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Here we present our experimental and theoretical study of the effects of pressure on the trans-
port properties of the heavy-fermion alloy Ce1−xYbxCoIn5 with actual concentration x ≈ 0.07.
We specifically choose this value of ytterbium concentration because the magnetic-field-induced
quantum critical point, which separates the antiferromagnetic and paramagnetic states at zero tem-
perature, approaches zero, as has been established in previous studies. Our measurements show
that pressure further suppresses quantum fluctuations in this alloy, just as it does in the parent
compound CeCoIn5. In contrast, the square-root temperature dependent part of resistivity remains
insensitive to pressure, indicating that the heavy-quasiparticles are not involved in the inelastic
scattering processes leading to such a temperature dependent resistivity. We demonstrate that the
growth of the coherence temperature with pressure, as well as the decrease of the residual resistiv-
ity, can be accurately described by employing the coherent potential approximation for a disordered
Kondo lattice.

PACS numbers: 71.10.Hf, 71.27.+a, 74.70.Tx

I. INTRODUCTION

Since their discovery almost thirteen years ago,1,2

the family of ‘115’ materials has provided an impact-
ful experimental and theoretical playground for studying
fundamental quantum phenomena, such as magnetism
and superconductivity, in strongly interacting electronic
systems.3 In particular, the physical and structural prop-
erties of these materials have not only helped to further
develop the concepts of quantum phase transitions and
non-Fermi liquids, but have also motivated theoretical
studies of exotic mechanisms for unconventional super-
conductivity. Moreover, it has been shown recently that
f -orbital compounds may host topologically non-trivial
electronic states.4–9 Whether the ‘115’-based alloys can
host topologically non-trivial superconductivity remains
an open question, which provides an additional motiva-
tion for both experimental and theoretical communities
to study the normal and superconducting properties of
these systems in greater detail.

Heavy-fermion alloys Ce1−xYbxCoIn5 - members of
the ‘115’ family of compounds - possess a number of in-
triguing and often counterintuitive physical properties:
(i) upon an increase in the concentration of ytterbium
atoms, the critical temperature of the superconducting
transition (Tc) decreases only slightly compared to other
rare-earth substitutions10,11 and superconductivity per-
sists up to the nominal concentration xnom ≈ 0.75; (ii)
the value of the out-of-plane magnetic field (H) corre-
sponding to the antiferromagnetic (AFM) quantum crit-
ical point (QCP) approaches zero as xnom → 0.2;12 (iii)
there is a crossover in the temperature (T ) dependence of
resistivity (ρa) measured along the a-axis: the resistivity

has a
√
T dependence, except at the lower doping levels

∗These authors have contributed equally to this work

(xnom ≤ 0.2) where it exhibits an additional linear-in-T
contribution;13 i.e.,

ρa(x, T ) = ρa0(x) +A(x)T +B(x)
√
T (1)

with ρa0(x) ∝ xnom(1−xnom) (in accord with Nordheim
law),14,15 B(x) → 0 as xnom → 0 and A(x) → 0 as
xnom is gradually increased from zero to xnom ≈ 0.2;
(iv) there is a drastic Fermi-surface reconstruction for
xnom ≈ 0.55, yet Tc remains weakly affected.16 More
recently, penetration depth measurements17 have shown
the disappearance of the nodes in the superconducting
order parameter for xnom ≥ 0.2.
The emergent physical picture which describes the

physics of these alloys is based on the notion of co-
existing electronic networks coupled to conduction elec-
trons: one is the network of cerium ions in a local
moment regime, while the other consists of ytterbium
ions in a strongly intermediate-valence regime.18,19 This
picture is supported by recent extended x-ray absorp-
tion fine structure spectroscopic measurements20, as well
as photoemission, x-ray absorption, and thermodynamic
measurements.21,22 Moreover, our most recent transport
studies13 are generally in agreement with this emerging
physical picture. In particular, for xnom ≈ 0.6 we observe
the crossover from coherent Kondo lattice of Ce to coher-
ent behavior of Yb sub-lattice, which is in agreement with
recent measurements of the De Haas-van Alphen effect,16

while superconductivity still persists up to xnom ≈ 0.75
of ytterbium concentration. Nevertheless, it remains un-
clear which of the conduction states - strongly or weakly
hybridized - of the stoichiometric compound contribute
to each network.
In order to get further insight into the physics of the

Ce1−xYbxCoIn5 alloys, we study the transport proper-
ties under applied magnetic field and pressure for the
alloy with actual concentration xact ≈ 0.07. One of our
goals is to clarify the origin of the square-root temper-
ature dependence of resistivity and to probe the contri-
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bution of the heavy quasiparticles to the values of A(x)
and B(x) [see Eq. (1)]. To address this issue, we study
the changes in the residual resistivity and the coefficients
A and B with pressure. Our results show that while
both the residual resistivity and the coefficient A decrease
with pressure, B shows very weak pressure dependence.
This indicates that the AFM quantum fluctuations are
suppressed with pressure and that the light quasiparti-
cles involved in the scattering mechanism that gives the√
T dependence originate from the electrons from the

small Fermi surface that hybridize with Yb ions. We find
that the Kondo lattice coherence and the superconduct-
ing critical temperature increase with pressure in accord
with general expectations.13,23 We also study theoreti-
cally the properties of a disordered Kondo lattice in which
the disorder ions are “magnetic”. Within the picture of
the single conduction band, we show that the presence of
the magnetic ions has little effect on the dependence of
the residual resistivity and the Kondo lattice coherence
temperature on pressure. Our theoretical results are in
good agreement with our experimental findings.
Another important aspect of the present work concerns

the evolution of the physical quantities affected by the
presence of the field-induced quantum critical point. In
our recent work,12,13 we have shown that the temperature
dependence of the magnetic field Hmax at which magne-
toresistivity has a maximum is a signature of system’s
proximity to field-induced QCP. Consequently, here we
study the dependence of Hmax on pressure. We find a re-
markable similarity between the dependence of the resid-
ual resistivity and (dHmax/dT )

