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We study the relaxation dynamics of strongly interacting quantum systems that display a kind of
many-body localization in spite of their translation invariant Hamiltonian. We show that dynamics
starting from a random initial configuration are non-perturbatively slow in the hopping strength,
and potentially genuinely non-ergodic in the thermodynamic limit. In finite systems with periodic
boundary conditions, density relaxation takes place in two stages, that are separated by a long
out-of-equilibrium plateau whose duration diverges exponentially with system size. We estimate the
phase boundary of this quantum glass phase, and discuss the role of local resonant configurations.
We suggest experimental realizations and ways how to observe the discussed non-ergodic dynamics.
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I. INTRODUCTION

A single quantum particle in a sufficiently strong dis-
order potential does not explore the full phase space at
given energy, but remains Anderson localized in a finite
spatial region due to quantum interference [1]. Over the
last decade it has been shown that such broken ergodicity
and absence of transport persist in many-body systems of
finite density, if disorder is sufficiently strong and inter-
actions are weak enough [2–8]. At non-zero temperature
this phenomenon, known as ”many-body localization”,
comes along with a non-extensive bipartite entanglement
entropy in highly excited eigenstates [9, 10], and, in well
localized regimes, with a complete set of quasi-local con-
served quantities that inhibit transport [11–14].
In almost all many-body systems studied so far,

quenched disorder is central to stabilize the localized
phase: it ensures that local rearrangements are typically
associated with significant energy mismatches, which ap-
pear as large denominators in perturbation theory, and
suppress real decay processes. In contrast, it has been
suggested early on in the context of defect diffusion in
solid Helium crystals [15] that localization effects could
also be induced solely by sufficiently strong interactions,
without any quenched disorder. Several recent works
have revisited this idea, focusing on the question of gen-
uine many-body localization in low-dimensional systems,
such as Bose-Hubbard models [16–19], mixtures of heavy
and light interacting particles [20] and quantum spin
chains [21]. In such systems, a tendency to localize arises
from the configurational disorder present in generic in-
homogeneous initial conditions. In Ref. [22] it was con-
jectured that another notion of localization, as evinced
by an incomplete volume law entanglement, could exist
in systems without disorder.
Such an interaction-induced localization contrasts in

an important way with the more standard scenario [2, 4],
in which many-body localization simply embodies the
survival of the Anderson-localized phase in spite of de-
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FIG. 1. Left: Phase diagram at fixed strength of quantum
fluctuations (hopping t) and energy density or (quasi-) tem-
perature T ≥ 0, for one-dimensional models in which com-
muting interaction (U) and disorder (W ) terms define a clas-
sical potential. Both ingredients lead to a rough energy land-
scape which suppresses quantum tunneling and transport.
Right: The role of temperature differs crucially in the lim-
its of disorder- and interaction-dominated localization: for
weak interactions, the lower part of the spectrum is localized,
whereas highly excited states are delocalized. The reverse
happens when the interaction dominates. The dashed lines
correspond to a cut at constant quantum fluctuations, disor-
der and energy density. They suggest a re-entrant localization
in the many-body spectrum as interactions are increased.

phasing interactions, cf. Fig 1. In the absence of disorder,
interactions take a completely different role: they create
a rough energy landscape in which weak quantum fluctu-
ations are unable to restore ergodic dynamics, similarly
to what happens in classical glasses [23, 24]. Despite
this analogy, in the quantum models of interest to us
classical frustration plays no role, in contrast to systems
that inherit their non-ergodicity from a classically glassy
counterpart [25, 26]. The role of temperature is also op-
posite to that in disorder-dominated localization, where
it enhances the phase space for scattering and dissipa-
tion. When interactions dominate instead, the higher the
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energy density, the stronger the configurational disorder
and hence the localization tendency [15].

Localization due to interactions has the experimentally
appealing aspect of being an unambiguous many-body
effect, since it cannot be ascribed to disorder. Stan-
dard many-body localization manifests itself in the ab-
sence of transport and thermalization, but both localized
and thermal states are spatially inhomogeneous. In the
disorder-free context, however, the most natural mani-
festation of localization lies in the dynamical persistence
of initial inhomogeneities of particle or energy densities.
Such effects are indeed very striking because in any fi-
nite system with periodic boundary conditions and for
every inhomogeneous initial condition, translational in-
variance is eventually restored by the dynamics, as a
consequence of momentum conservation. In a localized
phase, however, one expects relaxation times to grow ex-
ponentially with system size and to diverge in the ther-
modynamic limit. Localization effects of this sort could
be observed in experiments with binary mixtures of cold
atoms [28, 29]. We notice that the idea of detecting local-
ization by the persistence of initial inhomogeneity bears
some similarity with the recent, very promising observa-
tion of disorder-induced localization through the persis-
tence of an initial density wave pattern, [27].

