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Abstract 

 We derive a method to determine the effective local elasticity tensor by combining the local 

stress, local strain, and global strain in conjunction with a linear least square solver. This method 

reduces to the standard stress-strain fluctuation method for the estimation of global moduli if the 

local stress and the local strain are substituted by global counterparts. The quality of the 

developed method is verified by the analysis of an FCC Lennard-Jones single crystal. By using 

this method, surface elastic behaviors of three nano-plates are investigated. Simulation results 

prove that both softening and stiffening effects could be detected, depending on the surface 

orientations and loading directions. This novel approach could be especially valuable for 

complicated morphologies where the physical properties of the local material are challenging or 

impractical to obtain. 
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1. Introduction 

 In recent years, nano-composites have gained increasing attention in both academic and 

industrial research with diverse applications. The overall performances of these materials are 

superior to the simple superposition of the properties of their individual constituents [1-3]. In 

polymer based nano-composites, a polymer region around the nanoparticle, where the material 

properties deviate from the bulk behavior, has been confirmed experimentally [4-6]. This local 

region is known as the interphase and arises from intertwined chemical interactions and 

geometrical constraints. How to characterize the material properties, especially mechanical 

performances, within the interphase region are of significant theoretical, experimental, and 

industrial interest. Nano-composites are clearly spatially and mechanically inhomogeneous at 

nanometer length scales. Similar heterogeneity has also been observed in amorphous glassy 

materials, which are traditionally treated as a mechanically homogeneous continuum. The local 

heterogeneity in the elastic properties is acknowledged and ascribed to the localized structural 

rearrangements [7-9]. Indeed, heterogeneity and homogeneity are strongly dependent on the 

length scales used in the observation [10]. At a specific length scale, some constituents in a given 

material are identifiable to be homogeneous, but may become heterogeneous while observed at a 

smaller length scale. Therefore there is a critical need to develop methodologies to investigate the 

local material properties. These local property data can provide new insights that will enable the 

tailoring of the microstructure to optimize their performances and provide a better understanding 

that reflect microstructural composition on the macroscopic observable properties. In theory, 

these local properties could be measured experimentally. In reality, the complex morphology of 

these systems has prevented facile determination of them. 

 With recent advances in computational algorithms and computer hardware, atomistic level 

computations, such as molecular dynamic (MD) simulation and Monte Carlo method, have 
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become effective and efficient tools for simulating material behavior and for computing material 

properties [11-13]. To compute the global elastic constants by atomic simulations, two 

fundamentally different approaches, the deformation-based and the fluctuation-based methods, 

have been widely applied. From the viewpoint of the continuum mechanics, one can simply 

obtain the elastic constants through the linear dependence between the resultant stresses and 

applied small strains. This is known as the deformation-based approach [14]. Nevertheless, this 

technique suffers from the fluctuations in stresses and strains at a non-zero temperature, and is 

only valid for a static/quasi-static condition, i.e., around 0K. At a finite temperature, fluctuation 

methods are always employed [15]. In a seminal paper, Parrinello and Rahman (PR) developed 

the strain fluctuation formula to compute the isothermal elastic constant tensor in 

isothermal-isobaric (NPT) ensemble [16]. However, this method was found to converge slowly 

for many systems. Subsequently, the stress-strain fluctuation formula was explored based on 

statistical thermodynamics with much better convergence [17, 18]. The estimation of elastic 

constants is dependent on both strain and stress, not only strain itself as in PR method. The 

essence of its rapid convergence is manifested via a linear least square solver [19]. 

 To obtain the local elastic modulus, one can follow the same methodologies mentioned 

above with the change from global stresses and strains into local stresses and strains. For the 

deformation-based technique [20], Mizuno et al compared with three different approaches by 

using the same glassy materials [7, 21]. In order to suppress the fluctuation of stresses and strains, 

the simulation temperature is extremely low. Other significant efforts have also been devoted to 

obtain the local elastic constants through the stress-fluctuation method [7, 8, 22-26], where the 

local material is hypothesized to undergo the deformation with the global strains. Under such an 

assumption, the local elasticity tensor is obtained directly through the local stress and global 

strain, resulting in an approximation to the true local elastic constants. 
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 In this paper, we present a novel method for the estimation of the local elasticity tensor, 

combining the information of global strain, local stress, and local strain. This new approach is 

applicable to all the local regions by a single simulation with rapid convergence. It is shown that 

our new formula reduces to the stress-strain fluctuation technique [18, 19] if the local strain and 

local stress are substituted by global ones. For simplicity, a FCC crystal structure is studied to 

verify the developed algorithm and to compare with these formulae. No polymers are considered 

in the current work. 