−1 on pressure. Yet, this
result is not surprising because it is well understood that
the tendency towards antiferromagnetic ordering origi-
nates from the partial screening of the f -moments by
conduction electrons. Hence, a strong pressure depen-
dence of the relevant physical quantities such as A and
Hmax is expected.
This paper is organized as follows. In the next Section

we provide the details of our experimental measurements.
The results of our measurements are presented in Sec-
tion III. Section IV is devoted to theoretical modeling of
a disordered Kondo lattice under pressure. Specifically,
we find that both the residual resistivity and the coeffi-
cient in front of the leading temperature-dependent term
decrease under pressure, in agreement with our experi-
mental results. In Section V we provide the discussion of
our results and conclusions.

II. EXPERIMENTAL DETAILS

Single crystals of Ce1−xYbxCoIn5 were grown using an
indium self-flux method. These crystals have a nominal
Yb doping xnom = 0.2 and an actual doping xact = 0.07.
The crystal structure and unit cell volume were de-
termined from X-ray powder diffraction measurements,
while the actual composition was determined according
to the method developed by Jang et al.24 Since all pre-

vious publications on this system give the nominal Yb
concentration instead of the actual concentration, in this
paper we use the nominal concentrations whenever re-
ferring to the results of earlier publications in order to
be consistent with their reports, while we use the ac-
tual Yb concentration when we refer to the present work.
We note that the study by Jang et al.24 has shown that
xact ≈ 1

3xnom, providing that the nominal Yb doping is
less than about 40 %.
The single crystals studied have a typical size of

2.1 × 1.0 × 0.16 mm3, with the c-axis along the short-
est dimension of the crystals. They were etched in con-
centrated HCl for several hours to remove the indium
left on the surface during the growth process and were
then rinsed thoroughly in ethanol. Four leads were at-
tached to the single crystals, with the current I ‖ a-axis,
using a silver-based conductive epoxy. We performed re-
sistivity (ρa) along the a-axis and transverse (H ⊥ ab)
magnetoresistivity (MR) measurements as a function of
temperature between 2 and 300 K, applied magnetic field
up to 14 T, and applied hydrostatic pressure (P ) up to
8.7 kbar.

III. EXPERIMENTAL RESULTS AND

DISCUSSION

Figure 1(a) shows ρa data as a function of tempera-
ture of a Ce0.93Yb0.07CoIn5 single crystal measured un-
der pressure. The qualitative behavior of resistivity is
the same for all pressures used in this study: the re-
sistivity initially decreases as the sample is cooled from
room temperature, then it passes through a minimum
in the temperature range 150 K to 200 K, followed by
an increase as the temperature is further lowered. This
increase is consistent with a logarithmic temperature de-
pendence, in accordance to the single-ion Kondo effect.
With the onset of coherence effects at the Kondo lattice
coherence temperature (Tcoh) (defined as the peak in the
resistivity data), the resistivity decreases with further de-
creasing the temperature below Tcoh, while at even lower
T , superconductivity sets in at Tc.
The onset of coherence is governed by the process in

which the f -electrons of Ce can resonantly tunnel into
the conduction band, i.e., f1

⇋ f0 + e. Because the cell
volume Ω changes due to these resonant processes, i.e.,
Ω(f1)−Ω(f0) > 0, the electronic properties are strongly
susceptible to the application of external pressure. Thus,
we expect that pressure increases the local hybridization
of Ce0.93Yb0.07CoIn5 and, hence, increases the coherence
temperature (see Section IV for the related discussion).
Figure 1(b) shows that, indeed, the disordered Kondo
lattice Tcoh increases with increasing pressure, just as it
does for pure CeCoIn5 and the other members of the
Ce1−xRxCoIn5 (R = rare earth) series.22

The inset to Fig. 1(b) shows the pressure dependence
of Tc. For small values of pressures, clearly Tc ∝ Tcoh
as they linearly grow with pressure [see Fig. 1(b) and its
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FIG. 1: (Color online) (a) Resistivity ρa of Ce0.93Yb0.07CoIn5

as a function of temperature T for different pressures P (0,
2.7, 5.1, 7.4, and 8.7 kbar). The arrow at the maximum of the
resistivity data marks the coherence temperature Tcoh. (b)
Evolution of Tcoh as a function of pressure P . Inset: Super-
conducting critical temperature Tc as a function of pressure
P . The solid lines are guides to the eye.

inset]. This is expected since at low temperatures the co-
herence temperature of superconducting heavy-fermion
metals plays the role of a renormalized bandwidth and,
therefore, provides the ultraviolet cutoff for the super-
conducting instability.

