemical potential µ (in the presence of long-
range Coulomb interactions, µ should be replaced by the electrochemical
potential [29, 30]). We conclude

χJx∂xn = σqkx. (31)

Crudely speaking, we think of fixing x and sending kx → 0 – one then
finds that n(x) → −n(kx)kxx and Jx → Jx(kx), so that we have a linear
density fluctuation sourcing a constant, diffusive current. But it is easiest
to compute the memory matrix with the regulator explicitly finite.

It is a standard result that [17]

GR
nn(k, ω) =

σqk
2

Dk2 − iω
, (32)

for any quantum field theory which has a hydrodynamic limit, where n will
obey a simple diffusion equation at long wavelengths with diffusion constant
D: ∂tn = D∇2n (recall we have assumed charge and heat fluctuations
decouple at Q = B = 0); for the case with long-range Coulomb interactions,
(32) refers to the irreducible density correlator i.e. the polarizability [29, 30].
We may now use (13) to obtain M∂xn∂xn. By time reversal symmetry when
B = 0, (∂xṅ|∂xn) = (∂xṅ|Px) = 0; thus we take the abstract projection
operator q = 1 in (13). Using that [11]

MAB(z) =
1

πi

∞∫
−∞

dω
Im
(
GR
ȦḂ

(ω)
)

ω(ω − z)
, (33)

and regulating this integral, we obtain

M∂xn∂xn(ω) =
σqDk

4
x

Dk2
x − iω

≈ σqk2
x + iωχnn + · · · , (34)

3The choice of sine waves instead of plane waves keeps things manifestly real, and so
is a bit simpler.
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where we have expanded to lowest non-trivial order in ω, and

χnn =
σq
D

= lim
k→0

lim
ω→0

Re
[
GR
nn(k, ω)

]
(35)

is the static density-density susceptibility. The memory matrix formalism
now gives

σxx =
χ2
Jx∂xn

M∂xn∂xn − iωχnn
=
σ2
qk

2
x

σqk2
x

= σq +O
(
ω2
)
. (36)

This is exactly what we should expect – the diffusive hydrodynamic coeffi-
cient σq is well-known to be the electrical conductivity at Q = B = 0. And
importantly, the regulator kx has decoupled from the answer. We may thus
safely take the limit kx → 0. By spatial isotropy, χJx∂xn = χJy∂yn, etc., and
χJx∂yn = 0, etc.

4.2. Momentum Relaxation

Next, let us consider the case where Q 6= 0, and B = 0. We have already
computed all relevant static susceptibilities, so only the memory matrix M
remains. Spatial isotropy implies that MPxPy = MPx∂yn = 0, etc., and
so we only need to compute M∂xnPx and MPxPx . Note that the diffusive
form of M∂xn∂xn and χJx∂xn from the previous subsection remains valid
even with Q 6= 0, as momentum relaxation kills sound propagation at the
longest wavelengths, and charge is still conserved, though the value of σq
may change.

We begin with MPxPx . Let us consider for simplicity the case where the
Hamiltonian of the system is given in d spatial dimensions by

H = H0 −
∫

ddx h(x)O(x), (37)

whereH0 is a translationally invariant Hamiltonian, andO(x) is an arbitrary
operator in the quantum field theory. h(x) is an arbitrary function which
should depend on space, and be non-trivial in (almost) all of the plane. We
assume that h(x) is small, so that translational symmetry breaking is weak
– we will see that this is equivalent to the momentum relaxation time τ
being large. The operator Ṗi is easily computed to be

Ṗx = i[H,Px] = −
∫

ddx h(x)(∂iO)(x) (38)
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The generalization to the case where multiple operators couple to x-dependent
fields is straightforward. We find

MPxPx(z) =
1

πi

∞∫
−∞

dω
Im
(
GR
ṖxṖx

(z)
)

ω(ω − z)

=
1

πi

∞∫
−∞

dω

∫
ddk1ddk2

Im
(
GR
OO(k1,k2, ω)

)
ω(ω − z)

h(k1)h(k2)k1xk2x.

(39)

As before, we have set q = 1 in this equation: we assume the operator O is
independent of ∂xn or Px. As h is a small parameter, we may safely take
GR
OO to be the Green’s functions associated with H0; translation invariance

then implies that it vanishes unless k1 + k2 = 0. One finds [5, 24, 27, 18]

MPxPx(0) ≡ M
τ

= lim
ω→0

∫
ddq |h(q)|2q2

x

Im
(
GR
OO(q, ω)

)
ω

, (40)

up to a re-scaling of h(q) to absorb a factor of the spatial volume [18]. We
will shortly see that the τ defined here is equal to the τ defined within
hydrodynamics; with the memory function framework, however, we now
have an explicit expression for τ in terms of the fields h. A similar formula
holds for MPyPy . For simplicity, we will assume that the system is isotropic
and so MPxPx = MPyPy .

