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We construct a series of bosonic symmetry protected topological (BSPT) states beyond group co-
homology classification using “decorated defects” approach. This construction is based on topolog-
ical defects of ordinary Landau order parameters, decorated with the bosonic short range entangled
(BSRE) states in (4k + 3)d and (4k + 5)d space-time (with k being nonnegative integers), which
do not need any symmetry. This approach not only gives these BSPT states an intuitive physical
picture, it also allows us to derive the effective field theory for all these BSPT states beyond group
cohomology.

1. INTRODUCTION

Bosonic symmetry protected topological (BSPT)
states are bosonic analogues of fermionic quantum spin
Hall insulator and topological insulator, which have triv-
ial bulk spectrum but nontrivial boundary spectrum, as
long as the system preserves certain symmetry. There
are roughly two types of BSPT states, their mathemat-
ical difference is whether they can be classified and de-
scribed by group cohomology [1, 2] and semiclassical non-
linear sigma model field theory [3]. For example, the
well-known E8 bosonic short range entangled (BSRE)
state [18] [4, 5] in 2d space [19], and its higher dimen-
sional generalizations [6] cannot be classified by group
cohomology.
Any nontrivial SPT state’s boundary state cannot ex-

ist by itself, as long as the system preserves the necessary
symmetry. This means that the boundary of a SPT state
must be “anomalous”. The relation between boundary
anomaly and bulk SPT states has been studied system-
atically in Ref. 7. If a nontrivial SRE state does not need
any symmetry to protect its boundary, then its boundary
must have gravitational anomaly. The 2d p+ ip topologi-
cal superconductor, and the 2d E8 state both have chiral
edge states, which lead to gravitational anomaly. Ana-
logues of 2d E8 state can be found in all even spatial
dimensions. In every (4k + 2)d space (or equivalently
(4k+3)d space-time), there is a BSRE state with Z clas-
sification described by action [6]

S(4k+3)d =

∫
iKIJ

4π
CI ∧ dCJ , (1)

where CI is a 2k+1 form antisymmetric gauge field, and
KIJ is the Cartan matrix of the E8 group. These states
have bosonic 2k−dimensional membrane excitations in
the bulk, and perturbative gravitational anomalies at the
boundary [6, 8]; In every (4k+4)d space (or equivalently
(4k + 5)d space-time), there is a BSRE state with Z2

classification described by action

S(4k+5)d =

∫
iKIJ

4π
BI ∧ dBJ , (2)

where BI is a 2k+2 form antisymmetric gauge field, and
KIJ = iσy. This theory with k = 0 (4d space) has been
studied carefully in Ref. 9, and it was demonstrated that
its 3d boundary is an “all fermion” 3d QED [10] which
cannot be independently realized in 3d space, and it has
a global gravitational anomaly [11].

As was pointed out by Ref. 12, 13, the state Eq. 2
can also have a time-reversal symmetry. For instance,
this action is invariant under ZT

2 : i → −i, (B1, B2) →
(B2, B1). But this state is also stable if the time-reversal
symmetry is broken. In this paper we will only count this
state as a BSRE state without any symmetry.

All these BSRE states in even spatial dimensions have
their descendant BSPT states in higher dimensions. All
these descendant BSPT states are also beyond the group
cohomology classification. Recently, a systematic math-
ematical formalism for BSRE and BSPT states has been
proposed in Ref. 14, which was based on cohomology of
G×SO(∞), where G is the symmetry group, and SO(∞)
is supposed to describe the gravitational anomaly. The
purpose of the current work is to give a physical construc-
tion and field theory description of BSPT states beyond
the ordinary group cohomology classification. Our re-
sults are summarized in Table I.