It is well known25–28 that large and small Fermi sur-
faces co-exist in the stoichiometric CeCoIn5. The quasi-
particles from the large Fermi surface are composed of
the f -states as well as conducting d-states due to the hy-
bridization between Ce f - and d-orbitals, and hence have
heavy effective mass. Consequently, the transport and
thermodynamic properties of these quasiparticle states
strongly depend on pressure since hybridization involves
quantum mechanical tunneling between f0 and f1 va-
lence states, changing the unit cell volume. In contrast,
the quasiparticle states on the small Fermi surface have
zero spectral weight contribution from the Ce f -states
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FIG. 2: (Color online) (a) Fits of the resistivity ρa data with

ρa(P, T ) = ρa0(P )+A(P )T +B(P )
√
T for different pressures

for Ce0.93Yb0.07CoIn5 in the temperature range 3 K ≤ T ≤
15 K. (b) Pressure P dependence of the linear T contribution

A and
√
T contribution B, obtained from fits of the resistivity

data shown in panel (a). (c) Pressure P dependence of the
residual resistivity ρa0, obtained from the fits.

and, therefore, have light effective mass and must show
weak pressure dependence. An open question is, do the
electrons from the small Fermi surface hybridize with
ytterbium ions, or do only the electrons from the large
Fermi surface hybridize with both cerium and ytterbium
ions? As just discussed, the former (latter) scenario
would give a pressure independent (dependent) coeffi-
cient for the temperature dependence of the scattering
processes. Therefore, to address this question, we study
the changes in the temperature-dependent part of resis-
tivity under pressure.

As we have already discussed in the Introduction,
we have previously shown that there are two distinct
contributions to the scattering of the quasi-particles in
Ce1−xYbxCoIn5 alloys: a

√
T contribution and a linear-

in-T contribution. This latter one is due to quantum
critical fluctuations and it is observed only at small Yb
doping (xnom ≤ 0.2, xact ≤ 0.07) [see Eq. (1)]. In what
follows we trace out the changes in the coefficients A
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and B with pressure for the Ce0.93Yb0.07CoIn5 alloy, for
which both of these contributions are present at least over
a certain temperature range and under ambient pres-
sure. The goal is to determine the effect of pressure
on quantum critical fluctuations and on the scattering
mechanism that gives the

√
T dependence in resistiv-

ity. Figure 2(a) shows that the data are fitted very well
with Eq. (1) (the solid lines are the fits to the data) for
3 ≤ T ≤ 15 K and for all pressures studied. From these
fits we obtain the pressure dependence of the fitting pa-
rameters ρa0, A, and B, which allow us to probe the rela-
tive contribution of heavy- and light-quasiparticle states
to scattering.

Figure 2(b) shows the pressure dependence of the pa-
rameters A and B extracted from the fitting of ρa(T )
of Fig. 2(a), which, as discussed above, are the weights
of the linear-in-T and square-root-in-T scattering de-
pendences, respectively. Notice that A decreases while
B remains relatively constant with increasing pressure.
The suppression of A with pressure indicates that the
AFM quantum fluctuations are suppressed with increas-
ing pressure. Also, the insensitivity of B to pressure sug-
gests that the inelastic scattering events leading to the√
T dependence in this temperature range involve light

effective mass quasiparticles from the small Fermi sur-
face. Hence, these ρa(T ) data for 3 ≤ T ≤ 15 K show
that there are two distinct contributions to scattering
originating from the two Fermi surfaces: AFM quantum
fluctuations of the heavy quasiparticles (with a linear-in-
T scattering behavior) and quasiparticles from the small

Fermi surface (with a
√
T scattering behavior).

Moreover, the value of the coefficient B(P = 0, x) in-
creases with ytterbium dilution12 and it remains essen-
tially unchanged under the application of pressure at
temperatures well above Tc. These observations strongly
suggest that the value of B(P =0, x) is governed by the
quasiparticle excitations from the Fermi pockets near the
M -points of the quasi two-dimensional Brillouin zone.
Recall that according to the recent thermopower mea-
surements and subsequent theoretical studies28,29 of the
parent compound CeCoIn5, the Fermi pockets near the
M -points remain ungapped giving rise to the nonzero
thermal conductivity in the superconducting state. If we
now consider the results of the recent penetration depth
measurements that show the disappearance of the nodes
in the superconducting order parameter for xnom ≈ 0.2,17

we conclude that with Yb doping: (a) both Fermi sur-
faces must be gapped below Tc due to the proximity pair-
ing effect, and (b) the absence of the nodes in the super-
conducting order parameter for xnom ≥ 0.2 suggest that
the order parameter may have exotic symmetry, either
d+is or d+id.30 The d-component must be present since
the order parameter of the parent compound CeCoIn5
has dx2−y2 symmetry,31,32 while the conventional s-wave
superconductivity can be ruled out due to monotonous
concentration dependence of Tc. Therefore, intrigu-
ingly, Ce1−xYbxCoIn5 may provide an important play-
ground for the realization of the long thought topological
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FIG. 3: (Color online) (a) Resistivity ρa of Ce0.93Yb0.07CoIn5

as a function of
√
T , in the temperature range 1.8 K ≤

T ≤ 5 K. The solid lines are linear fits of the data with
ρa(P, T ) = ρa0(P ) + B∗(P )

√
T for 1.8 ≤ T ≤ 4 K. Inset:

