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We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero
modes in (3+1)-dimensional superconductors. Starting in 4+1 dimensions, where the point defect is
extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced.
Diffeomorphism invariance then leads to an SU(2)2 Kac-Moody current running along the defect
line. The SU(2)2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in
341 dimensions. It is then shown to also encode the angular momentum density which permeates
throughout the bulk between hedgehog-anti-hedgehog pairs.

I. INTRODUCTION

Topological phases are gapped quantum phases of mat-
ter, which are impossible to be characterized via sponta-
neous symmetry breaking. The list of known topological
states in condensed matter has been greatly expanded
recently; in addition to quantum Hall states which fea-
ture a genuine, intrinsic topological order which do not
require any symmetry, topological states with (or pro-
tected by) symmetries, such as symmetry-protected and
symmetry-enriched topological phases, have been dis-
covered and extensively discussed recently.!™ For non-
interacting fermion systems with a certain set of discrete
symmetries, the classification of all topological phases is
possible and summarized in terms of a periodic table.*6

Topological defects introduce further complexity and
possibilities in topological phases of matter.” For in-
stance, while the periodic table does not list topologi-
cal superconductors with broken time-reversal symmetry
in three spatial dimensions,>% one can endow trivial su-
perconductors with non-trivial topological properties by
introducing point defects. These defects may be real-
ized, for example, as superconducting vortices on the sur-
face of topological insulators (TT) with proximity-induced
superconductivity.® These topological defects host zero
energy Majorana bound states (MBS) at their cores
which are robust against any perturbation weaker than
the bulk energy gap, and are shown to obey non-Abelian
statistics in (3+1) dimensions.>1%13

While Ref. 9 provides the descriptions of such topologi-
cal defects in terms of single-particle Hamiltonians, char-
acterization of the defects beyond the non-interacting
limit remains a challenge. Often, a good way to tackle
this problem comes from appealing to topological field
theories.'41® They are desirable as they directly sug-
gest the presence of boundary excitations for topologi-
cal insulators'* and the quasiparticle braiding behavior
in (2++1)D topologically ordered phases'®. They are usu-
ally related to bulk-boundary anomalies, surviving the
effects of interactions and giving the phenomenological
responses expected from the low-energy excitations.

It is our objective here to propose and analyze a
topological field theory that describes point defects in
(341)D superconductors with broken time-reversal sym-
metry, belonging to the symmetry class D in Altland-
Zirnbauer classification.'”

Developing an effective (response) theory of (topologi-
cal) superconductors is beset with difficulties, at the ut-
most, connected to the chargeless nature of their low-
energy quasi-particles. A known approach based on topo-
logical field theories is to introduce new Majorana fields
for these low energy degrees of freedom.'® Other options
involve cleverly constructing the topological supercon-
ducting phase by dimensional reduction!? or using grav-
itational fields to infer about thermal'® and viscous?® 22
responses. The gravitational approach, which is the main
focus of this manuscript, has a strong appeal due to
recent advances in relating the geometrical and entan-
glement properties of these systems.?32* The latter, in
particular, has been shown to encode subtle topological
characteristics of these phases.?

The paper is organized as follows. In Sec. II we in-
troduce the physics of defects in superconductors with
broken time-reversal symmetry. We explain how to calcu-
late topological invariants from the single-particle Hamil-
tonian and relate the (3+1)D point defect case with a
higher dimensional (4+1)D situation with a line-defect,
the latter case being the starting point to define our ef-
fective field theory. In Sec. III, our main section, we
concretelly describe our gravitational action. We show
how frame-rotation invariance of our action leads to the
introduction of chiral modes living along the line defect
which, upon dimensional reduction, back to (3+1)D, de-
scribe the hedgehog-bound MBS. Finally in Sec. IV we
present our concluding remarks.