 To illustrate the application of the newly developed method, three Lennard-Jones FCC 

crystals with free surfaces on { }100 , { }110 , and { }111  are investigated. The Young’s moduli 

distributions are calculated in parallel with and perpendicular to the free surface. Both stiffening 

and softening effects are observed, depending on the surface orientations. 

2. Methodology 

 In terms of the macroscopic average theory [10], the average stress and strain over a domain 

Ω  are 

 
1 dV

Ω
=

Ω ∫σ σ  , 
1 dV

Ω
=

Ω ∫ε ε  , (1) 

where σ  and ε  are the stress and strain at dV , respectively. Note that the domain Ω  could 

be heterogeneous and may contain more than one inhomogeneity. A straightforward definition of 

the effective modulus (stiffness) tensor of the heterogeneous material can be found from the 

following relationship 

 =σ C ε  , (2) 
where σ  and ε  are, respectively, the average stress and strain tensors, and the fourth tensor 

C  defined by (2) is called the effective modulus tensor of the heterogeneous material. 

 Consider a composite material with N  inhomogeneities, the average strain and stress of the 
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entire material could be written as 

 
0

N

r r
r

c
=

=∑σ σ  , 
0

N

r r
r

c
=

=∑ε ε  , (3) 

where rσ  and rε  are the average stress and strain of the r th inhomogeneity, and rc  is the 

volume fraction of the r th inhomogeneity and 0r =  denotes the matrix. For convenience, we 

introduce three distinct modulus tensors. The first one is the effective global elasticity tensor, as 

expressed in Eq. (2), which correlates the global strain and global stress of the entire composite. 

The second one is called the effective local modulus tensor. For example, the local elasticity 

tensor of the r th inhomogeneity can be obtained through [10] 

 r r r=σ C ε  . (4) 
It should be noted that such a relationship differs from those defined in Refs. [7, 27], since we 

adopt the local stress and local strain to define the local modulus. Suppose all the 

inhomogeneities possess the global average strain, the linear mapping between the local stress 

and global strain is known as the effective intermediate modulus tensor, i.e., 

 r rs=σ C ε  . (5) 
This modulus provides a way to link the applied loading on the composite to local response, 

which has been widely described as the ‘local’ modulus in the open literatures [7, 27]. However, 

based on traditional micromechanics [10], rC  from Eq. (4) is a better definition of the true local 

modulus. Note that a similar intermediate modulus has been reported to study the role of the 

partial potential on the mechanical properties [28]. From Eqs. (2), (3), and (5), we have  

 
0

N

r rs
r

c
=

=∑C C  , (6) 

suggesting that the global elasticity tensor could be fully recovered after averaging the 

intermediate modulus. 

 Note that σ  and ε  are the average stress and strain of the entire composite material while 
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rσ  and rε  are the average stress and strain of the r th inhomogeneity. We can utilize the stress 

concentration tensor ( rA ) and strain concentration tensor ( rB ), i.e., 

 r r=σ A σ  , r r=ε B ε  . (7) 
Combined with Eqs. (2)~(7), we can obtain the following expression 

 1 1
r r r rs r

− −= =C A CB C B  . (8) 
Apparently, the three moduli are not independent and can be converted into each other with the 

aid of the concentration tensors. For instance, the local elasticity tensor can be evaluated directly 

if the global modulus and two concentration tensors are known, which requires all the 

information of the global and local stresses and strains. On the other hand, many approaches have 

been presented to predict the intermediate modulus in NVT ensemble, where the shape and 

volume of the simulation system is fixed, i.e., no global strain. Consequently, their methods are 

limited to the local modulus estimation since the strain concentration tensor defined in Eq. (7) 

cannot be assessed. 