Pressure P dependence of the coefficient B∗. (b) ρa vs
√
T

for Ce0.92Yb0.08CoIn5 measured in zero magnetic field and at
4 T. The 4 T data has been offset upwards by 5 µΩ-cm for
visual clarity.

superconductivity.33 However, to verify the realization of
specific scenarios for the symmetry of the superconduct-
ing order parameter in Ce1−xYbxCoIn5, one would need
a detailed understanding of the electronic properties in
both normal and superconducting states.30

Figure 2(c) shows the pressure dependence of the resid-
ual resistivity ρ0 extracted from the fitting of the data of
Fig. 2(a). As discussed in the Introduction, the residual
resistivity in this system depends on the impurity concen-
tration in accordance with Nordheim’s law. In systems
with proximity to a quantum critical point, there will also
be a contribution to residual resistivity from the quan-
tum critical fluctuations. Since tuning with pressure does
not introduce any impurity scattering in the system, the
decrease in residual resistivity with increasing pressure
indicates that the scattering due to AFM quantum spin
fluctuations is suppressed by pressure, hence the system
is driven away from the QCP. Indeed, quantum fluctua-
tions in this family of heavy fermion superconductors are
known to be suppressed by pressure because the AFM
order in the Ce-lattice is suppressed.34–36



5

Figure 3(a) shows ρa data vs
√
T around the supercon-

ducting transition temperature (1.8 ≤ T ≤ 5 K). This fig-
ure shows that from just above Tc to about 4 K, the ρa(T )

data follow very well a
√
T dependence (solid lines are lin-

ear fits to the data with ρa(P, T ) = ρa0(P )+B
∗(P )

√
T ).

The pressure dependence of the coefficient B∗ is shown
in the inset to Fig. 3. Notice that B∗ is significantly
suppressed with increasing pressure. This pressure de-
pendence of B∗ suggests that the scattering just above
Tc is largely governed by fluctuating Cooper pairs origi-
nating from the heavy Fermi surface. This observation is
in agreement with the fluctuation correction to resistiv-
ity due to pre-formed Cooper pairs composed of heavy
quasiparticles. Indeed, for a 3D Fermi surface and in
the case of a strong coupling superconductor with rela-
tively small coherence length,37 one expects a

√
T fluctu-

ation contribution to resistivity.38 Therefore, these ρa(T )
data show that the strong SC fluctuations of the heavy
quasiparticles give the

√
T dependence just above Tc and

that the linear-in-T contribution of Eq. (1) that is due
to the system’s proximity to the field-induced QCP, is
masked by these strong SC fluctuations. The supercon-
ducting fluctuations, nevertheless, decrease as the system
moves away from Tc to higher temperatures. Indeed, as
discussed above, the resistivity data reveal that other
scattering mechanisms dominate at temperatures above
about 4 K [see Fig. 2 and its discussion].

Alternatively, the
√
T dependence of the resistivity just

above Tc is also consistent with the composite pairing
theory in a 3D system,39 which predicts an incoherent
transport of composite Cooper pairs above the supercon-
ducting critical temperature with the resistivity growing
as

√
T . It is important to emphasize that the size of

the composite pairs is only a few lattice spacing, i.e., the
electrons in a composite pair are tightly bound. From
this point of view, the transport of composite pairs is
not governed by fluctuation corrections to conductivity,
which are usually discussed in the context of conventional
superconductors. Nevertheless, the decrease in B∗ with
increasing pressure is also consistent with this theory be-
cause the composite pairs incorporate the heavy quasi-
particles.
Figure 3(b) shows ρa data vs

√
T around the supercon-

ducting transition temperature (1.8 ≤ T ≤ 5 K), mea-
sured at ambient pressure in zero magnetic field and 4 T.
The temperature at which the data deviate from the

√
T

dependence decreases with applied field, showing that, as
expected, the Cooper pair fluctuations are suppressed by
magnetic field.
Next, we present the results of transverse (H ⊥ ab)

magnetoresistivity (MR) measurements, defined as
∆ρa/ρa(0) ≡ [ρa(H) − ρa(H = 0)]/ρa(H = 0)], on
Ce0.93Yb0.07CoIn5 in applied magnetic fields up to 14 T,
for temperatures ranging from 2 to 60 K, and applied
pressures up to 8.7 kbar. The main panel of Fig. 4 and
its inset show such MR curves measured at ambient pres-
sure and 5.1 kbar, respectively. The 9 K MR data in both
panels show non-monotonic H dependence: the MR in-
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FIG. 4: (Color online) Magnetic field H dependence (plotted
as function of H2) of magnetoresistivity (MR) ∆ρa/ρa(H =
0) ≡ [ρa(H) − ρa(H = 0)]/ρa(H = 0)] of Ce0.93Yb0.07CoIn5

measured at two different temperatures and ambient pressure.
The dashed line in the main figures marks Hmax, correspond-
ing to the coherence giving way to single-ion Kondo behavior.
Inset: MR data vs H2 measured under 5.1 kbar. The red line
shows the quadratic regime of MR.

creases with increases field, displays a maximum at a field
Hmax, and decreases with further increasing H , with an
H2 dependence at high fields (see inset to Fig. 4) that is
typical of a single-ion Kondo system. This positive MR
behavior at low H values is due to the formation of the
coherent Kondo lattice state. Hmax represents the value
where the coherent state gives way to the single-ion state
due to the fact that magnetic field breaks the coherence
of the Kondo lattice.40–45