We have focused on the ω = 0 limit of MPxPx(ω). This can be justified
on very general grounds. Suppose that τm is the microscopic time scale
associated with the quantum dynamics of the system – for example, in many
quantum critical theories, we have τm = 1/T . The Green’s function GR

OO is
associated with the quantum dynamics of the Hamiltonian H0, and thus we
obtain

GR
OO(ω) = A

(0)
OO + (ωτm)A

(1)
OO + (ωτm)2A

(2)
OO + · · · (41)

where, for a generic quantum field theory, the coefficients A
(1)
OO, etc., have

no anomalously large coefficients, relative to any others. This implies that

MPxPx(ω) =
M
τ

[1 + Cωτm + · · · ] , (42)

with C an O(1) constant, and thus the finite frequency corrections to MPxPx

are higher order in perturbation theory. At ωτm ∼ 1, hydrodynamics and
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the memory function formalism (when truncated to a finite set of operators)
both cease to be good approximations for generic theories.

Next, let us discuss MPx∂xn. In the case where the operator O is charge
conjugation symmetric, this matrix element vanishes by charge conjugation
symmetry. We discuss the more general case in Appendix A.

Putting everything together, we obtain σxy = 0 (by parity symmetry)
and, since the memory matrix is diagonal up to this point:

σxx =
χ2
Jx∂xn

M∂xn∂xn − iωχnn
+

χ2
JxPx

MPxPx − iωχPxPx

= σq +
Q2τ

M(1− iωτ)
(43)

In a theory without momentum relaxation, we have τ → ∞; then the real
part of the second term in (43) is proportional to δ(ω). In such a theory
we define σq to be equal to σxx minus the delta function contribution, and
this definition can be used to compute σq in a particular model of a strange
metal.

4.3. Magnetic Fields

Finally, we allow for B 6= 0. We still demand that B is perturbatively
small, so that ωc is a perturbative parameter. As each component of the
memory matrix is first order within perturbation theory (we will see this does
not change when B 6= 0), it will suffice to consider only the B-dependent
corrections to the memory matrix – considering B-dependent corrections to
the static susceptibilities is a higher order correction. Furthermore, within
the memory matrix, any B-dependent correction to a parity even coefficient
such as MPxPx must be O(B2), which is second order in perturbation theory.
The only matrix which may admit first order corrections within perturbation
theory that are linear in B is the time-reversal non-invariant matrix N .

Let us consider the consequences of B 6= 0 on the matrix N , which
relates to static susceptibilities. The consequences of an external magnetic
field are that

Ṗi = BεijJ
tot
j + · · · , (44)

with Jtot the spatially integrated momentum current, where · · · includes
effects such as momentum relaxation, that we have previously accounted for.
The expression (44) represents the Lorentz force law, and follows similarly
to (38), though with some subtleties. The (zero momentum component of
the) canonical momentum operator Pi(x) which generates translations is no
longer equivalent to the physical momentum:

Pi = Pi +

∫
d2x nAB,i, (45)
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where AB is the gauge potential due to the externally imposed magnetic
field. Note that only Pi is gauge invariant. In addition, the Hamiltonian is
altered to H → H +HB, with

HB = −
∫

d2x J ·AB. (46)

Now we evaluate Ṗx using the convenient gauge choice AB = −Byx̂:

Ṗx = i[H0 +HB, Px] = i

[
H0 +HB,Px +

∫
d2x nBy

]
= i[HB,Px] +

∫
d2x ṅBy +O(B2)

= −
∫

d2x (−∂xJx − ṅ)By = −
∫

d2x ∂yJyBy =

∫
d2x BJy = BJ tot

y .

(47)

As B is a constant, this relates the total current in the y direction to Ṗx,
as claimed in (44). A similar argument works for Ṗy, with the gauge AB =
Bxŷ.

We can use (44) to find that the B dependent corrections to the matrix
N , as χṖxA

= BχJyA for any operator A, as an example. Using this logic,
we find

NPxPy = −NPyPx = χPxṖy
= −BχJxPx = −BQ, (48a)

N∂xnPy = −N∂ynPx = −Bχ∂ynJy = −BkxσQ. (48b)

In writing down these results we have used that χPx∂xn = χPy∂yn = 0, which
follows from translation invariance of the thermodynamic state.