The remainder of the paper is structured as follows:
in Section II, we discuss quantitatively the phenomenol-
ogy of interaction-induced disorder-free localization in a
class of models of experimental relevance. In Section III,
we analyze the dynamics in the limit of small quantum
fluctuations, and show that, at least within a perturba-
tive treatment, the relaxation of an initial inhomogeneity
remains incomplete up to times which are exponentially
large in the system size. By extrapolating our result to
larger quantum fluctuations, in Section IV we will obtain
an analytical estimate (upper bound) for the boundary of
the localized phase, and in Section V we estimate the role
of local resonant configurations. In Section VI, caveats
related to non-perturbative effects [18, 19], which might
reinstall weak diffusion in very large systems, will be dis-
cussed. Finally, in Section VII we summarize our results,
and discuss some experimental setups in which the pre-
dicted phenomena might be observed.

II. THE MODEL

We consider a quasi one-dimensional mixture of two
interacting hard-core particle species with very differ-
ent masses [20]: a “fast” (light) species a, and a “slow”
(heavy) species c. As illustrated in Fig. 2, the heavy par-
ticles impede the hopping of the light particles. They
are therefore referred to as “barriers”. The Hamiltonian

FIG. 2. Model: Two atomic species living on commensurate
lattices with different tunneling amplitudes. Heavy particles
(green) impede the hopping of light particles (yellow). Those
act as effective springs between the heavy particles, and lo-
calize them by creating a complex energy landscape for them.

thus takes the form of an (anti-)assisted hopping model:

H = −J
L
∑

j=1

(

ei
φ
L a†j+1aj + e−i

φ
L a†jaj+1

)

(1− nj)

− t

L
∑

j=1

(

ei
φ
L c†j+1cj + e−i

φ
L c†jcj+1

)

. (1)

The occupation numbers nj = c†jcj are constrained by the

conservation of particles,
∑

j nj =
∑

j c
†
jcj = N = ρL,

and an analogous constraint for the a-particles. The hop-
ping strengths satisfy t ≪ J . We use periodic boundary
conditions to make the system translational invariant,
but we insert a magnetic flux φ into the ring so as to
break the inversion symmetry. This removes the spectral
degeneracy, which simplifies our analysis below. Note
that the barriers could equally well be taken to be hard-
core bosons. This choice does not affect the spectrum or
localization properties, but only the non-local (in space
and time) correlation functions.
The physical essence of this model is retained upon

’integrating out’ the light a particles and substituting
them by repulsive springs, which yields the Hamiltonian

Heff = −t
L
∑

j=1

(

ei
φ
L c†j+1cj + e−i

φ
L c†jcj+1

)

+

+ U

L
∑

j,l=1

v (l)njnj+l

l−1
∏

k=1

(1− nj+k) , (2)

with v (l) = l−β . An exponent β = 2 mimics Eq. (1)
best at low energies. Indeed, assume a single fast par-
ticle trapped between each pair of successive barriers,
and assume it to remain in its ground state. The effec-
tive repulsion then decays as a power law with exponent
β = 2. Note that in this effective model U scales as the
hopping, or inverse mass, of the fast particles. Since the
phenomenology of disorder-free localization exhibited by
the above class of models with an unspecified β > 0 is ob-
viously much more generic than the specific example (1),
we focus on the Hamiltonian (2) below.
Since our model is translation invariant, for any finite

size L the eigenstates can be chosen to be eigenvectors
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FIG. 3. Examples of resonances. The configurations C1, C
′

1

(top) hybridize at first order of degenerate perturbation the-

ory in t, while C2 and C
′

2 (bottom) hybridize at second order.
Moving the middle particle(s) to the right costs no energy.

of the discrete translation operator T . For infinitesimal
hopping t, the eigenstates organize in momentum mini-

bands. These are essentially formed by hybridizations of
a classical particle configuration |C〉 with all its trans-
lations around the ring, T j |C〉, for j = 0, 1, 2, ..., L − 1.
Typical states correspond to configurations |C〉 in which
sites are occupied randomly, with probability ρ. The
eigenstates of such minibands take the form

|C,Pn〉 ≈
1√
L

L−1
∑

j=0

eijPnT j |C〉 , (3)

where Pn is the total momentum. The hopping Hamil-
tonian connects typical configurations |C〉 and its trans-
lations only at very high order of perturbation theory,
since one needs to move all N = ρL particles in order to
translate the whole configuration by one site. This leads
to an exponentially narrow dispersion of the band

εn = −2teff cosPn, Pn = (2πn+ φ)/L, (4)

where teff is the effective hopping of the center of mass of
this state. For small hopping t it is exponentially small
in the system size. This will be estimated in more detail
in Eq. (20) below. This behavior has important conse-
quences for the dynamics: after preparing the system in
an inhomogeneous initial configuration, the time scale to
relax to a homogeneous state (if averaged over time) is
proportional to t−1

eff . In the thermodynamic limit, per-
turbation theory suggests that relaxation is suppressed
entirely, and hence the translation symmetry is dynami-

cally broken.