2. GENERALITIES

We will view the BSRE states without any symme-
try in even spatial dimensions (Eq. 1 and Eq. 2) as
base states. Our general strategy for constructing other
beyond-Group-Cohomology BSPT states, is to first break
part or all of the symmetry by condensing an ordinary
Landau order parameter, then proliferating/condensing
the topological defects of the Landau order parameter.
The nontrivial BSPT state and the trivial state are dis-
tinguished by the nature of the topological defects: non-
trivial BSPT states corresponds to the case where the
defects are decorated with the BSRE states in Eq. 1
or Eq. 2. The first example of such beyond-Group-
Cohomology BSPT state, which is protected by Time
Reversal Symmetry T , was discovered in Ref. 15. This
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state can be constructed by proliferating T -breaking do-
main walls decorated with the 2d E8 state. The topo-
logical term in the field theory Lagrangian density that
encodes the decoration reads:

L
ZT

2

3+1d =
i2π

2π
ndn ∧

KIJ
E8

8π2
CI ∧ dCJ

= idθ ∧
KIJ

E8

8π2
CI ∧ dCJ

= −iθ
KIJ

E8

8π2
dCI ∧ dCJ (3)

where the O(2) vector ~n is parametrized as ~n =
(cos θ, sin θ). The T -symmetry transformation is

ZT
2 : (n1, n2) → (n1,−n2),

θ → −θ (4)

One can verify that the Eq. 3 is time-reversal invariant.
Also, if we keep time-reversal invariance, then 〈n2〉 = 0,
namely 〈θ〉 = 0 or π, which precisely corresponds to the
trivial and nontrivial BSPT state discussed in Ref. 15.
Meanwhile, across a T -breaking domain wall, θ continu-
ously changes from −π+0+ to π+0−. After integrating
over the normal direction, the effective field theory left
on the domain wall precisely describes a 2d E8 state.
The idea of “decorated domain wall” construction

of SPT states was further explored in Ref. 16. Do-
main wall of Z2 or time-reversal symmetry is the sim-
plest kind of topological defect. In our current work
we will construct beyond-group-cohomology BSPT states
using more general topological defects of other symme-
try groups. Here we want to clarify that in our current
work the concept “topological defect” refers to a topolog-
ically stable configurations of Landau order parameter ~n
in d−dimensional space Rd with a singularity I, and the
singularity can be viewed as the boundary of R

d − I.
The Landau order parameter ~n has a soliton configura-
tion on R

d − I, which has no singularity any more. For
example, in 2d space a vortex core is a singularity at the
origin (0, 0), and it can be viewed as the boundary of
R

2−(0, 0), which is topologically equivalent to a ring S1.
A vortex configuration corresponds to a 1d soliton on S1,
based on the simple fact π1[S

1] = Z. In 3d space a hedge-
hog monopole core is again a singularity at (0, 0, 0), and
a hedgehog monopole corresponds to a soliton on space
R

3 − (0, 0, 0), based on the fact π2[S
2] = Z.

In general, the field theories we will discuss in this work
is a combination of the Θ-term of ~n discussed in Ref. 3
and Chern-Simons form of CI or BI in Eq. 1,2. The
explicitly form of the topological term in D−dimensional
space-time is:

LDd,A =
iΘ

ΩD−(4k+4)
n dn ∧ ... ∧ dn
︸ ︷︷ ︸

D−(4k+4)

∧
KIJ

8π2
dCI ∧ dCJ ,

(5)

LDd,B =
iΘ

ΩD−(4k+6)
n dn ∧ ... ∧ dn
︸ ︷︷ ︸

D−(4k+6)

∧
(iσy)IJ

8π2
dBI ∧ dBJ ,

(6)
where ~n is a Landau order parameter with a unit length.
ΩD = VD × D!, VD is the volume of the unit D-
dimensional sphere. Here we assume all components of
order parameter ~n transform nontrivially under the sym-
metry group.
The equations above are also effectively equivalent to

the two equations in the follows:

LDd,A =
iΘ

ΩD−(4k+3)
n dn ∧ ... ∧ dn
︸ ︷︷ ︸

D−(4k+3)

∧
KIJ

8π2
CI ∧ dCJ . (7)

LDd,B =
iΘ

ΩD−(4k+5)
n dn ∧ ... ∧ dn
︸ ︷︷ ︸

D−(4k+5)