To recap: the “full memory matrix” m(ω) at this order in perturbation
theory is

m(ω) ≡M(ω) +N − iωχ ≈


k2
xσq 0 0 −Bkxσq
0 k2

xσq Bkxσq 0

0 −Bkxσq M
(

1

τ
− iω

)
−BQ

BkxσQ 0 BQ M
(

1

τ
− iω

)

 .

(49)

Along with χJxPx = χJyPy = Q, χJx∂xn = χJy∂yn = σqkx, being the only
non-vanishing static susceptibilities, it is straightforward to invert m and
obtain the main results displayed in (6), using (13).
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5. Dynamics of Charge, Heat and Momentum

Let us now relax the assumption that heat transport has decoupled from the
problem, and compute the electrical conductivity using the memory matrix
formalism. In fact, regardless of how many other long lived scalar quantities
we have – governed by diffusive transport – we will see that (6) continues
to hold.4 In practice, the only additional conserved quantity is heat.

Let us suppose that we have currents JR associated with long lived den-
sities nR(x); the chemical potentials associated to these long lived densities
are µR; the indices RS · · · will refer to the conserved charges, and indices
ij · · · will refer to spatial indices as usual. Analogous to (30) we find

JR = −ΣRS∇µS , (50)

with Σ a conductivity matrix. One finds analogously a susceptibility ma-
trix χRS , and a diffusion matrix DRS , with JR = −DRS∇nS , obeying the
Einstein relation

Σ = Dχ. (51)

Here we are multiplying together matrices with RS indices. These results
are reviewed in [31]. The analogous Green’s function to GR

nn is

GR
nRnS

=
(
k2
xD − iω

)−1

RT
k2
xΣTS , (52)

and so an analogous computation to before gives us

M∂xnR∂xnS
= k2

xΣRS (53)

Let the index Q denotes the conserved charge; thus

σq ≡ ΣQQ. (54)

Denote with P the projection operator onto the Q index: i.e.,

σqP = PΣP. (55)

m generalizes to

m ≈


k2
xΣRS 0 0 −BkxΣRQ

0 k2
xΣRS BkxΣRQ 0

0 −BkxΣQR M
(

1

τ
− iω

)
−BQ

BkxΣQR 0 BQ M
(

1

τ
− iω

)

 . (56)

4Indeed, such conserved quantities cannot at zero momentum have any overlap with
the electrical current, as the latter is a vector and we have assumed rotational invariance
in this paper.
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Our goal is to compute

σJiJj = χJiAm
−1
ABχBJj , (57)

and to simply prove that this matrix product is independent of any addi-
tional conserved quantities. (It is straightforward to carry out the remainder
of the algebra and explicitly recover the conductivities.)

A rather generic and useful result for us will be following formula from
linear algebra. Suppose that we have a block matrix

U =

(
X Y
Z W

)
, (58)

with X an m×m matrix, Y an m× n matrix, Z an n×m matrix, and W
an n× n matrix. Then

U−1 =

(
(X − YW−1Z)−1 −X−1Y (W − ZX−1Y )−1

−W−1Z(X − YW−1Z)−1 (W − ZX−1Y )−1

)
=

(
(X − YW−1Z)−1 −(X − YW−1Z)−1YW−1

−(W − ZX−1Y )−1ZX−1 (W − ZX−1Y )−1

)
. (59)

A tedious set of calculations, repeatedly imploying the identities above,
leads to the following block matrices in m−1:

m−1
PiPj

= N
(
B2σq +M(τ−1 − iω)

)
δij +NBQεij , (60a)

m−1
Pi∂jnR

=
B

kx
δRQm

−1
PiPk

εkj , (60b)

m−1
∂inRPj

=
B

kx
δRQεikm

−1
PkPj

, (60c)

m−1
∂inR∂jnS

=
1

k2
x

[(
Σ−1
RS −NB

2(M(τ−1 − iω) +B2σq)PRS
)
δij −NB3QPRSεij

]
.

(60d)

where

N =
1

Q2B2 + (B2σq +M(τ−1 − iω))2 . (61)

To obtain (60d), the following identity, along with (55), is helpful (below c
is any constant):

(Σ + cΣPΣ)−1 = Σ−1 − c

1 + cσq
P. (62)
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Using (50), we find the electric current - conserved density susceptibilities
to be

χJi∂jnR
= δijΣQRkx. (63)

It is now a simple matter to see from (57) that the only component of ΣRS

that enters the final answer is ΣQQ = σq; thus the magnetohydrodynamic
result for the electrical conductivity matrix, given in (6), is unaltered by the
presence of additional conserved scalar charges.