 As described above, Eq. (8) provides two techniques that could be used to determine the 

local elastic constants. One requires the evaluation of the global elasticity and two concentration 

tensors while the other needs the intermediate modulus and strain concentration tensor. Below, 

we will discuss each term in detail. 

 In Refs [18, 19], the stress-strain fluctuation formula is used to estimate the adiabatic and 

isothermal elastic constants in NPH and NPT ensembles, respectively. In that method, the global 

elastic constants are computed through 

 1
ijkl ij mn mn klC σ ε ε ε −=   (9) 

where the bracket  denote the ensemble average. The global stress ijσ and global strain ijε

of a given simulation system are given by 
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 ( ) ( )
( ) ( )1 i j

ij i j

r rUm v v
V r r

αβ αβ

α α α
α β α αβ αβ

σ
>

⎡ ⎤∂⎢ ⎥= − −
∂⎢ ⎥

⎣ ⎦
∑ ∑  , (10) 
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2

T T
ij kl lm ijik mj

h h h hε δ− −⎡ ⎤= −⎣ ⎦  , (11) 

where V  is the volume of the system. mα  and vα  are the mass and velocity of the α th atom, 

respectively. U  is the potential energy and assumed as a function of atomic distance. rαβ  is the 

distance between the atoms indexed as α  and β . h  is the scaling matrix , where 

ar , b
r

, and cr  are three basis vectors describing the size and shape of the simulation box. The 

matrix h  is the average frame of the system as the reference state. Th−  is the inverse of the 

transpose of h , and ijδ  is the Kronecker tensor. In this paper, Latin indices , , , , ,i j k l m n  

represent the Cartesian coordinates in three dimensions and run from 1 to 3. Greek indices refer 

to particle labels. The conventional suffix notation is used, where repeated suffixes indicate 

summation over the values of 1, 2, 3 unless otherwise stated. 

 In order to estimate the stress and strain concentration tensors, we need to calculate the local 

stress and local strain tensors. Without loss of generality, every atom could be recognized as an 

inhomogeneity, indicating those local variables are the averaging effect over all the atoms in the 

local region. We thus consider per-atom stress and per-atom strain tensors. Based on the 

assumption of equal portions from each atom, the per-atom stress could be defined as [29, 30], 

 ( ) ( ) ( )1
B ij mij i i

m

k T k r f
Vα α α

α

σ δ⎡ ⎤= − +⎢ ⎥⎣ ⎦
∑  , (12) 

where Vα  is the atomic volume. Bk  is the Boltzmann constant, and T  is the temperature. mk  

is the weighting factor, and should be 1 2  for pairwise non-bond potential and bond potential, 

1 3 for angle potential, 1 4  for dihedral potential, and so forth. Since it is a symmetric tensor 

for each atom, only 6 independent components will be stored. The individual atomic volume is 
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not readily defined or measured, especially in the deformed state. In this work, a Voronoi 

tessellation is used to approximate the volume for each atom. Note that the global stress defined 

in Eq. (10) can be recovered by averaging the atomic stress from Eq. (12). 

 For the per-atom strain, we first need to define a reference configuration, where each atom 

locates its equilibrium position. This could be achieved by averaging the atomic coordinates after 

a sufficiently long simulation. At each step, the atomic deformation gradient matrix αJ  of the 

α th atom can be obtained through [31, 32] 

 ( ) ( )iji j
r J rαβ α αβ=  . (13) 

The αβr  denotes the average interatomic distance in the reference state. Within the cutoff 

distance, we seek the optimal αJ  to satisfy the criterion above for all the neighbor atoms of the 

α th atom at the reference configuration, indicating 

 ( ) ( )
2

iji j
r J rα αβ α αβ

β
Π = −∑  , 0αΠ →  . (14) 

This leads to 

 ( ) ( )
1

ij i k k j
J r r r rα αβ αβ αβ αβ

β β

−
⎧ ⎫⎧ ⎫⎡ ⎤⎡ ⎤= ⎨ ⎬⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭⎩ ⎭
∑ ∑  . (15) 