∧
(iσy)IJ

8π2
BI ∧ dBJ ,

(8)
where the component n1 does not transform under any
symmetry group, but the rest of the components all
transform nontrivially. The equivalence between the two
descriptions above can be made explicit by parametriz-
ing ~n as: ~n = (cos θ, sin θn2, sin θn3, · · · ), then following
the derivation in Eq. 3, because the desired BSPT state
is fully symmetric, 〈θ〉 must be either 0 or π, which cor-
responds to the trivial state and nontrivial BSPT state
respectively. And with 〈θ〉 = π, Eq. 7,8 return to Eq. 5
and 6.
All the terms above are “topological” in the sense that

they are invariant under local coordinate transformation,
because they do not involve the metric. We only wrote
down the most important topological terms explicitly,
but the readers should be reminded that there are other
terms that guarantee the system is in a fully gapped
and nondegenerate phase. For example, we need a term
1/g(∂µ~n)

2 in the field theory to control the dynamics of
~n, and we must keep g large enough to disorder ~n; we
also need a BF theory term[15] ∼ (dB)2 + 1

2πB ∧ dC to
gap out all the excitations of the CI field.
Naively, we can also write down the following field the-

ory, with all ~n components transforming non-trivially un-
der symmetry:

L =
iΘ

Ω
ndn ∧ ... ∧ dn ∧

KIJ

8π2
CI ∧ dCJ .

For example, we can write down such field theory in 3+1d
space-time, with ~n being an O(2) vector, and CI a one
form vector gauge field. Then the physical meaning of
this field theory is that, the vortex core of ~n will host the
boundary state of the 2d E8 state, which must be gap-
less. Then this means that we can never achieve a fully
gapped nondegenerate state by proliferating the vortex
loops. Thus this field theory will always be gapless, un-
less we explicitly break the U(1) symmetry of ~n. There-
fore this field theory describes the boundary of a 4d space,
rather than a 3d bulk state.
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For field theories in Eq. 5 and 6, in general we consider
fixed points Θ = 2πp with p ∈ Z. However, this does not
mean that we have a Z classified state. If we can show
that two field theories, Θ = 0 and Θ = 2πq with certain
q ∈ Z, can be smoothly connected without closing the
bulk gap, then they must be in the same phase. In that
case, the classification will be reduced to Zq.
Because our field theory is constructed with order pa-

rameter ~n and Chern-Simons form of CI or BI , the clas-
sification will depend on both sectors.
For pure C ∧ dC theory, the classification is Z, be-

cause its boundary state has perturbative gravitational
anomaly [6, 8], which has Z classification. Then the clas-
sification of the mixed field theory of ~n and CI only de-
pends on the ~n sector.
For instance, we can take Eq. 3 as an example. Take

two copies of the field theories and couple them to each
other:

L =
i2π

2π
n(1)dn(1) ∧

KIJ
E8

8π2
CI

(1) ∧ dCJ
(1) + (1 → 2)

+ βn2,(1) · n2,(2) + λdCI
(1) ∧ ⋆dCI

(2), (9)

where ⋆ is the Hodge star operator. Now we fix λ at
a negative value, and tune β from negative to positive.
With negative β, effectively ~n(1) and ~n(2) will align with
each other, thus n2,(1) = n2,(2), C(1) = C(2), then the two
theories will “constructively interfere” with each other,
and the final theory effectively has Θ = 4π; with pos-
itive β, effectively n2,(1) = −n2,(2), C(1) = C(2), thus
the two theories will “destructively interfere” with each
other, and the final theory effectively has Θ = 0. Because
both theories are fully gapped and nondegenerate in the
bulk, tuning the coupling between them does not close
the bulk gap (as long as the coupling is not too strong to
overcome the bulk gap), thus the two effective coupled
theories with Θ = 0 and Θ = 4π are smoothly connected
without going through a bulk phase transition. Therefore
the classification for the state Eq. 3 is Z2.
By contrast, let us consider a U(1) BSPT in 4d space

with the following field theory:

L
U(1)
4+1d =

i2π

2π
ndn ∧

KIJ
E8

8π2
dCI ∧ dCJ . (10)