6. Thermal and Thermoelectric Transport

It is now clear how to extend our work to study thermoelectric transport.
When describing thermoelectric transport, one must specify a set of three
matrices: σij from before, the Seebeck coefficient(s) αij , and κ̄ij , defined by:(

Ji
Qi

)
=

(
σij αij
Tαij κ̄ij

)(
Ej
−∂jT

)
(64)

with Qi the heat current. We follow the notation of [5], where κ̄ is defined as
the linear response coefficient between the heat current and the temperature
gradient at vanishing electric field; often in experiments one measures the
thermal conductivity κij , the coefficient between the heat current and tem-
perature gradient at vanishing electric current, Ji = 0. The two are related
via

κ = κ̄− Tασ−1α. (65)

In the memory matrix framework, we have:

αijT = χJiAm
−1
ABχBQj , (66a)

κ̄ijT = χQiAm
−1
ABχBQj . (66b)

The new susceptibilities we need relate to the heat current. Letting the
index H (in the notation of Section 5) denote the diffusive scalar quantity
heat, we obtain

χQi∂jnR
= δijΣHRkx. (67)

There is also a new susceptibility:

χQiPj ≡ δijTS. (68)

This serves as a definition of the new quantity, S, which plays a role of “en-
tropy density”. Using the results of (60) thermoelectric transport coefficients

21



may now be computed. Denoting

ΣHQ ≡ αqT, (69a)

ΣHH ≡ κ̄qT, (69b)

we obtain

αxx = αyy =
(M(τ−1 − iω) +B2σq)αq + SQ
Q2B2 + (B2σq +M(τ−1 − iω))2M

(
1

τ
− iω

)
, (70a)

αxy = −αyx =
αqQM(τ−1 − iω) + S(Q2 +B2σ2

q + σqM(τ−1 − iω))

Q2B2 + (B2σq +M(τ−1 − iω))2 B,

(70b)

κ̄xx = κ̄yy = κ̄q +
(B2σq +M(τ−1 − iω))(S2 −B2α2

q)− 2SQαqB
2

Q2B2 + (B2σq +M(τ−1 − iω))2 T,

(70c)

κ̄xy = −κ̄yx =
QS2 −B2Qα2

q + 2Sαq(B2σq +M(τ−1 − iω))

Q2B2 + (B2σq +M(τ−1 − iω))2 BT. (70d)

Together with (6), this forms the main result of this paper, and is the most
general framework for magnetotransport to date, applicable both to rela-
tivistic and non-relativistic systems.

If we specialize to a Lorentz-invariant quantum critical system deformed
by a chemical potential (for charge) µ, we may compare to the results found
in [5] using hydrodynamics. Using (note that we are setting the effective
speed of light to be 1)

Tαq = −µσq, (71a)

T κ̄q = µ2σq, (71b)

TS =M− µQ, (71c)

we find agreement with the results of [5]. On the other hand, if we set
αq = κ̄q = 0, then these results agree with recent holographic calculations
performed at ω = 0 [12, 13, 14] – see also [32, 33]. This sheds light into the
differences between these papers and hydrodynamics, and suggests how one
might go about resolving this issue.

It can be helpful to study κij instead of κ̄ij – in the limit B = 0, Q 6= 0,
τ →∞, the former is not singular while the latter is (see, e.g., [34]). κij can
easily be computed using (65), given our main results (6) and (70):

κxx = κyy = κ̄q +
Q2S2σq − 2SQ3αq −B2Q2σqα

2
q

Q2B2σ2
q + (Q2 +M(τ−1 − iω)σq)2T
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+
M(τ−1 − iω)(σ2

qS2 − 2QSαqσq − α2
qQ2)− σqα2

qM2(τ−1 − iω)2

Q2B2σ2
q + (Q2 +M(τ−1 − iω)σq)2 T

(72a)

κxy = −κyx =
(αqQ− σqS)2

Q2B2σ2
q + (Q2 +M(τ−1 − iω)σq)2BQT (72b)

Indeed in the τ → ∞ limit, κxx is finite (only the first line contributes)
so long as Q 6= 0. Note that if we first set Q = 0, then κxx does become
singular when τ →∞.

7. Conclusions

This paper has developed a model of electric, thermal and thermoelectric
transport in strange metals which focuses on the influence of a long-lived
momentum mode, along with the diffusion of charge and heat. Such a long-
lived momentum mode is found in essentially all condensed matter models of
non-Fermi liquids, including those obtained from lattice models appropriate
for the cuprates [6, 7]. The influence of an external magnetic field on such
a mode is universally determined by a few thermodynamic susceptibilities:
this was established here by the memory matrix formalism, which can be
applied to realistic models of the cuprates.