The description of Eq. (3) is oversimplified, however,
since it neglects the presence of resonances, i.e., hy-
bridizations with configurations |C′〉, that are not trans-
lations of |C〉, but have the same unperturbed energy.
The simplest types of resonances are shown in Fig. 3: the
configurations C1, C

′
1 formed by three particles at mutual

distances l and l+1 are classically degenerate. Their de-
generacy is lifted at first order in perturbation theory. In
configuration C2 the two intervals of length l, l + 1 are
separated by an interval of length p /∈ {l−1, l, l+1}, and
hence the degeneracy is lifted at second order. In both

cases, two hybridized states form:

|C,P,±〉 ≈ 1√
L

L−1
∑

j=0

eijPT j
|C〉 ±

∣

∣

∣
C

′

〉

√
2

. (5)

Such states can be seen as the admixture of two of the
minibands described by Eq. (3). This can be easily
generalized to the case in which n resonances (labelled
i = 1, ..., n) are present in the initial configuration. Each
of them hybridizes a finite number ri of locally differing,
degenerate configurations. The eigenstates then take the
form

|C,P, {αi}〉 ≈
1√
L

L−1
∑

k=0

eiPkT k
n
∏

i=1

(

ri
∑

mi=1

ψαi
mi
R

(mi)
i

)

|C〉

(6)
where the {αi} label the possible states of the i’th res-
onance. Those are described by amplitudes ψαi

mi
multi-

plying local operators R
(mi)
i that rearrange the classical

configuration at the resonant spot.
The restriction to exactly resonant hybridizations ap-

plies for very small t only. At larger hopping, states with
finite energy differences of O(t) hybridize as well. Nev-
ertheless, the crucial point of the analysis of Ref. [20] is
that at the perturbative level in t/U no system spanning
hybridizations are expected. This is expected despite the
fact [36] that in the thermodynamic limit the exponen-
tially many minibands (4) overlap in energy, because the
matrix elements between most minibands are even much
smaller than the level spacings resulting from band over-
laps.

III. TEMPORAL DECAY OF SPATIAL

INHOMOGENEITY

Let us now consider the time evolution from a classi-
cal initial configuration C. We first restrict to the case
where |C〉 has no resonant spots, which allows for exact
calculations. To characterize the relaxation process, we
define the average spatial density inhomogeneity,

∆ρ2ψ (τ) ≡ 1

L

L
∑

j=1

[〈ψ (τ)| (nj+1 − nj) |ψ (τ)〉]2 , (7)

where |ψ (τ)〉 ≡ e−iHτ |C〉. This observable vanishes
for any translation invariant state, and can be mea-
sured in cold atom experiments using microscopy tech-
niques [27, 30, 31]. Below, we will also consider its time

average,
〈

∆ρ2ψ

〉

(T ) ≡ T−1
∫ T

0
dτ∆ρ2ψ (τ), which will be

insensitive to quantum revivals in finite systems. In the
absence of resonances, the relevant eigenstates and en-
ergies are given by Eqs. (3,4), and one finds (see Ap-
pendix A)
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∆ρ2ψ (τ) =
1

L4

L−1
∑

m 6=n=0

L−1
∑

n′ 6=m′=0

e−iτ [(εn+εn′)−(εm+εm′ )]
L−1
∑

k=0

L−1
∑

k′=0

ei
2π
L

(m−n)kei
2π
L (m′−n′)k′

· [2G (k − k′)−G (k − k′ − 1)−G (k − k′ + 1)] , (8)

with the auto-correlation function of the initial density,

G (k − k′) ≡ 1

L

L
∑

j=1

〈C|nj+k |C〉 〈C|nj+k′ |C〉 . (9)

In the thermodynamic limit, we can take a continuum
limit and measure time naturally in units of the inverse
of the effective center of mass hopping, t−1

eff . Assuming
an essentially random initial configuration of particles of
density ρ, we further have G(k−k′) = ρ (1− ρ) δk−k′,0+
ρ2. After some manipulations one finds the inhomogene-
ity to relax according to

∆ρ2ψ (τ)

∆ρ2ψ (0)
=

π
∫

−π

dq

2π
J2
0 (4τteff |sin q|) sin2 q, (10)

where J0 denotes the Bessel function of the first kind.
For times τ ≪ t−1

eff one finds essentially no relaxation,

∆ρ2ψ (τ)

∆ρ2ψ (0)
= 1− 6(τteff)

2 +O
(

(τteff)
4
)

, τ ≪ teff , (11)

reflecting the absence of any local resonances. For large
times, if no time average is taken the inhomogeneity os-
cillates, with an envelope decaying as ∆ρ2ψ (τ) ∝ τ−1.

In Fig. (4) we compare the above calculations with
numerical data from exact diagonalization of finite sys-
tems, initialized in a configuration C of N = ρL parti-
cles, with ρ = 1/3. We have restricted the numerics to
configurations that do not exhibit resonances at any or-
der in perturbation theory. We used very small hopping
t = 10−3U , and interactions decaying with an exponent
β = 2. For each data set, time is rescaled with the appro-
priate effective center of mass hopping, teff(C). In finite

systems, the long time average of
〈

∆ρ2ψ

〉

(T ) is finite,

and for a non-degenerate spectrum a simple calculation

yields
〈

∆ρ2ψ

〉

(∞) = ∆ρ2ψ (0) /L. This is subtracted in

Fig. 4, so that all curves asymptotically tend to zero. De-
spite the small sizes, the agreement with Eq. (10) for the
thermodynamic limit is very good.