Then the atomic strain tensor is 

 ( ) ( ) ( )1
2

T
ijij ik kj

J Jα α αε δ⎡ ⎤= −⎣ ⎦  . (16) 

With such per-atom variables, the local stress and local strain tensors could be obtained for the 

r th local domain, i.e.,  

 ( ) ( )r ij ij
r r

V
V

α
α

α
σ σ

∈

=∑  , ( ) ( )r ij ij
r r

V
V

α
α

α
ε ε

∈

=∑  , (17) 

where rV Vα  is the volume fraction of the α th atom. According to Eqs. (3), (6), (9), and (17), 

we can have the formula for the estimation of the intermediate modulus tensor immediately 
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 ( ) ( ) 1
rs r mn mn klijijkl

C σ ε ε ε −=  . (18) 

 The local strain and global strain is connected through the strain concentration tensor, as 

expressed in Eq. (7), i.e., 

 ( ) ( )r r klij ijkl
Bε ε=  . (19) 

Such a function, however, cannot be satisfied exactly in each step. After the simulation, n  pairs 

of the local and global strains are obtained. The difference between them is 

 ( ) ( )
2

, 1

n
s s

r r r klij ijkl
i j s

Bε ε
=

Δ = −∑∑  . (20) 

Follow the linear least square algorithm [19], the function rΔ  reaches minimum once 

( ) 0r r ijkl
B∂Δ ∂ = , yielding 

 ( ) ( ) 1
r r mn mn klijkl ij

B ε ε ε ε −=  . (21) 

The stress concentration tensor can be deduced via the same procedure and is shown as follows, 

 ( ) ( ) 1
r r mn mn klijkl ij

A σ σ σ σ −=  . (22) 

Since Eqs. (9)~(22) provide all the quantities in Eq. (8), the local elasticity tensor can be 

estimated directly in conjunction with the global elasticity, Eq. (9), and two concentration tensors, 

Eqs. (21), and (22), namely,  

 ( ) ( ) ( ) 11

r r mn mn pq pq uv r klij uvijkl
C σ σ σ σ σ ε ε ε

−−
=  . (23) 

As the second choice, one can also derive the local elasticity tensors based on the intermediate 

modulus, Eq. (18), and strain concentration tensors, Eq. (21), i.e., 

 ( ) ( ) ( ) 1

r r mn r klij mnijkl
C σ ε ε ε

−
=   (24) 

In principle, Eq. (23) and Eq. (24) should give the same results but the latter is more concise and 

easy to apply since the bulk stress and its derivative ( rA ) are not included. Accordingly, we 

adopt the formula in Eq. (24) to calculate the local elasticity tensor in the subsequent section. 

 It should be noted that Eq. (24) reduces to the global elasticity tensor defined in Eq. (9) if the 
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local stress and local strain are replaced by the global ones. However, the appearance of the local 

stress and local strain makes the computational formula in Eq. (24) more versatile since it can be 

applied for the estimation of the elasticity tensor for arbitrary size of the local material. Next, 

again considering one atom as an inhomogeneity, one can show the atomic elasticity tensor to be 

 ( ) ( ) ( ) 1

mn klijkl ij mn
Cα α ασ ε ε ε

−
=   (25) 

3. MD Simulations 

 To check the validity of the aforementioned algorithms, a 10×10×10 FCC crystal structure 

using standard 12-6 Lennard-Jones potential is studied. The simulation system is divided into 10 

thin slabs along z  direction, where each slab is regarded as one local region. The simulation 

cell contains 4000 atoms with 400 atoms in each slab. To eliminate the size effect, periodic 

boundary conditions are applied to three directions. All the MD simulations are conducted by 

using the LAMMPS software package [33, 34]. In our simulations, NPT statistical ensemble is 

adopted, implemented by Nose-Hoover thermostat and Parrinello-Rahman pressostat. The 

external pressure is fixed as 0. The velocity-Verlet algorithm is chosen to integrate the equations 

of motion. All the simulation systems are first equilibrated in NPT ensemble for 1×107 steps, 

then additional 2×107 steps are evolved to collect the results. 