Our results are not valid for systems with spontaneously broken global
or gauge symmetries, such as superfluids or superconductors. In this case,
the Goldstone modes associated with the broken symmetry must be consis-
tently included within hydrodynamics, so we expect that they must also be
included within the memory matrix. Undertaking such task would be an
interesting generalization of the present work.

The resulting B and T dependence of σij , αij and κ̄ij was then reduced
to the T dependence of the momentum relaxation time τ , thermodynamic
susceptibilities, and diffusive transport coefficients derived via Einstein re-
lations: σq, αq and κ̄q. An important feature of this approach is that very
different physical processes control the values of τ and σq, αq and κ̄q. Blake
and Donos [8] argued that reasonable assumptions for the T dependence
of τ and σq (in particular, τ ∼ 1/T 2 and σq ∼ 1/T ) lead to an appealing
explanation of the data on the Hall angle on the cuprates [3].

The B dependence of σij , αij and κ̄ij is explicit, as B is a perturba-
tively small parameter in this framework. Their and our discussions have
implicitly ignored the B dependence of σq, but this could be important for
understanding experimental thermo-electric data [35, 36].
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In combination with other recent studies [6, 7, 15, 16], our results now
provide a route to the computation of transport properties of strange metals
using microscopically realistic models.
(i) For the theory of the onset of spin-density wave order in metals, there
is a clear separation of the degrees freedom responsible for the two terms in
(7). The “lukewarm” regions of the Fermi surface far from the “hot spots”
contribute to the second term in (7), associated with the slow decay of the
momentum mode: a computations of the values of Q, M, and τ in this
framework was provided in Ref. [7]. In contrast, the “intrinsic” quantum
critical conductivity, σq, in the first term of (7) is a property of the particle-
hole symmetric hot spot theory; the scaling limit of this theory has Q = 0,
and so it provides a direct computation of σq [16].
(ii) The same separation between the lukewarm and hot regions of the Fermi
surface applies also to the Higgs critical theory of Ref. [15], with their re-
spective contributions leading to the two terms in (7).
(iii) For the case of the nematic critical point in two-dimensional metals,
the crucial role of the total momentum mode was discussed in Ref. [6]. The
field theory of this critical point was employed to compute Q, M, and τ ,
with weak disorder providing the source for momentum relaxation. There
is not yet a complete understanding of the value of σq in such models.
With these B = 0 computations of Q, M, τ , and σq in hand, then our
present analysis shows that the extension to weak B 6= 0 in (6) follows
immediately, and can be made on quite general grounds.
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Appendix A. The Memory Matrix Element MPx∂xn

Here we discuss the matrix element MPx∂xn, when the operator O which cou-
ples to the translational symmetry breaking field is not charge conjugation
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symmetric. From the definition of the memory matrix,

MPx∂xn =
1

πi

∫
dω

∫
ddq h(q)

Im
(
−iωGR

O∂xn(q, kx, ω)
)

ω(ω − z)
, (73)

where we have related Ṗx to O. Let us discuss the general structure of this
Green’s function. In fact, noting that z is just above the real axis, we find
that

MPx∂xn =

∫
ddq h(q)Re

(
GR
O∂xn(q, kx, 0)

)
. (74)

We know that GR
O∂xn ∼ h, as this Green’s function does not obey translation

invariance, and thus must be proportional to h. Furthermore, so long as
charge is an exactly conserved quantity, and this Green’s function is analytic
in a neighborhood of kx = 0, we conclude that GR

O∂xn ∼ hkx. Thus we
conclude that MPx∂xn ∼ h2kx.

Next, let us consider the corrections to the conductivity. For simplicity,
we focus on the case where B = 0, but similar considerations will hold in
the more general case. The full memory matrix m is block diagonal, and,
considering only xx indices, is

m =

(
h2B h2kxA
h2kxA σqk

2
x

)
(75)

with A and B chosen as functions which are not perturbatively small. We
find

m−1 =
1

h2k2
xBσq − k2

xh
4A2

(
σqk

2
x −h2kxA

−h2kxA h2B

)
≈
(

1/h2B −A/Bσqkx
−A/Bσqkx 1/σqk

2
x

)
(76)

The correction to the conductivity as given in (7) is

δσxx = −2AQ
B

. (77)

This is, in our limit, much smaller than either σq or Q2τ/M. Logically,
we should think of this as much smaller than σq since we argued previously
that either σq must be anomalously large, or Q must be very small, in
order for σq ∼ Q2τ/M to be possible. (If τ is anomalously large and σq
is negligible, then we should generically expect δσxx to also be negligible).
Thus, it is consistent to ignore these corrections to the memory matrix at
leading order.
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