IV. ESTIMATE OF THE EFFECTIVE

HOPPING

The inset of Fig. 4 illustrates the long-time plateau
of inhomogeneity, whose length diverges exponentially in
the thermodynamic limit. The latter is due to the expo-
nential smallness of teff , log (teff) ∝ −L.

FIG. 4. Relaxation of inhomogeneity in the density, in the
absence of resonances. Time is rescaled by the exponentially
large sample-dependent t−1

eff . The solid line is the analytical
result (10) for the thermodynamic limit. Inset: The same
numerical data without rescaled time shows that the density
inhomogeneity persists for times which diverge with system
size.

Let us estimate that quantity. We first consider a con-
figuration C which exhibits no resonances at any order of
perturbation theory. This means that the displacement
of any subset of n < N particles by one site (all in the
same direction) does not lead to a configuration whose
classical energy is degenerate with that of C. This re-
striction is equivalent to requiring that no two intervals
between successive particles differ by one lattice spacing
only. In this special case we can compute the effective
hopping teff using ordinary non-degenerate N ’th order
perturbation theory in t. We need to sum over all possi-
ble orders in which we can move N particles forward by
one site each, and divide the hopping matrix elements by
the corresponding intermediate energies. This leads to
the expression

teff = t
∑

P∈S(N)

N−1
∏

i=1

t
∑i

j=1 ∆V
exact
P (j),P

. (12)

P runs over all permutations of N elements, and
∆V exact

P (j),P is the energy shift associated with the displace-

ment of particle P (j). It has an explicit dependence
on the permutation P , as the energy shift depends on
whether or not particles P (j) ± 1 have already moved
when particle P (j) moves:
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∆V exact
P (j),P

U
=



















v
(

lP (j) + 1
)

− v
(

lP (j)

)

+ v
(

lP (j)+1 − 1
)

− v
(

lP (j)+1

)

, if neither P (j)± 1 have moved before step j,

v
(

lP (j) + 1
)

− v
(

lP (j)

)

+ v
(

lP (j)+1

)

− v
(

lP (j)+1 + 1
)

, if only P (j) + 1 has moved before step j,

v
(

lP (j)

)

− v
(

lP (j) − 1
)

+ v
(

lP (j)+1 − 1
)

− v
(

lP (j)+1

)

, if only P (j)− 1 has moved before step j,

v
(

lP (j)

)

− v
(

lP (j) − 1
)

+ v
(

lP (j)+1

)

− v
(

lP (j)+1 + 1
)

, if both P (j)± 1 have moved before step j.

(13)

Here lj ≡ |rj − rj−1| is the distance between particles j
and j − 1. The interaction v (l) is the one appearing in
the effective Hamiltonian (2).
Expanding the interaction energies in the distance, we

can rewrite this as

∆V exact
P (j),P = ∆V

(1)
P (j) + UδVP (j),P , δVP (j),P = O (v′′(l)) ,

(14)
where the leading term at low density (ρ ≪ 1 and thus,
typically, lj ≫ 1),

∆V
(1)
i = U [v′(li)− v′(li+1)] , (15)

does not depend on P explicitly.
Let us first discuss the sum over permutations quali-

tatively. Even though there are N ! terms, most of them
have denominators that grow factorially as well. Given
that the ∆V have essentially random signs, typical de-
nominator products scale as

√
N ! and have random signs,

too. This compensates the factorial number of (randomly
signed) terms and leaves us with a merely exponentially
growth with N .
Next, we observe that for N numbers A1, A2, ..., AN ,

it holds that:

∑

P∈S(N)

N
∏

i=1

1
∑i
j=1 AP (j)

=
N
∏

j=1

1

Aj
, (16)

which is easily proved by induction. We can apply this

result to Eq. (12), taking Aj = ∆V
(1)
j . This yields

teff ≃ tN

(

N−1
∏

i=1

1

∆V
(1)
i

)

N
∑

j=1

∆V
(1)
j . (17)

The product term suggests an exponential behavior of
teff with N , as anticipated above.
However, the prefactor of N in the exponent is not

estimated correctly by this calculation. Indeed, we no-

tice that the sum
∑N

j=1 ∆V
(1)
j vanishes exactly. This

implies that terms of higher order in ρ must be retained
to obtain a finite result. This is a non-trivial interference
effect affecting the motion of clusters of particles. Ana-
lytically it is difficult to treat such higher order correc-
tions, since they depend on the order in which particles
move. However, we have obtained lengthy analytical ex-
pansions in ρ for small N ≤ 5, which show that there are
N−1 extra factors of the form v′′(l)/v′(l) which scales as
v′′(l)/v′(l) ∼ 1/l ∼ ρ for any power law interaction. This
indicates that the first non-vanishing term presumably
scales as

teff ∼ t
(1)
eff ρ

N−1, ρ≪ 1, (18)
for all N , whereby

t
(1)
eff = tN

(

N−1
∏

i=1

1

∆V
(1)
i

)

, (19)

is the leading result which one naively expects from
Eq. (17) and similar estimates in Ref. [15].