The U(1) symmetry acts as U(1) : (n1+ in2) → eiφ(n1+
in2). Imagine we have two copies of the theory, the only
U(1) symmetry allowed coupling between these two the-
ories would be β~n(1) · ~n(2). Then for either sign of β, i.e.
for either ~n(1) ∼ ~n(2) or ~n(1) ∼ −~n(2), the final effective
theory always has Θ = 4π (simply because (−1)2 = +1).
Thus there is no symmetry allowed coupling that can
continuously connect Θ = 4π to Θ = 0. Therefore the
classification for this U(1) BSPT state is Z.
For pure B ∧ dB theory, the classification is Z2 [9],

therefore the classification of the mixed state can only
be Z2 or trivial depending on the classification on the ~n
sector.

Symmetry 3 + 1d 4 + 1d 5 + 1d 6 + 1d

U(1) 0 Z 0 Z× Z2

Z2 0 Z2 Z2 Z
2

2

Z
T

2 Z2 0 Z
2

2 Z2

U(1)⋊ Z
T

2 Z2 Z Z
2

2 Z
3

2 (Z4

2)

U(1)× Z
T

2 Z2 0 Z
3

2 Z
2

2 (Z3

2)

U(1) ⋊ Z2 0 Z2 Z
2

2 Z× Z
3

2

U(1) × Z2 0 Z× Z2 Z2 Z× Z
4

2

TABLE I: BSPT beyond Group Cohomology constructed
from decorated topological defects. Please note that the states
within group cohomology classification is not listed here. The
case for U(1) × Z2 symmetry was not discussed in Ref. 14.
Our results largely agree with Ref. 14. The results in Ref. 14
that do not fully agree with ours are highlighted in red.

3. EXAMPLES OF BSPT BEYOND GROUP

COHOMOLOGY

In this section we study examples of beyond-group-
cohomology BSPT states with various symmetries up to
6 + 1 space-time dimensions. All these states are con-
structed with Landau order parameters and the 2d E8

state or the 4d BSRE state in Eq. 2. Our results are
summarized in TABLE I. Our results are mostly consis-
tent with results in Ref. 14, exceptions are highlighted in
red in the table.

A. U(1) Symmetry

• In 4d space, there is a series of BSPT states with
U(1) symmetry that is beyond the group cohomology,
their field theory is given by:

L
U(1)
4+1d =

i2πk

2π
ndn ∧

KIJ
E8

8π2
dCI ∧ dCJ , (11)

where CI ’s are rank-1 gauge field, and k can take arbi-
trary integer value. Physically this state can be viewed
as decorating the 2π vortex of U(1) order parameter
~n = (n1, n2) (which is a 2d membrane in this dimension)
with the E8 state, and then proliferating the vortices. As
we have shown in the previous section, this phase has Z
classification.
The 3 + 1d boundary of this state can be a super-

fluid phase with spontaneously U(1) symmetry breaking,
whose vortex line hosts the edge states of the 2d E8 state,
i.e. a chiral conformal field theory with central charge
c = 8. If we couple ~n to a U(1) gauge field, then after
we integrate out the gapped matter field ~n, the bound-
ary of the system will have a mixed U(1)-gravitational
anomaly, namely the stress tensor of the system is no
longer conserved inside the U(1) flux at the boundary. A
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similar mixed gauge-gravity anomaly was also studied in
Ref. 17.
• In 6 + 1d space-time, there are two root states for

U(1) BSPT states beyond group cohomology, the first
state is described by the following field theory:

L
U(1)
6+1d,A =

i2πk

12π2
ndn ∧ dn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (12)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

(n3 + in4) → eiφ(n3 + in4). (13)

This state has Z classification. The state is constructed
by decorating the E8 states on the intersection of two
U(1) vortices, and then proliferate the vortices (the two-
vortex intersection is now a 2d brane in 6d space).
The field theory of the second root phase is

L
U(1)
6+1d,B =

i2π

2π
ndn ∧

(iσy)IJ

8π2
dBI ∧ dBJ (14)

where

U(1) : (n1 + in2) → eiφ(n1 + in2) (15)

and B’s are 2-form fields. The state has Z2 classification
according to our rules. And physically this field theory
corresponds to decorating the U(1) vortex with the 4d
BSRE state in Eq. 2.