In a conventional Kondo lattice system, as T increases,
Hmax moves toward lower field values, signifying that
a lower field value is sufficient to break coherence at
these higher temperatures due to thermal fluctuations,
with a complete suppression of the positive contribu-
tion to MR, hence Hmax = 0, at T ≈ Tcoh (red solid
squares in Fig. 4). On the other hand, as we have re-
cently revealed,12 Hmax(T ) in the Ce1−xYbxCoIn5 alloys
with concentrations xact ≤ 0.07 shows deviation from the
conventional Kondo behavior and exhibits a peak, below
whichHmax decreases with decreasing temperature. This
is shown in in Fig. 5, which is a plot of the temperature
dependence of Hmax for four different hydrostatic pres-
sures. We have attributed the decrease in Hmax(T ) with
decreasing T to quantum spin fluctuations that domi-
nate the MR behavior below about 20 K.12 Notice that
Hmax(T ) shows linear behavior below 10 K (see Fig. 5).
A linear extrapolation of this low T behavior to zero
temperature gives HQCP .

12 Notice that HQCP ≈ 0.2 T
in Ce0.93Yb0.07CoIn5 at ambient pressure, as previously
reported,12 showing that this Yb doping is close to the
quantum critical value xc for the Ce1−xYbxCoIn5 alloys.

Three notable features are revealed by Fig. 5: (i) the
application of pressure does not change qualitatively the
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Hmax(T ) dependence, (ii) there is no noticeable change
in the value of HQCP with pressure for P ≤ 8.7 kbar,
most likely because of the already small value of HQCP

(HQCP = 0.2 T) at ambient pressure, and (iii) both the
value ofHmax and the position in T of the Hmax(T ) peak
shifts to higher temperatures with increasing pressure; as
a result, the slope dHmax/dT for T < 10 K increases with
pressure.

According to Doniach’s phase diagram,46 the Kondo
temperature TK and the magnetic exchange interaction
temperature TRKKY of Ce Kondo lattice increase with
increasing pressure. Hence, the increase in Hmax with
pressure is a result of increased Tcoh, and the shift in the
peak of Hmax(T ) to higher T with pressure is a result of
the increase of both TRKKY and Tcoh with pressure. The

increase in the slope dHmax/dT with increasing pressure
means that a larger applied field is required to break
the Kondo singlet. We note that both quantum spin
fluctuations and applied magnetic field contribute to the
breaking of Kondo coherence at temperatures T < 10 K.
Therefore, a larger dHmax/dT at higher pressures can be
understood in terms of weaker quantum spin fluctuations
since a larger field is required to break the Kondo singlet
compared with the field required for smaller dHmax/dT
where spin fluctuations are stronger.
We show in Fig. 6 the inverse of this slope as a function

of pressure, normalized to its zero pressure value. We also
show in the same figure (right vertical axis) the residual
resistivity as a function of pressure, also normalized to
its zero pressure value. Notice that these two quantities
scale very well, indicating that the same physics domi-
nates their behavior with pressure, i.e., the suppression
of quantum critical fluctuations with increasing pressure.

IV. THEORY

In this Section, we will formulate a general approach
to Kondo alloys diluted with magnetic dopants that will
help us to interpret our experimental results. In what
follows, we first introduce the model in order to study
the effects of pressure in disordered Kondo lattice. Then,
we will employ the coherent potential within the mean-
field theory for the disordered Kondo lattice to compute
the pressure dependence of the Kondo lattice coherence
temperature and residual conductivity.

A. Model

We consider the following model Hamiltonian, which
we write as a sum of three terms

Ĥ = Ĥ0 + ĤKh + ĤV . (2)

The first term describes the kinetic energy of the conduc-
tion and f -electrons in the unperturbed (i.e., spatially
homogeneous) Kondo lattice:

Ĥ0 =
∑

kσ

ǫkĉ
†
kσ ĉkσ +

∑

kσ

εf f̂
†
kσf̂kσ , (3)

where ǫk = −(tc/2)(coskx + cos ky) − µc is the single
particle energy taken relative to the chemical potential
µc (here we will ignore the transport along the z-axis).
The second term in Eq. (2) accounts for the Kondo holes,
i.e., it prohibits the f -electrons from occupying an impu-
rity site, and it also describes the impurity f -electrons
denoted by p̂:

ĤKh =
∑

iσ

(1 − ξi)(ε0f + εf)f̂
†
iσ f̂iσ +

∑

σ

ǫ̃f p̂
†
σ p̂σ+

+
Uf

2

∑

iσ

ξif̂
†
i↑f̂i↑f̂

†
i↓f̂i↓ + Upp̂

†
↑p̂↑p̂

†
↓p̂↓ ,

(4)
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where summation goes over all lattice cites, and

ξi =

{

0, i = 0
1, i 6= 0

, (5)

with i = 0 denoting the position of an impurity site. The
first term in Eq. (4) accounts for an f -electron state on
an impurity site. Physically, this process cannot happen.
Therefore, at the end of the calculation, the energy of the
f -electron on the impurity site will be taken to infinity,

ε0f → ∞, to ensure 〈f̂ †
i=0σ f̂i=0σ〉 = 0. Lastly, the third

term in Eq. (2) accounts for the hybridization between
the conduction electrons and both cerium f -electrons and
ytterbium f -holes:

ĤV =
∑

iσ

ξi

(

Vf ĉ
†
iσ f̂iσ + h.c.