We have verified this behavior numerically, by studying
the scaling of the exact expression (12) with the density
for small N . In Fig. 5 we plot the ratio texacteff /t(1)eff , log-
arithmically averaged over non-resonant configurations,
with an exponential distribution of interval lengths of
mean ρ−1. The numerical data are indeed consistent with
Eq. (18). This leads to the following estimate, valid to
logarithmic accuracy:

log

(

teff
t

)

typ

≈ (N−1)

[〈

log

(

t

∆V (1)

)〉

+ log ρ+ cβ

]

.

(20)
The bracket indicates an average over the particles i and
cβ is a constant that depends on the exponent β charac-
terizing the interactions between particles (c2 ≈ 4).

The above estimates are quantitatively good only for
very small t. We may nevertheless use them to estimate
the hopping tc at which typical random states delocalize,
by requiring that the coefficient of N on the lefthand-side

of Eq. (20) vanish. More precisely, we expect

tc
U

. ρ−1 exp[
〈

log(∆V (1)/U)
〉

− cβ ], (21)

to be an upper bound, since locally resonating structures
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FIG. 5. Right: Logarithmically averaged ratio between the exact hopping texacteff and the naive estimate t
(1)
eff , as a function of

density ρ, for different numbers of particles. The ratio was found to scales as ραN . Left: A plot of the fitted αN against N
confirms that αN = N − 1 (solid line).

proliferate with increasing t. For the power law inter-
actions v (l) = l−β considered here, one finds tc ∼ Uρβ

to be of the order of the typical interparticle interac-
tion. Due to the many-body interference effect discussed
above, this is larger by ρ−1 ∼ ltyp than the naive expec-
tation that tc should be of the order of typical interaction
forces between particles, as would be predicted by using

t
(1)
eff for this estimate.

To estimate the value of tc at the moderate density
ρ = 1/3 and for β = 2, we have fitted the size dependence
of the numerically evaluated teff as teff ∝ (t/tc)

N where
N = ρL. This yielded

tc (ρ = 1/3) ≈ 0.2U. (22)

This is quite consistent with the numerical results of the
recent work [36].

V. EFFECT OF LOCAL RESONANCES

Let us now discuss the role of local resonances in the
configurations C. It is still expected that at small enough
t, the effective hopping of the center of mass of a generic
configuration C scales as teff ∝ tαN . Resonances simply
reduce the exponent α with respect to the naive expec-
tation α = 1. To understand the origin of this effect, let
us consider the simple case of three particles on a ring.
We call l1, l2, l3 the three interparticle distances. In gen-
eral, the effective hopping in this system is proportional
to t3/U2, since to translate the entire system all particles
must be moved by one site. Now let us analyze the res-
onant case l2 = l1 + 1. As illustrated in Fig. 3, there are
two degenerate configurations, which form the hybridized

states

|ψ±〉 ≈
|l1, l1 + 1, l3〉 ± |l1 + 1, l1, l3〉√

2
(23)

with an energy splitting of order O(t). It is straightfor-
ward to see that a matrix element between |ψ±〉 and the
translated wavefunctions T |ψ±〉 appears already at sec-
ond order in t, not only at third order. This implies that
the effective hopping of this configuration is only of order
t2/U.

An alternative way of understanding this result is as
follows. If two resonant intervals are present, the ensu-
ing degeneracy of the spectrum is split at first order in
perturbation theory if the intervals are direct neighbors.
If they are not adjacent to each other and if they are
surrounded by intervals of different lengths, the splitting
is generically of second order ∼ t2/U. In the calculation
of the effective hopping, such lifted resonances appear as
small denominators, which increase the transition ampli-
tude by one or two factors of U/t, respectively. This argu-
ment is easily generalized to configurations with multiple,
spatially distant resonances.

Apart from increasing the effective hopping of the sys-
tem, resonances result also in fast, partial relaxation pro-
cesses through admixture. This diminishes the inhomo-
geneity plateau in 〈∆ρ2〉 by an amount proportional to
the density ∼ ρ of resonating configurations. This effect
is seen in Fig. 6, where the evolution of the inhomogene-
ity is plotted for configurations which include a resonance
at first order in t.