II. TOPOLOGICAL DEFECTS AND
DIMENSIONAL AUGUMENTATION

A. Bogoliubov de Gennes Hamiltonian and
dimensional argumentation

We begin by reviewing the hedgehog defects discussed
in Ref. 9 in terms of a non-interacting fermionic Hamil-
tonians. They are classical fields of certain order pa-
rameters, varying adiabatically in space-time, coupled to
the Bloch Hamiltonian to be studied. Such topological
defects carry extensive textures around them. In this
case, the electronic band Hamiltonian can be written
as H (k,z), where the momentum is k = (k‘l, k2, k3)T
and the space-time coordinates * = (x,t) characterize
the defect. Concretely, a representative for the class D
Bogoliubov-de Gennes (BdG) Hamiltonian is

H(k,z)=T -k+ A -n(x), (1)

where n (z) = (m(z), ReA (), ImA (z)) combines the
Dirac band gap m with the superconducting order
parameter A, and the T' = (I',T2,T3) and A =
(A1, Az, A3) matrices obey the Clifford algebra {I';,T';} =
{A;,Aj} = 26;; and {I';,A;} = 0. In the case of point
defects in (3+1)D, we have a d = 3-dimensional Bril-
louin zone BZ3 and defines a D = d — 1 = 2 dimensional
(spherical) surface S? around a point defect (see figure 1.)
This leads to a Zs topological classification, according to
the periodic table of defects,” signaling the presence or
absence of protected Majorana bound states. The ap-
pearance of the MBS is guaranteed by the non-trivial
bulk invariant (—1)”, where

V_E - 3/ Qs €Z (2)
_3' 2w s2 JBz3 > 2

and Qs = Tr[AdA+ (3/2)A3dA+ (3/5)A°%] is the
Chern-Simons 5-form and A,,,, = (u,;,|duy,) is the Berry
connection constructed from the occupied BdG-states
| (k, z)) of H(k,x).

In the context of bulk topological insulators and su-
perconductors (i.e., those without topological defects),
topological states characterized by a Zs topological in-
variant are closely related to (in fact, “descend from”)
their higher-dimensional parent state characterized by a
Z topological invariant. Here in our context, we also
found it to be convenient to consider a “dimensional aug-
mentation”. In this case the original point defect is ex-
tended into a line in (4+1)D, which, being a (1+1)D sys-
tem, should support a simple chiral theory as its bound
state.

We thus augment the space with a further direction,
in which case the Brillouin zone is extended to 4D. The
BdG Hamiltonian may be written as in (1) but with

k = (kl, k2, k3, k:4)T. This dimensional “augmentation”
is done such that the direction of k* defines now a line
crossing the former point-defect, which now becomes a
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Figure 1. Dimensionally reducing a line defect in (4+1) di-
mensions to a point defect in (3+1) dimensions. (Left) The
point defect (red dot) is spatially surrounded by a sphere S?
(yellow shell). z; is the radial parameter, x> is the azimuthal
one and z3, the polar parameter, is not shown. (Right) The
line defect (red line) parallel to the x4 direction sits inside a
cylindrical three-dimensional hypersurface, where each cross
section is a sphere S? not intersecting the line defect.

line-defect (see Fig. 1). The dimension of the sphere that
wraps the defect is still D = 2 such that now the defect
dimension is § = d — D =4 — 2 = 2. According to Ref.
7, such an object is classified by an integer topological

invariant
I/_l - 3// Tt (F?) e Z (3)
o 3' 2w s2 JBz4

for F = dA+ A? is the Berry curvature, and BZ* is the
4D Brillouin zone. This counts the number of Majorana
chiral modes along the defect. In the following, we will
consider a field theory describes topological excitations
along the defect line. Through a subsequent compactifi-
cation procedure, we will infer the effective field theory
description of the (3+1)D theory with the point defect.

B. Topological defects

Consider now a class D system in (3+1)D with a point-
defect structure. This is described by Eq. (1). The vector
A (xz) = n(z)/|n(z)| defines a hedgehog looking vector
field around the point defect. The winding of this vec-
tor field determines the presence or absence of particles
bound to the defect. A unit winding corresponds to a
quantum vortex across a superconducting interface be-
tween a topological and trivial insulator, an object known
to bind a Majorana zero-mode.