)

+
∑

kσ

(

Vpĉ
†
kσp̂σ + h.c.

)

.

(6)
Clearly, the theoretical analysis of this model is hin-

dered by the presence of the Hubbard interaction terms
with both Uf and Up being the largest energy scales in
the problem. To make progress, we will adopt the slave-
boson mean-field theory (SBMF) approach. Thus, we
will set Uf and Up to infinity:

Uf → ∞ , Up → ∞ . (7)

The double occupancy on the f -sites is excluded by in-

troducing the slave-boson projection operators:

f̂iσ → b̂†i f̂iσ , f̂ †
iσ → f̂ †

iσ b̂i ,

p̂σ → â†p̂σ , p̂†σ → p̂†σâ ,
(8)

supplemented by the following constraint conditions:

∑

σ

f̂ †
iσ f̂iσ + b̂†i b̂i = 1,

∑

σ

p̂†σ p̂σ + â†â = 1 . (9)

Thus, the phase space is reduced to the set of either
singly occupied states |b0f1〉 or empty states |b1f0〉 for
the f -electrons and, similarly, |a0p1〉 or |a1p0〉 for f -holes.
Clearly, the hybridization part of the Hamiltonian in
Eq. (6) always acts only between these two states. Thus,
for the kinetic energy terms, we find

f̂ †
iσ f̂iσ|b0f1〉 → f̂ †

iσ b̂ib̂
†
i f̂iσ|b0f1〉 = f̂ †

iσ f̂iσ|b0f1〉 . (10)

In the mean-field approximation, the projection (slave-
boson) operators are replaced with their expectation val-
ues:

b̂i → 〈b̂i〉 = b , â→ 〈â〉 = a . (11)

The corresponding mean-field Hamiltonian is

Ĥmf =
∑

kσ

ǫkĉ
†
kσ ĉkσ +

∑

kσ

εf f̂
†
kσf̂kσ +

∑

iσ

(1 − ξi)(ε0f − εf )f̂
†
iσ f̂iσ +

∑

σ

ǫ̃f p̂
†
σ p̂σ +

∑

iσ

ξi

(

Vfb
∗ĉ†iσ f̂iσ + h.c.

)

+

+
∑

kσ

(

Vpa
∗ĉ†

kσp̂σ + h.c.
)

+
∑

i

ξiλb

(

∑

σ

f̂ †
iσ f̂iσ + |b|2 − 1

)

+ λa

(

∑

σ

p̂†σ p̂σ + |a|2 − 1

)

,

(12)

where λa,b are Lagrange multipliers, which will be com-
puted self-consistently. Let us introduce the following
parameters:

Ef = λb + εf , E0f = ε0f − Ef , ǫf = ǫ̃f + λa . (13)

In addition, we introduce z = 1 − x with x being the
concentration of Yb ions:

z =
1

Ns

∑

i

ξi . (14)

In this expression Ns is the total number of sites. After
re-arranging the terms in Eq. (12) and using Eq. (13) we

obtain:

Ĥmf = Ĥ
(b)
mf + Ĥ

(a)
mf ,

Ĥ
(b)
mf =

∑

kσ

ǫkĉ
†
kσ ĉkσ +

∑

kσ

Ef f̂
†
kσf̂kσ + E0f f̂

†
0σf̂0σ

+
∑

iσ

ξi

(

Vf b
∗ĉ†iσ f̂iσ + bf̂ †

iσ ĉiσ

)

+ zNsλb
(

|b|2 − 1
)

,

Ĥ
(a)
mf =

∑

σ

ǫf p̂
†
σ p̂σ + Vp

∑

kσ

(

a∗ĉ†
kσ p̂σ + ap̂†σ ĉkσ

)

+ λa
(

|a|2 − 1
)

.

(15)

Because ytterbium ions are in the mixed valence state,
the hybridization amplitude Vp ≪ Vf . Moreover, we
assume that the condensation temperature TY b for the
bosons a is significantly smaller than the Ce Kondo lat-
tice coherence temperature Tcoh. This assumption is jus-
tified by the similarity in the physical properties of the
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Yb ion in YbxY1−xInCu4 and in Ce1−xYbxCoIn5: the
ytterbium valence state is close to Yb3+ for xnom ≪ 0.1
and becomes Yb2.5+ for xnom ∼ 0.1. At the same time,
in YbxY1−xInCu4, for small x, the single site Kondo tem-
perature is approximately 2 K.47 Thus, in our choice of
the bare model parameters, we must keep in mind that
the condensation temperature for the a-bosons is lower
than the one for the b-bosons, TY b < Tcoh.

B. Coherent Potential Approximation

To analyze the transport properties of the disordered
Kondo lattice, we employ the coherent potential approx-

imation (CPA).23,48–51 The idea of the CPA is to intro-
duce an effective medium potential, which allows for an
equivalent description of the disordered system. In par-
ticular, the effective potential is considered to be purely
dynamical. This approximation is valid when the scat-
tering events on different impurity sites are independent.