Let us now determine the exponent α to leading order
in the density ρ ≪ 1, within perturbation theory. The
simplest type of resonance is a pair of two consecutive
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FIG. 6. Time evolution of the inhomogeneity for configura-
tions containing first order resonances. The samples of length
L = 9, 15 have only particle involved in the resonance; for
L = 12 two particles are involved. The presence of local res-
onances leads to partial relaxation processes at short time
scales τ ≈ O(t−1). Moreover, by comparing the plot with the
inset of Fig. 4, one sees that the global relaxation times ∼ t−1

eff

are reduced by a factor of t/U per particle involved in reso-
nances. As resonances are rare, this effect does not alter the
fact that t−1

eff diverges exponentially in the thermodynamic
limit.

intervals with lengths

(l, l+ 1) or (l + 1, l) , (24)

as shown in Fig. 3. The probability of finding an interval
of length l in a random configuration of density ρ is

P (l) = ρ (1− ρ)l−1 . (25)

There are

N1res = 2Nρ2
∞
∑

l=1

(1− ρ)
2l−1

+O(ρ2) = ρN +O(ρ2)

(26)
such resonances in a typical configuration C, where we
neglect corrections due to overlapping pairs. The factor
of 2 accounts for both possibilities (l, l+ 1) and (l + 1, l).
As discussed above, local configurations like this hy-
bridize at first order in perturbation theory. Accordingly
they reduce the power of t in the effective tunneling by
one each, which yields

(∆α)1res = −ρ+O(ρ2). (27)

The dominant reduction of α is, however, due to se-
quences of interval lengths of the form

(l, p1, ..., pm, l+ 1) , (28)

where the pi=1,...,m /∈ {l−1, l, l+1} are non-resonant with
l or l + 1. If m > 1, such configurations do not lead to

strong hybridizations though, and thus they do not con-
tribute significantly to the fast relaxation of the density
inhomogeneity, ∆ρ2, which occurs before the long-time
plateau. Nevertheless, they increase the effective hop-
ping by introducing a small denominator in perturbation
theory. Such a denominator is generically of order t2,
due to self-energies that arise in second order of pertur-
bation theory. As discussed above, those typically lift the
degeneracy present at the classical level. (For further dis-
cussion of higher order degeneracies, see Ref. [20]). If two
separated pairs of l, l+1 and l′, l′+1 are interlaced, only
one of them can be used to create a small denominator,
however. The maximal number of resonances encoun-
tered in perturbation theory will usually be obtained by
retaining the shorter of the two pairs.
Let us now estimate the total number of resonant pairs

of the form (28), which are not interlaced by shorter reso-
nances. To leading order the probability of finding such a
sequence formed bym+2 intervals can be estimated as ρ,
multiplied by the probability that there are no resonant
sequences of shorter length which interlace it. To com-
pute this probability, we first impose that the interval of
length l+1 is not in resonance with the m intervals that
follow it, which yields a factor (1− ρ/2)

m
. Next we im-

pose that the interval pm is not in resonance with either
l + 1, nor any of the subsequent m − 1 intervals, which
yields another factor (1 − ρ/2)m. The preceding interval
pm−1 can be in resonance with interval pm (since such
a resonance would be nested inside the considered one)
but not with l+ 1 or the following m− 2 intervals. This
yields a factor (1− ρ/2)

m−1
. We iterate this procedure

up to interval p1, and then square the resulting proba-
bility since the same conditions apply on the left of the
sequence, too. This leads to

N2res ≈ Nρ
(

1− ρ

2

)2m m
∏

j=1

(

1− ρ

2

)2j

= Nρ
(

1− ρ

2

)m2+3m

≃ Nρe−
ρ
2 (m

2+3m). (29)

The corresponding reduction in the exponent α can be
estimated by summing the above over m and approxi-
mating the sum as an integral:

(∆α)2res ≃ −2ρ

∫ ∞

1

dme−
ρ
2 (m

2+3m) = −
√

2πρ+O (ρ) ,

(30)
where the factor of 2 is due to the fact that each reso-
nance typically increases the effective hopping by a factor
O
(

t−2
)

. This yields the dominant reduction of the tun-

neling exponent, α = 1−√
2πρ.

Note that the effective hopping could be computed ei-
ther by moving all particles to the left or to the right.
One might thus worry that the above result depends on
this choice. However, one can check that in either con-
struction the maximal number of small denominators en-
countered in calculating the perturbative matrix element
is the same.
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VI. EFFECT OF RARE ERGODIC REGIONS

In recent works [18, 19] it has been conjectured that in
the thermodynamic limit delocalization might occur at
any value of the hopping t, due to non-perturbative rare
events within the configurations C. We briefly reproduce
the argument below and discuss its potential relevance
for the effects we have discussed above.
The argument starts from the observation that a ran-

dom initial state will contain large, but very rare re-
gions where particle and energy density are so low that
a bulk system with the same parameters would be delo-
calized and ergodic. One then diagonalizes the Hamilto-
nian within such a bubble (considering it decoupled from
the outside) to obtain effectively ergodic internal states.
Further, one estimates the matrix element to displace the
bubble by one site, at second order in the coupling to its
neighbors. By making the volume of the bubble suffi-
ciently large, the relevant energy denominators for such
complex transitions become exponentially small in the
volume of the relevant energy slice of the Hilbert space of
the bubble. At the same time, the associated matrix ele-
ments decrease only with the square root of that volume.
This suggests that the lateral displacement of a bubble
is potentially a resonant process. Thus, big enough bub-
bles might eventually delocalize and form a mobile bath
(i.e., an energy reservoir) for any other transition in the
system. If this indeed happens, this effect would restore
finite, even though very strongly suppressed, transport.
The above argument is not a proof of delocalization