A technically relevant point lies in the stability of such
hedgehog defects in three spatial dimensions and the
presence of single Majorana bound states in the defect.
As the energy of a single classical hedgehog configura-
tion of the scalar field diverges, the stabilization of such
field content is solved by the introduction of an SU(2)
gauge field. On the other hand, the fermionic content of
the theory leads to a (Witten) anomalous SU(2) theory,
whose partition function vanishes. To avoid the Wit-
ten anomaly, more fermionic degrees of freedom may be
introduced, but then the single MBS structure at the
hedgehog center is spoiled!®. In what follows, we keep
in mind the above physical situation in which the SU(2)
symmetry of the defect order parameter is explicitly (not



spontaneously) broken by, say, a TI surface. In such a sit-
uation, no SU(2) gauge field should be introduced, avoid-
ing the Witten anomaly. Then superconducting vortices
complete the hedgehog structure which is stabilized by a
simple U(1), electromagnetic, gauge field. In a finite sys-
tem a second anti-hedgehog would have to be introduced
coupled to the first by a Dirac string!! (correspondingly
at an opposing TI surface). In our infinite system case,
we imagine the anti-defect at infinity and it will not take
part in our discussions until the very end, when we con-
sider the gravitational response and angular momentum
stored in the system, in which case we will see that the
anti-hedgehog pair will reappear naturally.

Extending to (4+1)D, time reversal symmetric topo-
logical insulators are Z classified®% and the 3D interface
between a 4D bulk primitive topological insulator (with
index £1) and a trivial insulator hosts a single Weyl node.
In the presence of superconductivity, a quantum vortex
line through the 3D hyper-interface binds a chiral Majo-
rana mode. Unlike the anti-periodic boundary condition
of a fermion ring in real 3-space where fermions physically
rotate by 27 going around a cycle enclosing the vortex
line, compactifying the fourth dimension simply closes
the vortex loop with a periodic boundary condition on its
chiral Majorana mode. The zero-energy zero-momentum
Majorana mode is associated with the protected Majo-
rana bound state at the point-defect in (3+1)D, surviving
as the lowest energy mode after compactification.

We introduce a differential 2-form 6 = %Gde” A dx?
with 0, = %ﬁﬁuﬁ x Oyn. Here, =0, ...,4 in the space-
time coordinates. Again, its winding counts the number
of zero-modes along the line defect and the factor of 1/2
was introduced such that this count matches the chiral
central charge of the modes along the line as

1

c_=c—C= —
47T S2

(4)
where ¢, ¢ are the central charges of the left and right
moving modes, and S? is the spherical surface that sur-
rounds the vortex line (see Fig. 1). The chiral cen-
tral charge relates to thermal transport behavior26:27
by equating the energy current at temperature T to
I=(n/12)c_ T2

Equation (4) may be related to the bulk’s Berry con-
nection, which also contains the information on the quasi-
particles living at the defect.”

The chiral central charge of the gapless Majorana mode
along the vortex line relates to the winding of the differ-
ential 1-form as well as the integral invariant (3) by the
topological index theorem

1 11 /4\°
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The (4+1)D space can be foliated into 41 = §% x
%2+ (see Fig. 2). S? is the spherical surface that encloses
the point defect in (3+1)D and wraps the vortex line
in (4+1)D. ¥2*! is an open semi-infinite surface that

terminates along the line defect, orthogonal to S? at every
point. It may be decomposed as ¥2T1 = Mpi x B+,
Here X1*! encompasses the time (2°) and line-defect (2*)
directions where our (1+41)D chiral Majorana modes live.
This defines a (1+1)D conformal field theory (CFT). Xg+
is the positive radial direction orthogonal to the defect
sphere and ends at the sphere’s origin. In summary one
may write

Y+ = 6% % Ypy x DL (6)
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Figure 2. Foliation of the (4+1)D space into S* x X2, The
spherical surface S* (blue) surrounds the vortex line (red).
The surface 22! (green) orthogonally intersects S? at a point
and terminates along the vortex line.