To formulate the CPA, we introduce the Lagrangian for the disordered Kondo lattice (which is related to Ĥ
(b)
mf ):

L =
∑

kσ

[

ĉ†
kσ (∂τ + ǫk) ĉkσ + f̂ †

kσ (∂τ + Ef ) f̂kσ

]

+
∑

σ

f̂ †
0σ(∂τ + Ef )f̂0σ + zNsλb

(

|b|2 − 1
)

+
∑

iσ

ξi

(

Vf b
∗ĉ†iσ f̂iσ + bf̂ †

iσ ĉiσ

)

,
(16)

where, for brevity, we omit the dependence of the fermionic fields on Matsubara time τ . Note that we have not
included the terms that involve p-fermions. The reason is that the p-fermions can be formally integrated out, which
will lead to the appearance of the self-energy correction Σa(τ − τ ′) in the first term of Eq. (16). However, to keep our
expressions compact, we will include this term later when we analyze the transport properties. Within the frame of
the CPA, we introduce an effective medium Lagrangian for the disordered Kondo lattice system as follows:

Leff =

β
∫

0

dτ ′
∑

kσ

ψ̂†
kσ(τ)

[

δ(τ − τ ′) (∂τ + ǫk) + Scc(τ − τ ′, z) Scf (τ − τ ′, z)
Sfc(τ − τ ′, z) δ(τ − τ ′) (∂τ + Ef ) + Sff (τ − τ ′, z)

]

ψ̂kσ(τ
′)

+ zNsλb
(

|b|2 − 1
)

,

(17)

where β = 1/kBT , we introduced the two-component

spinor ψ̂†
kσ = (ĉ†

kσ f̂ †
kσ) for brevity, and Sab(τ, z) are

the components of the coherent potential that we will
have to determine self-consistently. The self-consistency
condition for the components of Sab(τ, z) is obtained by
requiring that the corresponding correlation functions
for the effective Lagrangian, Eq. (17), are equal to the
disorder-averaged correlators for the disordered Kondo
lattice, Eq. (16).48 In the “Kondo hole” limit (E0f → ∞),
it follows:

Ŝ(iωn, z) =

(

0 bVf
b∗Vf Sff (iωn, z)

)

, (18)

where iωn = πT (2n + 1) is a fermionic Matsubara fre-
quency and

Sff (ω, x)Fff (ω) = z − 1 ,

Fff (ω)

=
∑

k

ω − ǫk
(ω − ǫk)(ω − Ef − Sff (ω, z))− V 2

f |b|2
.

(19)

These equations allow us to compute the remaining com-
ponent of the coherent potential (18). Sff (iω, z) is a
function of parameters Ef and b, which will have to be
computed self-consistently by minimizing the free energy.

C. Slave Boson Mean-Field Theory for Disordered

Kondo Lattice under Hydrostatic Pressure

In order to study the effects of pressure in a disor-
dered Kondo lattice, we need to express the change in
the total volume of the system with the corresponding
changes in the valence states of Ce and Yb ions. For
the Ce ions, the change in the f -shell occupation is pos-
itive due to its electronic nature, so that the resonance
scattering involves a zero-energy boson, with amplitude
b, and an electron: fn+1(j,m) ⇋ fn(j,m) + e−. In
contrast, for the Yb ions, the resonance scattering in-
volves a zero energy boson, with amplitude a, and a hole:
fn−1(j,m) ⇋ fn(j,m) + e+. Thus, for the total volume
of the system within the slave-boson mean-field theory,
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FIG. 7: (Color online) Pressure P dependence of the slave-
boson amplitude and coherence temperature Tcoh (inset) for
various concentrations z of the impurity f -sites. The de-
pendence of the coherence temperature Tcoh on pressure for
z = 0.93 is shown.

we write:23

Ωt = (1− z)[Ω0Y b + (1− a2)δΩY b]

+z[Ω0Ce + (1− b2)δΩCe] ,
(20)

where Ω0Y b,Ce are the cell volumes for the singlet (non-
magnetic) states on Yb (f14) and Ce (f0) ions, corre-
spondingly. Moreover, δΩY b,Ce account for the difference
in cell volumes between two f -ion configurations. Note
that δΩY b < 0 while δΩCe > 0.
To obtain the self-consistency equations for the slave-

boson amplitude b and constraint variable λb, we define
the grand canonical enthalpy for an alloy under pressure
P :

K = −kBT logZeff ,

Zeff = Tr







e
−

β∫

0

dτLeff(τ)−PΩt







.
(21)

Minimizing the enthalpy with respect to b and λb, we
obtain:

z
(

b2 − 1
)

+ 2T
∑

iωn

Fff (iωn) = 0 ,

zb(λb − PδΩCe) + 2VfT
∑

iωn

Ffc(iωn) = 0 ,
(22)

where iωn = iπT (2n+1) are Matsubara frequencies and

Ffc(ω) = bVf

×
∑

k

1

(ω − ǫk)(z − Ef − Sff(ω, z))− V 2
f |b|2

.
(23)

In addition, the third equation is the conservation of the
total number of particles Ntot = nc + znf , with

nc = T
∑

iωn

∑

k

eiωn0+Gcc(k, iωn) ,

Gcc(k, ω)

=
ω − Ef − Sff (ω, z)

(ω − ǫk)(ω − Ef − Sff (ω, z))− V 2
f |b|2 −

V 2
p a2

ω−ǫf

,

(24)

which allows us to determine the renormalized position
of the chemical potential µc. We note that equations that
determine the value of a and λa can be obtained in the
same manner as the ones above.
As a result, we find that the slave-boson amplitude

b grows linearly with pressure,23 b ∝ PδΩt, see Fig. 7.
Also, our analysis of the mean-field equations (22) in the
limit b→ 0 shows that the Kondo lattice coherence tem-
perature Tcoh also grows with pressure almost linearly
(Fig. 7 inset):

Tcoh ≃ Ef (Tcoh) ∝ PδΩt , (25)

which is in agreement with our experimental observations
[see Fig. 1(b)]. In addition, as expected, we find that
(i) both slave-boson amplitude and coherence tempera-
ture decrease as the concentration of ytterbium atoms in-
creases, and (ii) the presence of the ytterbium f -electrons
leads to a small reduction in the value of b(P ) relative to
the case when a = 0.