though, since it is very hard to control the effect of all the
(much stronger) matrix elements which tend to diffuse
the bubble and increase its energy and particle density
to a level where localization starts setting in. Whether
such a bubble can dynamically evolve back to its ini-
tial shape and propagate resonantly from there, as as-
sumed in the argument, or whether it becomes dynam-
ically localized due to the coupling to many other envi-
ronmental degrees of freedom, similarly as in spin-bath
problems [32, 33], remains an open question. It is inter-
esting to note, however, that, if such bubbles indeed do
re-instate transport in disorder-free systems, analogous
considerations as above would rule out the many-body
localization transitions at finite temperature, which were
predicted in Ref. [4] for disordered systems. There delo-
calization might come about by the motion of rare hot
and nearly ergodic bubbles which always exist in typical
low temperature states. [13]
In order to clarify the relevance of our predictions

for experimental systems, we have estimated (see Ap-
pendix B) the density nB of such rare bubbles for t≪ tc
as

nB . exp







−2

(

tc
t

)
1
β log U

t

log
[

1
ρ

(

tc
t

)
1
β

]

+ 1







. (31)

This tends to zero very rapidly as t→ 0. For ρ = 0.1 and
t = 0.01 we find nB . 3 · 10−4. This shows that, deep

enough in the localized phase, such effects can safely be
neglected for realistic system sizes.

VII. EXPERIMENTAL REALIZATIONS AND

CONCLUSIONS

The simplest experimental realizations, in which to ob-
serve the phenomenology described here, are strongly in-
teracting cold atomic gases in one-dimensional optical
lattices [28, 29] or highly anisotropic spin chains and lad-
ders, whose localization properties could be probed via
hole burning techniques [34].

While our calculation assumed periodic boundary con-
ditions, the essence of interaction-induced localization
will also be present in dense but randomly distributed
cold atoms in a confining trap, which prevents the es-
cape of particles at the boundaries. In this situation, we
predict that the center of mass of an atomic cloud will
respond to a tilt of the trap exponentially weakly, as it is
governed by an effective hopping teff which is exponen-
tially small in the article number.

In conclusion, we have shown that relaxation in an
interacting quantum system without disorder can be ex-
ponentially slow in the system size, suggesting that in
the thermodynamic limit the dynamics become genuinely
non-ergodic. For the power law interactions considered
here, the ensuing quantum glass phase persists up to hop-
ping strengths of the order of typical interaction energies
between individual particles. The fluctuations of the lat-
ter tend to increase with thermal disorder. Therefore,
temperature has a localizing tendency, in stark contrast
to its dephasing role in disorder-dominated localization.

Note added: After completion of this work we became
aware of a related study [35], which finds an exponentially
growing time scale for relaxation, in agreement with our
results. The authors further report a scale-dependent
relaxation time. We conjecture that the latter is a spe-
cific property of linear response, which is absent in our
relaxation dynamics from random initial conditions and
the dynamics studied in Ref. [16]. Both are concerned
with strongly non-linear perturbations with respect to a
homogeneous state.
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Appendix A: Temporal decay of spatial

inhomogeneity

We characterize the spatial inhomogeneity of the sys-
tem by

∆ρ2ψ (τ) ≡ 1

L

L
∑

j=1

[〈ψ (τ)| (nj+1 − nj) |ψ (τ)〉]2 , (A1)

where |ψ(τ)〉 = exp[−iHτ ] |C〉 is the state time evolved
from the classical initial configuration C. For small hop-
ping t, if we restrict C to configurations without reso-
nances, the only eigenstates with significant overlap with
C are the states in the miniband described by Eq. (3).
Expanding in those eigenstates, labeled by n,m, we ob-
tain

∆ρ2 (τ) =
1

L

L
∑

j=1

[

∑

n,m

ei(εn−εm)τ 〈C |n 〉 〈m |C 〉 〈n|∆ρj |m〉
]2

=
1

L

L
∑

j=1

∑

n,m

∑

n′,m′

ei[(εn+εn′)−(εm+εm′ )]τ 〈C |n 〉 〈m |C 〉 〈n|∆ρj |m〉 〈C |n′ 〉 〈m′ |C 〉 〈n′|∆ρj |m′〉 , (A2)

where the energies εn are given by Eq. (4), and the over-
laps with the initial configuration are given by

〈C |m 〉 = 1√
L
. (A3)

Since the operators ni are diagonal in the basis of clas-
sical configurations, the matrix elements of the site oc-

cupations are

〈n|nj |m〉 = 1

L

L−1
∑

k,k′=0

ei
2π
L

(m+φ)ke−i
2π
L

(n+φ)k′ 〈C| T−k′njT
k |C〉

=
1

L

L−1
∑

k=0

ei
2π
L

(m−n)k 〈C|nj+k |C〉 , (A4)

where T is the translation operator. Then the expression
for the inhomogeneity becomes

∆ρ2ψ (T ) =
1

L5

L
∑

j=1

L−1
∑

m,n=0

L−1
∑

n′,m′=0

ei[(εn+εn′)−(εm+εm′ )]τ (A5)

×
L−1
∑

k=0

L−1
∑

k′=0

ei
2π
L

(m−n)kei
2π
L (n′−m′)k′ 〈C| (nj+k+1 − nj+k) |C〉 〈C| (nj+k′+1 − nj+k′ ) |C〉 .