 For Lennard-Jones potential, all the quantities can be express in a reduced unit system, where 

the fundamental units are 1σ =  for length, 1ε =  for energy, 1m =  for mass and 1Bk =  for 

the Boltzmann constant. Other units of interest can be derived from these fundamental units, such 

as temperature in Bkε , pressure in 3ε σ , and time in 2mτ σ ε= . Timestep is set as 0.001τ . 

The cutoff distance is 2.5cR σ= . 

 For cubic crystals, there are only three independent elements of the elastic constant matrix, 

11C , 12C , 44C . All the results exhibited below are the averaging data, i.e., 
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( )11 11 22 33 / 3C C C C= + + , ( )12 12 13 23 / 3C C C C= + + , and ( )44 44 55 66 / 3C C C C= + + . 

 Since the simulation system is a homogeneous single crystal structure, it should restore the 

global strain for the entire system if the local strain defined in Eq. (16) and simulation parameters 

are correct. In order words, the estimation of the global elasticity tensor (as shown in Eq. (9)) 

from two different approaches should be the same. One is calculated through the evolution of 

scaling matrix h , see Eq. (11), while the other is calculated through the per-atom strain and 

averages over all the atoms in the entire system. Tabulated in the Table 1 are the data calculated 

through two approaches. The results from atomic strain are very close to the standard algorithm, 

Eq. (11). Some small discrepancies between them could be ascribed to the chosen reference 

frame and the atomic equilibrium positions. Overall, such a good agreement establishes the 

validity of per-atom strain, revealing that the atomic strain captures the deformation of each atom 

and could be summed up to recover the global strain. This is particularly important while 

exploring the surface effect where the periodic boundary condition cannot be applied on the free 

surfaces. In that case, global strain can only be determined by using the per-atom strain due to the 

absence of scaling matrix h . 

 

Table 1 Comparison of the global elasticity tensor between scaling matrix h  and per-atom 

strain defined in Eq. (16). The total isothermal elastic constants are in Lennard-Jones units for 

give temperatures. The first row at each temperature displays the results obtained through the 

evolution of scaling matrix h  while the second row is from atomic strain. 

T  11C  12C  44C  

0.1 81.43 

81.38 

48.00 

47.95 

49.61 

49.61 
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0.2 70.51 

70.43 

41.79 

41.71 

44.10 

44.09 

0.3 61.84 

61.74 

36.23 

36.13 

39.15 

39.14 

0.4 53.66 

53.49 

31.34 

31.16 

34.09 

34.08 

0.5 44.00 

43.79 

25.13 

24.91 

29.11 

29.11 

 

 The elastic constants 11C , 12C , and 44C  of each thin slab at the temperatures of 0.1 and 0.5 

are portrayed in Figure 1, where the symbols are the local elastic constants and the solid lines 

represent the bulk behavior. Clearly, all the elastic constants from the local regions fluctuate 

around the global tensor with small variations. Since each thin slab is also an ideal crystal, there 

is no essential difference between them and the whole system, which implies that the local 

modulus should be identical to the bulk behavior. The maximum relative deviation is less than 1% 

for all the temperature range studied here, demonstrating the validity of our algorithm. 
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Figure 1 Comparison of local elastic constants vs. global elastic constants at a temperature of 0.1 

and 0.5. Symbols are the results for local elastic constants calculated by Eq. (24), where square, 

circle, and diamond denote 11C , 12C  and 44C , respectively. Solid lines are the corresponding 

bulk behavior. 

 

 We then compare the convergence of the three main elastic constants 11C  , 12C , and 44C  

via Eqs. (9), (18), and (24) at the temperature of 0.5. The computation data are depicted in Figure 

2. The elastic constants exhibit the same converging speed and could be assumed to be converged 

after 1×107 steps. In addition, negligible discrepancies between global, intermediate, and local 

moduli after convergence reveal that the stress and strain concentration tensors ( rA  and rB ) for 

the thin slab #5 are unit fourth order tensors according to their relationships expressed in Eq. (8). 

Therefore, the local (from Eqs. (23) and (24)), intermediate, and global moduli are equivalent for 

perfect crystals. 
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Figure 2 Convergence of local, intermediate, and global elasticity tensors for an FCC 

Lennard-Jones crystal at T=0.5. 