D. Transport Properties

In this subsection we discuss the pressure dependence
of the residual resistivity of the disordered Kondo lattice
described by the Hamiltonian (12). We compute conduc-
tivity using the following expression:52

σαβ(iΩ) =
1

Ω
{Παβ(iΩ)−Παβ(0)} , (26)

where α, β = x, y, sα = sin kα, vF is a Fermi velocity of
the heavy-quasiparticles, and

Παβ(iΩ) = e2v2FT
∑

iωn

×
∑

k

sαGcc(k, iωn + iΩ)sβGcc(k, iωn).
(27)

To obtain the dependence of conductivity on the real fre-
quency, we will perform the analytic continuation from
Ωn = 2πTn > 0 to real frequencies iΩn → ω. The resid-
ual resistivity can be computed from ρ0 = σ−1(ω → 0).
We present our results in Fig. 8. In agreement with our
experimental results, we find that the residual resistiv-
ity decreases with pressure, which is consistent with the
suppression of the f -electron density of states.23
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FIG. 8: (Color online) Pressure P dependence of the residual
resistivity ρ0 for various alloy concentrations z.

At ambient pressure, the residual resistivity grows lin-
early with ytterbium concentration, which is again ex-
pected given our CPA approximation.
The temperature dependence of resistivity can also be

obtained from Eq. (26). Naturally, we find a ‘square-T’
dependence: ρ(P, T ; z) = ρ0(P, z) + AFL(P, z)T

2. Be-
cause AFL(P, z) decreases with pressure, as does the co-
efficient in front of the linear-in-T term in Eq. (1), we con-
clude that the inelastic scattering of heavy-quasiparticles
determines the value of A(P, z).

V. CONCLUSIONS

In this paper, we studied the Ce0.93Yb0.07CoIn5 al-
loy (xnom = 0.2) using transport and magnetotransport
measurements under hydrostatic pressure. Our resistiv-
ity data reveal that the scattering close to Tc follows a√
T dependence, consistent with the composite pairing

theory in a 3D system39 or with a fluctuation correction,
with a coefficient that decreases with increasing pres-
sure. This latter result implies that the scattering in this
T range is largely governed by the heavy-quasiparticles
from the heavy Fermi surface, hence it may reflect the
scattering of composite pairs39 as a result of supercon-
ducting fluctuations. At higher T , our data reveal the
presence of two scattering mechanisms: one linear in T
with a coefficient A that decreases with increasing pres-
sure and the other one with a

√
T dependence with a

coefficient B that is pressure independent. Given that
the strong pressure dependence of the A parameter di-
rectly relates to the strongly hybridized conduction and

cerium f -electron states, we believe that the linear tem-
perature dependence of the resistivity is governed by the
scattering of heavy-quasiparticles, while the scattering
processes leading to the

√
T -term in resistivity are gov-

erned by the scattering of light electrons from the small
Fermi surface. Since the linear T dependence is a result
of quantum spin fluctuations, the decrease of A with in-
creasing pressure implies that quantum fluctuations are
suppressed with pressure. This conclusion is confirmed
by the fact that residual resistivity also decreases with
pressure.

We also performed magnetoresistivity measurements
under applied hydrostatic pressure in order to study the
evolution of quantum critical spin fluctuations with pres-
sure. First, our magnetoresistivity data reveal that this
Ce0.93Yb0.07CoIn5 alloy is close to the quantum critical
value xc for the Ce1−xYbxCoIn5 alloys. Second, these
data confirm our findings from resistivity measurements
that quantum critical fluctuations are suppressed with in-
creasing pressure. Finally, we also analyzed the tempera-
ture and pressure dependence of the magnetic field Hmax

at which magnetoresistivity reaches its maximum value.
At low temperatures, Hmax grows linearly with tempera-
ture. Interestingly, we find that the slope dHmax/dT also
grows with applied pressure, similar to the dependence
on pressure of the coherence temperature. This result
suggests that the magnetoresistivity is largely governed
by the heavy-electrons from the large Fermi surface.

Our theoretical analysis of the disordered Kondo lat-
tice model with “magnetic” disorder ions shows that de-
spite the presence of “magnetic” impurities rather than
“Kondo holes”, the coherence temperature grows and
residual resistivity decreases with pressure as expected
for “electron-like” Kondo ions.23 The growth of the co-
herence temperature leads to the corresponding growth
of the superconducting critical temperature, indicating
that superconductivity originates predominantly from
the “heavy” Fermi surface.
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47 M. Očko, J. L. Sarrao, I. Aviani, D. Drobac, I. Živković,
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