III. EFFECTIVE GRAVITATIONAL THEORY
A. Coupling between defects and gravity

At this point, we are ready to introduce an ansatz for
the gravitational response of this system. We fix the
ansatz by a twofold argument. The first requirement is
that the action is topological in nature. This implies that
the (4+1)D action involves a differential 5-form as its in-
tegrand which is independent of the metric (or the vol-
ume form). The second is that the action should reflect
the chiral central charge along the line defect as this is
a direct consequence of the topological field theory. The
following is the unique gravitational action that obeys
these requirements in the presence of the static order pa-
rameter field 6,

1 w
S—E/Sf @ (7)

1 = w
_E(C_C)/22+1Q37

where QY is the gravitational Chern-Simons 3-form such
that dQY = Tr[R A R] is the second Chern form, with
R the Riemann curvature tensor.

In order to exploit the similarities between tangent
bundles and internal bundles, we choose to parametrize
the manifold in non-coordinate basis in terms of local
frame fields (also known as vielbeins) e®. These are vec-
tor valued one-forms whose vector components run along
the local bases as a = 0, ...,4 and which satisfy the local
orthogonality condition on the manifold eZegg‘“’ = b,



where ¢ is the manifold metric and 7 is the local flat
(Minkowski) metric. In terms of the local basis, the main
geometric quantity of our interest, the Riemann curva-
ture, is written as a tensor-valued two form as

Rab == dwab + wac /\ wcb (8)
where w = w,dz" is the spin connection, generated by
the affine (Christoffel, in coordinate basis) connection

ab _ _a vb a , pbv
wy = ey 0u.e” +eye’ Ty, (9)

for Iy, = "™ (0pgur + Ougpr — Oxgpu) /2- 1t arises as the
connection which corrects derivatives and parallel trans-
ports of frame fields in the manifold. It is intimately re-
lated to spin angular momentum and also allows for the
covariant differentiation of spinors. In terms of the spin-
connection 1-form w, the Riemann curvature is similar to
a non-Abelian gauge field strength R = dw + w A w and
QY = Tr[wA (dw+ 2w Aw)] is just the usual Chern-
Simons form.

Topological field theories with SU(N) gauge groups
which have some similarities with Eq. (7) were previously
studied, e.g., in Refs. 28 and 29. In the following, we
will derive, from the action (7), the properties of defects,
which we show are consistent with the localized Majorana
zero modes at the defects.

B. Gauge Invariance

We aim at describing the physics of the modes living
at the line defect. From our previous discussions, the line
defect acts as the edge of the open manifold and consists
of the radial, time and defect directions (which we call
2!, 20 and x? for concreteness.) It is a known fact that
the Chern-Simons action is not gauge invariant in open
manifolds. The restoration of gauge invariance demands
the introduction of extra chiral fields living at the edge
of the manifold®® giving rise to the boundary physics.

So we start addressing the gauge transformation prop-
erties of our action. Since the spin-connection is defined
in a coordinate independent basis, Q4 is reparametriza-
tion invariant. It is not invariant, on the other hand, un-
der Lorentz transformations of the frame fields®'. This
rotation of the frame fields in our system works as an
SO(4,1) gauge transformations of the spin-connection

w— 0" 'wO +071do. (10)
Under such a transformation we have3!
S—S+46S
1 3
68 = —— 6 ATr[(d -1
S 127‘(‘ »4+1 AL [( O) O }
1
_ = 0 11
471' on4+1 A 025 ( )

where ay = Tr [(dO) O~! Aw]. To maintain gauge in-
variance, the factor 4S5 has to be compensated by the
introduction of extra degrees of freedom.

The general form of §.5 dictates which type of degrees
of freedom needs to be introduced. A detailed study of
the most general behavior of 4.5 is thus imperative. We
start by foliating the (4+41)D manifold in spheres around
the point defect. Integrating over the spherical surface
around the defect gives

c_ 3 co
68 = —— Tr[(dO)O™']" — = 12
127 N241 : [( ) ] 471' /ElJrl @2, ( )
where ¢_ = ¢ — ¢ for the chiral central charge seen in (4).