 

 As an example to illustrate the use of the newly developed method, we consider the surface 

effect on the local elasticity tensors. This is because the free surface plays a vital role for 

nano-sized structures, where the mechanical properties deviate significantly from their bulk 

forms because of high surface-to-volume ratios [35, 36]. To date, extensive numerical 

simulations [37, 38] and theoretical modeling [39-41] have been performed to investigate the size 

dependence of global elastic properties for entire nano-sized structures. However, limited work 

was focused on the local material behavior. In the current work, three Lennard-Jones FCC crystal 

structures with free surfaces on { }100 , { }110 , and { }111  are considered. A typical simulation 

cell of a nano-plate is shown in Figure 3. Periodic boundary conditions are applied only in the 

two horizontal directions, while keeping the top and the bottom of the simulation cell as free 
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surfaces. To fully explore the surface effect, three large systems, containing 16400 atoms 

(10×20×20), 16400 atoms (10×20×10), and 16000 atoms (5×10×13) for { }100 , { }110 , and 

{ }111  surfaces, are studied. They have, respectively, 41, 41, and 40 atomic layers parallel to the 

free surfaces. All the systems are partitioned into pieces along Z  direction, where each piece is 

one atomic layer including 400 atoms. Parrinello-Rahman pressostat is applied on X  and Y  

directions with 0 external pressure. 

 

 

Figure 3 Schematic illustration of the simulation system used to study the surface effect of FCC 

Lennard-Jones crystals with three orientations. The Z  surface is free, while X  and Y  axes 

are subjected to the periodic boundary conditions. a), b), and c) illustrate three crystallographic 

orientations with the free surface on { }100 , { }110 , and { }111 . 

 

 It should be noted that the Voronoi tessellation is a good approximation for the system with 

all periodic boundary conditions on three directions but overestimates the atomic volume on the 

top surface layer due to limited coordinate neighbors. Therefore in this case, we use the atomic 

volume estimated from the second layer as the approximation of the atomic volume in the first 

layer, i.e., the atomic volume and local volume of the first two layers are assumed to be the same. 
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 Because of different orientations and surface effect, each layer now becomes an orthotropic 

structure. Hence there are nine independent elements in the elastic constant matrix, i.e., 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C
C

C
C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 . (26) 

The corresponding compliance tensor is 

 

1 21 2 31 3

12 1 2 32 3

13 1 23 2 31

23

13

12

1 0 0 0
1 0 0 0

1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

E E E
E E E
E E E

S C
G

G
G

ν ν
ν ν
ν ν−

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 , (27) 

including three Young's moduli ( 1E  , 2E  and 3E ), three shear moduli ( 12G  , 13G  and 23G ), 

and six Poisson's ratios ( 12ν  , 21ν , 13ν , 31ν , 23ν  and 32ν ). Note that only three Poisson’s 

ratios are independent to hold the symmetry for the compliance tensor, so we have 

 12 21

1 2E E
ν ν=  , 13 31

1 3E E
ν ν=  , 23 32

2 3E E
ν ν=  . (28) 

For each simulation system, we will consider three Young’s moduli 1E  , 2E  and 3E  that are 

aligned with X , Y , and Z  directions, respectively. Clearly, 1E  and 2E  are in parallel with 

the free surface while 3E  is perpendicular to the surface. For simplicity, we add the surface as 

the superscript, such as, { }100
1E  denotes the Young’s modulus parallel to the { }100  surface 

along 100  direction and { }111
3E  is the Young’s moduli perpendicular to the { }111  surface 

along 111  direction. 

 The simulation results are presented in Figure 4. The symbols represent the local Young’s 
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moduli while straight solid lines represent the corresponding bulk behavior. Several important 

features are observed in the results. First, two distinct regimes that denote surface and bulk states 

are detected along Z  axis. Since this is a nano-plate structure, both the bottom and the top are 

free surfaces and their mechanical properties are nearly the same, providing one validation our 

simulations. In addition, both modulus and stress profiles suggest that the effective surface zone 

is around 3~5 atomic layers, depending on surface directions. The intermediate regime is known 

as the bulk region. In fact, most of the previous atomistic simulation work considered the 

effective global modulus for the entire nano-structure under different external loadings [37, 42, 

43]. Yet, our data display a full gradient mapping of the local modulus, revealing the mechanical 

heterogeneity of nano-sized structures. 