This leads to Eq. (8) of the main text, upon using the
density auto-correlation function,

G (k − k′) ≡ 1

L

∑

j

〈C|nj+k |C〉 〈C|nj+k′ |C〉 , (A6)

in the initial state.

Appendix B: Density of rare, nearly ergodic bubbles

We consider an initial random state which includes an
”ergodic bubble” where the local energy density is below
the critical threshold for bulk localization (cf. Fig. 1). We
assume the global density of particles ρ to be small, and
t sufficiently smaller than the delocalization threshold
tc (ρ), as estimated in Eq. (21) for states with roughly ho-
mogeneous density distributions. Recalling that tc ∝ ρβ,

the density ρB in the ”ergodic bubble” should be smaller
than

ρB
ρ

.

(

t

tc

)
1
β

. (B1)

Calling LB the number of sites in the bubble, the di-
mension of the Hilbert space HB of internal states with
ρBLB particles is

dim(HB) =

(

LB
ρBLB

)

≈ exp[ρB(1 − log(ρB))LB] ≡ κLB ,

ρB ≪ 1. (B2)

Since we assume ρB < ρ to be very small, κ is very close
to one, such that the phase space of such bubbles grows
slowly with their size. Consequently, very large regions
are necessary to obtain small enough level spacings that
might potentially induce delocalization of the bubble.
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The minimal size LB is estimated from the hybridiza-
tion between an initial bubble state ψi and a final state
ψf in which the bubble has moved by one site. Delocal-
ization may potentially occur if the admixture of ψf to
ψi is large in second order in perturbation theory, i.e., if

∑

ψB

t2
〈ψf |O |ψB〉 〈ψB|O |ψi〉
(Ei − EB) (EB − Ef )

& 1, (B3)

where |ψB〉 runs over intermediate states, and t · O is
the part of the hopping Hamiltonian that couples the
bubble to the surrounding degrees of freedom. Let us first
estimate the matrix elements of the hopping: making the
generous assumption that the bubble is internally fully
ergodic and that its eigenstates satisfy the Eigenstate
Thermalization Hypothesis [37], matrix elements with a
generic local operator can be argued to scale as

〈φ|O |χ〉 ∼ 1
√

dim (HB)
∼ κ−

LB
2 , (B4)

where φ, χ label generic internal eigenstates. In order to
minimize the energy denominators in (B3), one should
optimize the intermediate and final states, which yields

minχ|Eχ − Eφ| ∼
U

dim (HB)
∼ Uκ−LB . (B5)

Inserting these estimates into Eq. (B3), we obtain a
condition on LB:

LB & 2
log (U/t)

log κ
=

2

ρB

log (U/t)

log(1/ρB) + 1
. (B6)

Note that the required length diverges logarithmically in
the limit t → 0, implying that these bubbles are non-
perturbative in nature. In this aspect they bear some
resemblance to rare regions in Griffiths phases.
The density nB of such large bubbles is given by the

probability of finding only ρBLB particles in a region of
length LB, while the global density is ρ. For small ρ and
t this is given by:

nB ≈
(

LB
ρBLB

)

ρρBLB (1− ρ)
LB(1−ρB)

(B7)

≈ exp

[

−LB
(

ρ− ρB − ρB log
ρ

ρB

)]

.

In the regime t ≪ tc (and thus ρB ≪ ρ) this can be
approximated as nB ≈ exp(−ρLB). Using the bound on
ρB from Eq. (B1) we find an upper bound on the density
of ergodic bubbles,

nB . exp[−ρLB] . exp







−2

(

tc
t

)
1
β log U

t

log
[

1
ρ

(

tc
t

)
1
β

]

+ 1







,

(B8)
which is the expression given in Eq. (31). This is expo-
nentially small and non-perturbative in the limit t → 0.
For system sizes L ≪ 1/nB, such effects are irrelevant,
since a typical realization will not contain any such bub-
bles.
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Mézard, Out of equilibrium dynamics in spin-glasses and

other glassy systems, in Spin glasses and random fields,
A. P. Young Ed., World Scientific (1998).

[24] L. Berthier and G. Biroli, Rev. Mod. Phys. 93, 587
(2011).



11

[25] G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78,
224306 (2008).

[26] Z. Nussinov, P. Johnson, M. J. Graf and A. V. Balatsky,
arXiv:1209.3823 (2012).

[27] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,
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