B. Z2 Symmetry

• In 4+ 1d space-time, there is one nontrivial beyond-
cohomology BSPT state with Z2 symmetry, and this
state is the descendant of the U(1) beyond Group Co-
homology state in the same dimension in the sense that
it can be obtained by breaking the U(1) symmetry to its
subgroup Z2 from Eq. 11:

LZ2

4+1d =
i2π

2π
ndn ∧

KIJ
E8

8π2
dCI ∧ dCJ (16)

with

Z2 : (n1, n2) → −(n1, n2) (17)

while the classification of the state is now reduced to Z2

because the n-sector is now Z2 classified.
• In 5 + 1d space-time, there is a Z2 classified new

state which is not a descendant of any U(1) state dis-
cussed in the previous subsection. Physically this state
is constructed by decorating the Z2 domain wall with 4d
BSRE state:

LZ2

5+1d =
i2π

2π
ndn ∧

(iσy)IJ

8π2
BI ∧ dBJ

= idθ ∧
(iσy)IJ

8π2
BI ∧ dBJ

= −iθ
(iσy)IJ

8π2
dBI ∧ dBJ (18)

Here we parametrize ~n as ~n = (cos θ, sin θ). The symme-
try transformation is:

Z2 : (n1, n2) → (n1,−n2)

(B1, B2) → (B2, B1)

θ → −θ. (19)

Notice that BI must transform nontrivially under Z2

symmetry, in order to guarantee that the field theory
is Z2 invariant. We can also choose a different transfor-
mation for BI : Z2 : B → σzB, but this transformation
is equivalent to the previous after a basis change. In a
Z2 invariant state, 〈n2〉 = 0, i.e. 〈θ〉 = 0 or π, which
corresponds to the trivial and BSPT state respectively.
• In 6 + 1d space-time, there are two root states, both

of which are descendants of U(1) BSPT states, and both
have Z2 classification:

LZ2

6+1d,A =
i2π

12π2
ndn ∧ dn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (20)

with

Z2 : (n1, n2, n3, n4) → −(n1, n2, n3, n4). (21)

LZ2

6+1d,B =
i2π

2π
ndn ∧

(iσy)IJ

8π2
dBI ∧ dBJ (22)

with

Z2 : (n1, n2) → −(n1, n2). (23)

C. ZT

2 Symmetry

• In 3+ 1d space-time, it is well-known that there is a
BSPT state beyond Group Cohomology [15]. The state
can be understood by decorating ZT

2 domain walls with
the 2d E8 state:

L
ZT

2

3+1d =
i2π

2π
ndn ∧

KIJ
E8

8π2
CI ∧ dCJ

= −iθ
KIJ

E8

8π2
dCI ∧ dCJ (24)

with

ZT
2 : (n1, n2) → (n1,−n2)

θ → −θ. (25)

θ is defined as before, 〈θ〉 = 0 and π correspond to the
trivial and BSPT state respectively. This state has Z2

classification.
• In 5 + 1d space-time, there are two root states, both

have Z2 classification. The field theory for the first state
reads:

L
ZT

2

5+1d,A =
i2π

8π
ndn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (26)
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with

ZT
2 : (n1, n2, n3) → −(n1, n2, n3). (27)

The physical meaning of this state is most transparent
if we start with a system with an enlarged SO(3)×ZT

2

symmetry, and ~n forms a vector under the SO(3) sym-
metry. Then Eq. 26 can be viewed as decoration of the
hedgehog monopole of ~n with the 2d E8 state. Weakly
breaking the SO(3) symmetry while preserving the ZT

2

symmetry does not change the nature of this state. Al-
ternatively, we can view the hedgehog monopole as the
intersection of three ZT

2 domain walls.
The field theory for the second root state is

L
ZT

2

5+1d,B =
i2π

2π
ndn ∧

(iσy)IJ

8π2
BI ∧ dBJ

= −iθ
(iσy)IJ

8π2
dBI ∧ dBJ (28)

with

ZT
2 : (n1, n2) → (n1,−n2)