The first term corresponds to a Wess-Zumino-Witten
(WZW) action in an open 3-manifold while the last
term couples the spin-connection to the current (dO) O~1
along the line-defect. The topological nature of the
WZW action allows us to restrict our consideration to
the SO(4) subgroup in SO(4,1), which deformation re-
tract to SO(4) since the boost directions are contractible.
As a consequence, we assume without loss of generality
that all transformations O are SO(4) rotations.

Rotations in four dimensional manifolds may be de-
composed as rotations of pairs of planes. In particular, a
general SO(4) rotation may be separated into the prod-
uct of, up to a pair of global inversions,so-called left- and
right-isoclinic rotations.

O = AB = (—A)(—B) (13)

These correspond to rotations where both pairs of planes
rotate by the same angle (for A) or opposite angles
(for B). These isoclinic rotations are equivalent to unit
quaternion elements, which themselves are elements of
the SU(2), denoted by lower case letters a and b respec-
tively. This gives the well known double cover,

so() = 202 x 502 U(Q)ZX SUR). (14)

where Zs is the group of inversions generated by (—1, —1)
in SU(2) x SU(2). Thus, we may separate the SO(4)
WZW action in a pair of SU(2) WZW ones as
_173
Trso) [(dO) O]
173 _
=Trso() [(dA) A™']" + Trso) [(dB) B™']

=2 {TrSU(Q) [(da) a_l]g + Trsy(z) [(db) b_l}g} ’

° o (15)

where we noticed that the SO(4) trace is twice of that of
a SU(2) one. For completeness and to address the unfa-
miliarized reader, we present in the appendix a detailed
description of this mapping

A further caveat must be taken into account. The com-
pactification of the line defect shrinks one of the rota-
tion directions and reduces the SO(4) group to SO(3) =
SU(2)/Zsz. Tt contains the rotations in the dimension
reduced 3+1D physical space. This is just the diagonal
subgroup of SO(4) in Eq. (14), i.e. a = b. This means
that the compactification of the defect line confines the



two SU(2) theories into a single one. Thus the first term
of the action (12) becomes

4c_ 3
- T d -1
127 Jiar, ESUC) [(da)a™"]
2 Trsu () [(da)a™']’ (16)
127 $2+1 sU@) ’
where we identified ¢ = 1/2 for a single chiral Majorana

fermion at the line defect. The SO(4) WZW theory is
now reduced to a single SU(2)2, and the overall factor of
2 fixes the level of the affine Kac-Moody current running
along the boundary of X2+ which is the (14+1)D vortex
line.

Finally we see,

2 _113
08 = “Tor e Tr [(da) a™"]
2
- Tr [(da)a™ " Aw], (17)
4 »i+1

where the trace is understood to be take over SU(2) ma-
trices. The original action must be modified to compen-
sate for this. We address this issue in the next section,
defining the edge theory.

C. Edge Theory

As discussed, the line-defect acts as a boundary to the
manifold, rendering the action defined in Eq. (7) not
gauge invariant. Typically one fixes then a gauge and,
solving the equations of motion for the resulting con-
straint, obtains the action for the edge theory. One says
that the loss of gauge invariance sets free extra degrees of
freedom, which then are allowed to become dynamical.3°

In the present context, gauge invariance amounts to in-
variance under Lorentz transformations. This invariance
is closely connected to energy-momentum conservation.
We would like to be able to do Lorentz transformations
at the boundaries as well as in the bulk and gauge fixing
is therefore not desirable.

We simply notice that introducing the proper set of
degrees of freedom we may recover the gauge invariance
desired. This is achieved, in our case, by substituting the
original action (7) by

S :—/Ew 6 ATr (Q%)

4

+ ﬁ $4+1
4

+ E on4+1

0 A Tr(J°)
ONTr(JAw), (18)

where
J=(ds)s™t, s€SU(2) (19)

is the SU(2) current operator of the edge theory for
s € SU(2) along the vortex line ©!*1. Under a gauge

transformation by an SO(3) rotation of the frame-field,
the gravitational part transforms as follows from Eq. (10)
while s — as. The changes in the two counterterms can-
cel the changes in the first one, giving the desired invari-
ance.