 A second aspect of the results is that both softening and stiffening of 1E  and 2E  are 

possible. The major source for such phenomena could be the uneven distribution of local average 

stresses, as shown in Figure 4 b). For instance, softening effect is dominant for { }100
1E  because of 

the negative average stress at the surface layers. In other words, the surface structure { }100  

undergoes a tensile deformation, indicating a softer response relative to bulk behavior. In contrast, 

{ }111
2E  displays a stiffening effect due to the surface compressive stress. Combined with the bulk 

behaviors of the intermediate regime, the overall mechanical performances of { }111
2E  and { }100

1E  

are, respectively, stiffer and softer elastically than the corresponding bulk. Such a discovery 

agrees with the previous work on FCC Cu structure [42]. 

 A third feature of the results is that all the moduli 3E  that are perpendicular to the surface 

drop steeply at the surface region. A zigzag shape is observed on { }100  and { }111  surfaces 

while the Young’s modulus { }110
3E  on the { }110  surface declines monotonically. Such different 
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phenomena are the competition outcome between the local stress, local strain and global strain. 

Since we cannot control the pressure in the Z  direction, the mechanical performances are solely 

determined by the microstructural change, i.e., atomic coordination. Note that the vertical 

Young’s modulus 3E  at the first atomic layer is extremely small, leading to an overall softening 

effect along Z  axis, regardless of the surface orientations. The decrement of the vertical 

Young’s modulus is in good agreement with the experimental observations for polymer systems 

[44]. Apparently, the above analysis and discussions for the FCC structure indicates the 

importance in accounting for free surface effects in calculating local moduli. 

 

  

Figure 4 a) Young’s moduli for each atomic layer along Z  direction for three orthotropic 

structures with the free surfaces on { }100 , { }110 , and { }111 . Symbols are the results for local 

elastic constants calculated by Eq. (27), where square, circle, and diamond denote 1E , 2E  and 
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3E , respectively. Straight solid lines are the corresponding bulk behavior. b) Average local stress 

distributions for the three cases. 

 

4. Concluding Remarks 

 In this paper, an explicit and compact form of the estimation of the effective local elasticity 

tensor is derived from the intermediate modulus and strain concentration tensor, which need to 

collect the data of local strain, local stress, and global strain. The newly developed approach 

reduces to the general stress-strain fluctuation formula for the estimation of global moduli when 

the local variables are replaced by the global ones. Validity and accuracy of the new method is 

manifested by comparing the local elasticity tensors with bulk behavior for FCC crystalline 

structures. 

 As an example to illustrate the application of this new technique, we investigate the free 

surface effect on the mechanical properties. Our results demonstrate the mechanical 

heterogeneity for nano-sized structures. A surface may be softer or stiffer than the corresponding 

bulk behavior, depending on the surface orientations and loading directions. Such phenomena are 

solely determined by the atomic coordination change on surfaces. It should be noted that the 

presence of surface stress leads to a non-hydrostatic bulk stress in the bulk regions inside the slab, 

as observed by small non-zero stresses along X  and Y  directions in Figure 4 b). Moreover, 

the magnitudes of these stresses could reduce for a thicker film. Therefore the local moduli of 

surfaces are size-dependent and should converge for a bulk system. 

 In closing we need to point out that polymers are not yet considered in this work due to large 

simulation sizes and appropriate coarse graining potentials. These are the subject of future work. 

Additionally, a better atomic volume model for the free surface layer will lead to improved 
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results. Overall, this new approach will be a powerful tool for the modeling and simulation of 

other inhomogeneous materials, such as the interphase of polymer-based nano-composites [45], 

interface formed between different crystallographic directions [46], etc. It will enables validation 

of the various continuum models on the prediction of the effective modulus for heterogeneous 

materials; the approach can be used to estimate the mechanical performances that are difficult to 

obtain experimentally; and it will give us a means to explore and compare the roles of 

polymer-substrate interactions and geometrical constraints on elastic properties. 
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