θ → −θ. (29)

This state can be viewed as decoration of ZT
2 domain

wall with the 4d BSRE state.
• In 6 + 1d space-time, there is one new state with Z2

classification:

L
ZT

2

6+1d =
i2π

2π
ndn ∧

(iσy)IJ

8π2
dBI ∧ dBJ (30)

with

ZT
2 : (n1, n2) → −(n1, n2)

(B1, B2) → (B2, B1). (31)

The state is constructed by decorating the vortex of ~n
(or the intersection of two ZT

2 domain walls) with the 4d
BSRE state.

D. U(1) ⋊ Z
T

2 Symmetry

• In 3+ 1d space-time, there is one nontrivial beyond-
cohomology BSPT state with U(1)⋊ZT

2 symmetry, but it
is identical to the ZT

2 state in the same dimension, U(1)
symmetry simply acts trivially.
• In 4 + 1d space-time, there is one root state with Z

classification:

L
U(1)⋊ZT

2

4+1d =
i2πk

2π
ndn ∧

KIJ
E8

8π2
dCI ∧ dCJ . (32)

with

U(1) : (n1 + in2) → eiφ(n1 + in2)

ZT
2 : (n1, n2) → (n1,−n2). (33)

• In 5 + 1d space-time, there are two root states, both
are identical to the ZT

2 state in the same dimension with
trivial U(1) symmetry transformation, and both are Z2

classified.
• In 6 + 1d space-time, in Ref. 14 there are four root

states, all Z2 classified. However, we can only find three
Z2 classified root states by our construction. The first
one is identical to the ZT

2 state in 6 + 1d. The other two
root states are given by:

L
U(1)⋊ZT

2

6+1d,A =
i2π

12π2
ndn ∧ dn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (34)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

ZT
2 : (n1, n2, n3, n4) → (n1,−n2,−n3,−n4) (35)

and

L
U(1)⋊ZT

2

6+1d,B =
i2π

2π
ndn ∧

(iσy)IJ

8π2
dBI ∧ dBJ (36)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

ZT
2 : (n1, n2) → (n1,−n2) (37)

We suspect the state we missed here is the mixed SPT
state described by Ed(G) in Ref. 14.

E. U(1) × Z
T

2 Symmetry

• In 3+ 1d space-time, there is a state identical to the
pure ZT

2 state with trivial U(1) symmetry transforma-
tion.
• In 5+ 1d space-time, we find three Z2 classified root

states. Two of them are identical to the ZT
2 states in

5 + 1d space-time, with trivial U(1) symmetry transfor-
mation. The third state is given by:

L
U(1)×ZT

2

5+1d =
i2π

8π
ndn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (38)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

ZT
2 : (n1, n2, n3) → (n1, n2,−n3). (39)

This state can be viewed as decorating the 2d E8 state on
the intersection of a ZT

2 domain wall and a U(1) vortex
(it can also be viewed as the hedgehog monopole of ~n),
then proliferating both the domain walls and vortices.
• In 6 + 1d space-time, in Ref. 14 there are three Z2

classified root states. However, using our method we can
only construct two Z2 classified root states. The first one
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is identical to the ZT
2 state with trivial U(1) symmetry

transformation. The other one is:

L
U(1)×ZT

2

6+1d =
i2π

2π
ndn ∧

(iσy)IJ

8π2
dBI ∧ dBJ (40)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

ZT
2 : (n1, n2) → −(n1, n2), B1(2) → B2(1). (41)

One may ask whether field theory like Eq. 34 could
correspond to a new root state. However, there is no
consistent way to assign the U(1)×ZT

2 symmetry trans-
formations on Eq. 34, namely Eq. 34 cannot be invariant
under U(1)×ZT

2 symmetry, although it is invariant under
U(1)⋊ZT

2 symmetry.