The boundary condition (as specified by the sign of
the winding number) of the defect field 6 determines the
chirality of the current operators. This theory still lacks
dynamics, as all defects in topological phases, in the form
of a non-linear sigma model. In the presence of a kinetic
term, however the sign of the WZW action (the sign in
front of the level) fixes the conservation equations for the
corresponding chirality.

We are not going to consider further the dynamics
along the line defect ©1*!, which is treated to be static
in this manuscript. After integrating with static defect
field 6 over the spherical surface around it, we have an
SU(2)2 WZW term on the (2+1)D space X2+ orthogo-
nal to the surface around the line defect together with a
coupling between the bulk geometry and the edge modes.
Explicitly, we obtain

2
71271' »2+1

5 4

Tr (J%) + 2z / Tr(J Aw) (20)
o2+

where the integration of 6 over S? gives the chiral central

charge ¢c_ = 1/2 and is absorbed in the coefficient.

The last term in (20) acts as a coupling between the
SU(2) current J and the bulk geometry through the
spin connection w. The vortex line ©!*! is parametrized
by z* and 2° = ¢ (see figure 1). With these coordinates,
the coupling becomes

2 1
el Tr(JAw) = 7 /daf"dt Tr (Jows — Jawo) -
(21)

In a almost-flat geometry, the frame field components are
a a 1 a
e#zdu—kih# (22)

and, for symmetric perturbations, the spin-connection re-
duces to
a 1 ap
wub = 577 (8bh,w — 8phub) . (23)

After compactification, z* = 2*+27 R, for R — 0, and all
2% derivatives should vanish and the metric to decouple
from the other directions, such that wj, = 0. Then the
coupling (21) simplifies into

1
~5 /dx4dt Tr (Jawo) - (24)
The dynamical spin-density then reads

By=——-=—=J0 +... (25)
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Figure 3. Non-locally correlated angular momentum between
zero energy Majorana bound states (red rings) at 0 and oo
through the SU(2) field s in the bulk.

where the unspecified terms are bulk contributions and
are suppressed by its gap.

This angular momentum density may be rewritten in
terms of the SU(2) fields (we omit the matrix indices)

1 1
lo = —7J4 = —7(94 IOg S. (26)
™ ™

We conjecture that this expression represents a non-local
storage of angular momentum between two defects, one
placed at the origin and the other at infinity (see Fig.
3). The defect at infinity is not seen because in Eq. (20)
as only the origin boundary at ' = 0 was taken into
account. The more general expression would include the
other Majorana mode

lo ~ 04108 5|0 — 0410g 5|0, (27)

which reduces to the previous result if s|, is a constant.
The total angular momentum L is obtained by integrat-

ing over 2%, and we may write it suggestively as
1 27R 0o
L= f/ dx4/ dx10104log s. (28)
™ Jo 0

The dimensional augumentation resulted in a “fatten-
ing” of the string connecting the two defects allowing us
to follow the the angular momentum stored in the system.
The semi-extensive nature of the point defects through
the bulk in these systems (which was crucial to the iden-
tification of their non-Abelian properties in Ref. 9 is im-
plied and encoded by the bulk SU(2) texture field s. This
is similar to a bulk-boundary correspondence, where spa-
tially separated low energy degrees of freedom connect to
each other through the bulk high energy modes.

The total angular momentum in a closed system is con-
served. This means twisting the Majorana mode at one
end will generate an anti-twist at the other end. We
attribute this non-local angular momentum transfer to
the extensive bulk SU(2) texture. This angular momen-
tum pump could be a gravitational version of the Thou-
less charge pump across an insulating chain®?33 and the

fermion parity pump across a topological p-wave super-
conducting chain.”34

IV. CONCLUSION

We have studied point defects in class D topological su-
perconductors in (3+1) space-time dimensions from the
point of view of topological field theories. From symme-
try arguments, we have proposed a minimal gravitational
Chern-Simons model coupled with a bulk texture in the
extended (4+1)D space.

We have shown that the point defect extends to a line
defect after the "dimensional augumentation”, and acts
as an effective boundary or vortex line. In order to re-
cover Lorentz invariance, one is then forced to introduce
extra boundary degrees of freedom. This is given by a
chiral SU(2)s WZW theory coupled to the bulk geom-
etry through the spin connection. The chirality of the
new fields is fixed by the bulk texture. Under periodic
boundary condition, the compactified vortex line traps
a single zero energy Majorana mode, and through bulk
coupling, we have shown non-local angular momentum
correlation between spatially separated defects.

As a final concluding remark, we consider the possi-
bility of higher winding of the defect field. In this case,
integrating over this field yields an SU(2) WZW theory
at level 2n, for a n-fold winding, since the coefficient of
the WZW action scales linearly with the winding num-
ber. On the other hand, one would expect the vortex
line to consist of n copies of SU(2)s theories and hold n
chiral Majorana modes. We suspect this could be recov-
ered by first relating SU(2)2,, and SU(2n), through the
level rank duality, then regard (SU(2)2)™ as a conformal
embedding in SU(2n)q. In this case, the theory captures
only the spin part while other flavor degrees of freedom
are either uncoupled to gravity or are confined by the
locality of electrons.
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Appendix: The SO(4) double cover

Here we present a more detailed discussion of the iden-
tification SO(4) = %Z)SU(@. In particular we present
an explicit formula mapping the SO(4) A and B fields to
the SU(2) a and b ones. Let us start thinking of rotations
in a four-dimensional space. If we write a general point
asr = (w, z, y, ), we may decompose a general rota-
tion in rotations of orthogonal planes, say (w, z, 0, 0)



and (0, 0, y, 2) for simplicity. These rotations leave the
normal vectors of the planes fixed. If these rotations
turn the planes around their normals for the same angu-
lar displacement they are called isoclinic rotations. For
our particular example they may be written, for an angle
9,

cosf —sin@

sinf cosf

Oiso = (A1)

cosf) —sinf
sinf cos@

If one exchanges the ordering of the basis vectors y and
z, we arrive at another, equally reasonable, possibility,
namely

cosf) —sinf
+ | sinf cos#@
iso cosf sind
—sinf cosf

(A.2)

Rotations with like-signs (6, 6) are called left-isoclinic
while those of opposite signs (0, —6) are called right-
isoclinic. From the shape of the matrices in this par-
ticular case, the SU(2) nature of the isoclinic rotations
already becomes apparent. One may be more general,
calling A and B the left- and right-isoclinic matrices, they
may be written

A= oy —ioyay —iTy0, 51 — iTy0L B2,

(A.3)

B =1 —iT,0y72 — iTy01 — 170402,

where o and 7 are Pauli matrices and we omitted the
identity matrices. The easiest way to see that indeed one
may decompose a general rotation in four dimensions in
such rotations, namely O = AB, is to complexify the
coordinates. In this case, we have

r:(ml,xg,x3,a?4)—>X:( Y Z), (A.4)

where y = x1+ix3 and z = x3+iz4 and the bars represent
complex conjugation. Now the most general transforma-
tion on the matrix X which preserves its determinant
(and as such, the modulus of r) reads

X' = aXb, (A.5)
where a and b are SU(2) transformations. Naturally,
multiplying both a and b by —1 gives the same result,
which accounts for the double-cover. Now simply taking
general a and b matrices and separately equating each one
of them to the identity and expanding, one may relate
these to the SO(4) isoclinic rotations A and B. At the
end of a short calculation, we find an explicit relation
between them, which may be used in the fields of the
main text, as follows

). (A.6)

(A7)

where a = ay + ias (with aq 2 as defined above for A)
and the notation follows similarly for 3, § and ~.

Bob=( -

o 2
= >
N~
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