F. U(1) ⋊ Z2 = O2 Symmetry

• In 4 + 1d space-time, there is one root state iden-
tical to the BSPT state with Z2 symmetry in the same
dimension, the U(1) symmetry simply acts trivially.
• In 5 + 1d space-time, there are two root states, both

Z2 classified. One is the same Z2 state with trivial U(1)
action. The other one is given by:

L
U(1)⋊Z2

5+1d =
i2π

8π
ndn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (42)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

Z2 : (n1, n2, n3) → (n1,−n2,−n3). (43)

This state can be viewed as decorating the 2d E8 state
on the intersection of U(1) vortex and Z2 domain wall.
Also, the O2 symmetry is a subgroup of SO(3) symmetry,
thus the vortex-domain wall intersection is simply the
hedgehog monopole of the SO(3) vector ~n.
• In 6+1d space-time, we find four root states, which

is more than the results in Ref. 14. Two of them are
the same as the BSPT states with Z2 symmetry, both of
which are Z2 classified. The third root state is described
by

L
U(1)⋊Z2

6+1d,A =
i2πk

12π2
ndn ∧ dn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (44)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

(n3 + in4) → eiφ(n3 + in4),

Z2 : (n1, n2, n3, n4) → (n1,−n2, n3,−n4) (45)

This state is Z classified. This state can be viewed as
decorating the 2d E8 state on the intersection of two
vortices, then proliferate the vortices afterwards.

The last root state in 6+1d space-time is described by

L
U(1)⋊Z2

6+1d,B =
i2π

2π
ndn ∧

(iσy)IJ

8π2
dBI ∧ dBJ (46)

with

U(1) : (n1 + in2) → eiφ(n1 + in2),

Z2 : (n1, n2) → (n1,−n2),

(B1, B2) → (B2, B1). (47)

This state has Z2 classification.

G. U(1)× Z2 Symmetry

• In 4 + 1d space-time, we have two root states, both
of which are descendants from pure U(1) state and pure
Z2 state respectively.
• In 5 + 1d space-time, there is only one root state,

which is the same as the state with Z2 symmetry only.
• In 6 + 1d space-time, there are five root states. The

first three states can all be described by the same field
theory:

L
U(1)×Z2

6+1d,A =
i2πk

12π2
ndn ∧ dn ∧ dn ∧

KIJ
E8

8π2
dCI ∧ dCJ (48)

These three different states have the same form of La-
grangian, but they are distinguished from each other by
their symmetry transformations:

(1) U(1) : trivial,

Z2 : (n1, n2, n3, n4) → −(n1, n2, n3, n4).(49)

(2) U(1) : (n1 + in2) → eiφ(n1 + in2),

Z2 : (n1, n2, n3, n4) → −(n1, n2, n3, n4).(50)

(3) U(1) : (n1 + in2) → eiφ(n1 + in2),

(n3 + in4) → eiφ(n3 + in4),

Z2 : (n1, n2, n3, n4) → −(n1, n2, n3, n4).(51)

The classification of the three states are Z2, Z2 and Z

respectively.
The other two states are described by the following

field theory:

L
U(1)×Z2

6+1d,B =
i2π

2π
ndn ∧

(iσy)IJ

8π2
dBI ∧ dBJ (52)

again, these two states have different transformations un-
der symmetry groups:

(4) U(1) : trivial,

Z2 : (n1, n2) → −(n1, n2). (53)

(5) U(1) : (n1 + in2) → eiφ(n1 + in2),

Z2 : trivial. (54)

The classification of the two states are both Z2.
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4. SUMMARY

In this work, we construct field theories of beyond-
Group-Cohomology BSPT states based on decorated
topological defect picture. Our results are largely con-
sistent with Ref. 14, with a few exceptions. We listed ex-
amples of BSPT states below six dimensional space, but
our construction can be straightforwardly generalized to
all higher dimensions, as long as we use the generalized
base states in Eq. 1,2 for k ≥ 1. We also note that
Ref. 17 proposed the SPT states beyond group cohomol-
ogy should have mixed gauge-gravity responses, which is
also consistent with the formalism used in our current
work.
The authors are supported by the the David and Lucile

Packard Foundation and NSF Grant No. DMR-1151208.
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