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Spin rectification in a single crystal Fe/Au/Fe sandwich is electrically detected for collinear and
non-collinear magnetization and external magnetic field configurations. The line shape, line width
and signal polarity are analyzed. The spin rectification theory has been much extended by taking
the magneto-crystalline anisotropy and shape anisotropy into account, which explains non-collinear
resonances and agrees very well with experimental data. Thus, a comprehensive understanding of
spin rectification in ferromagnetic metal is demonstrated in this work.
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A decade ago, spin dynamics in ferromagnetic materi-
als was electrically detected via the spin diode effect in
magneto tunnel junctions1,2 and the bolometric effect in
thin films3,4, which triggered a rapid development. Later,
more methods were developed, such as the spin pumping
effect5, the (inverse) spin hall effect6 and the spin recti-
fication effect (SRE)7–23. As detailed in two recent re-
view articles of spin rectification24,25, the SRE dominates
the electrical voltage induced by ferromagnetic resonance
(FMR) in a variety of ferromagnetic metals. A precessing
magnetization leads to a periodically changing resistance
through magneto-resistance. The periodically changing
resistance couples with the microwave current flowing in-
side and generates a DC voltage, this is the SRE10. Such
a method became the most popular method in electrical
detection of FMR because of its high sensitivity, sim-
ple sample structure, and experimental set-up. It was
applied to different materials and structures with accu-
rate agreement between theory and experimental results
on both line shape and line width24,25. Such line shape
analysis is useful for distinguishing spin rectification from
spin pumping and the inverse spin hall effect13,20,21. Line
width is also important for determining additional damp-
ing due to spin pumping as well as the intrinsic Gilbert
damping10,26,27. Almost all the previous studies of line
shape and line width were performed in a collinear case
where the magnetization is aligned parallel with the ex-
ternal magnetic field. However, in ferromagnetic thin
films, the magnetization orientates along an effective field
direction rather than the external magnetic field direc-
tion, especially when the internal magnetic fields, such as
the magnetic anisotropy field and demagnetization field,
are comparable to the external magnetic field. In such a
non-collinear case of the magnetization and the external
magnetic field, line shape and line width analyses of spin
rectification haven’t been systematically studied yet.

In this work, we experimentally studied the line shape
and line width of spin rectification in a non-collinear case
for a sample with strong anisotropy. We also extend spin

FIG. 1. RHEED patterns with the electron beam e− along
MgO 〈100〉 of (a) Fe (7 nm)/MgO, (b) Au (4 nm)/Fe (7 nm)
/MgO, and (c) Fe (3 nm)/Au (4 nm)/Fe (7 nm)/MgO. (d) a
sketch of measurement geometry.

rectification theory from the collinear case into the non-
collinear case by considering all anisotropy effects. Thus,
we present a comprehensive understanding of spin recti-
fication in a metallic system.

To achieve a system with strong anisotropy, we de-
signed an ultra-thin single crystal Fe/Au/Fe sandwich
on a MgO (001) substrate by using molecular beam epi-
taxy in a ultra high vacuum chamber. The substrate was
cleaned by annealing at 680◦C for 45 minutes. Then,
a 7-nm-thick Fe layer was prepared at room temper-
ature and annealed at 250◦C for 3 minutes until high
crystalline quality was achieved as indicated by a sharp
reflection of high-energy electron diffraction (RHEED)
pattern, as shown in Fig. 1 (a). A 4-nm-thick Au
layer was then epitaxially deposited at room tempera-
ture. A 3-nm-thick of Fe layer was then epitaxially de-
posited. Further, a 5-nm-thick MgO layer was deposited
on top for protection. The RHEED patterns shown in
Fig. 1(a)-(c) indicate the smoothness of each layer sur-
face and the high crystalline quality of the sample. In ad-
dition to the shape anisotropy, the single crystal Fe ultra-



2

thin film on MgO (001) has a strong in-plane magneto-
crystalline anisotropy with the easy axis along the Fe
[100] and the hard axis along Fe [110]28, and the two Fe
layers with different thickness will have different mag-
netic anisotropies29,30, which have all been confirmed by
our measurements. Both magneto-crystalline anisotropy
and shape anisotropy in the Fe/Au/Fe sandwich allow us
to study non-collinear spin rectification.

As shown in Fig. 1(d), the tri-layer sample was pat-
terned into a strip along the Fe [100] easy axis with the
dimensions of 20 µm× 3 mm using standard photo lithog-
raphy. A microwave was applied into the strip directly,
and most microwave current flows inside of the Au layer
due to its high conductivity. Thus, the microwave mag-
netic field on the bottom layer has a phase shift of π
with that in the top layer. The microwave was modu-
lated with a frequency of 8.33 kHz. Voltage was mea-
sured along the strip using a lock-in technique. An ex-
ternal magnetic field H was applied to the strip with
the orientation defined in Fig. 1(d). Spin rectification
voltage was measured by sweeping the external magnetic
field at a fixed microwave frequency. In this work, mi-
crowave power is 100 mW. Before taking systematic mea-
surements, we have checked the magnetization coupling
and the spin dynamic coupling between the two Fe lay-
ers. When FMR occurs in both Fe layers in our sample,
we observed a simple crossing in the ω−H dispersion of
FMR for 3 nm and 7 nm Fe. Usually, the magnetic cou-
pling between two FM layers can induce an anti-crossing
in the ω −H dispersion31–34, so the missing of the anti-
crossing in our measurement indicates that magnetic cou-
pling in our sample can be ignored. Moreover, around the
crossing, no significant linewidth reduction35 or ampli-
tude enhancement22 of the resonance peaks is observed,
and then the spin dynamic coupling can be considered
too weak to influence the FMR of both Fe layers. Thus,
we can consider the two Fe layers as two independent FM
layers without the magnetic coupling and the spin dy-
namic coupling. We have carefully checked the sample at
the special geometry20 for measuring the pure spin pump-
ing signal, which is ignorablely small compared to that
of spin rectification. Thus, we were allowed to study the
line shape, line width, and polarity of the pure spin rec-
tification signal in both collinear and non-collinear cases.

Figure 2 shows the results when H is applied near
Fe [110] direction in the film plane, which is the hard
axis of four-fold magneto crystalline anisotropy. Fig.
2(a) shows a sketch of an in-plane configuration mea-
surement with ϕH ≈ 45◦ and ϑH = 0◦. For this case,
when H is larger than the saturation field, the magne-
tization M will lie almost parallel to the H direction,
while if H is smaller than the saturation field, M will
be pulled out of the collinear configuration, and the rel-
ative angle between M and H is determined by the com-
petition between the Zeeman energy and the four-fold
magneto-crystalline anisotropy energy. Fig. 2(b) shows
an ω-H dispersion plot with the normalized rectification
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FIG. 2. VSR measurement with H along hard axis Fe [110]
in plane. (a) The sketch of the in-plane configuration mea-
surement; (b) ω-H dispersion image plot, the grey solid line
is the fitting curve of 3 nm Fe, and the black solid line is
the fitting curve of 7 nm Fe; both dispersion curves have two
branches: branch I is FMR‖ branch, and branch II is FMR∦

branch. (c) Typical curves in the in-plane configuration, solid
circles (•) indicate peaks belong to FMR‖ branch in 7 nm
Fe, solid triangles (H) indicate peaks belong to FMR∦ in 7
nm Fe, hollow circles (◦) indicate peaks belong to FMR‖ in
3 nm Fe.

voltage amplitude mapped into a rainbow color scale.
The dispersion curves can be calculated by solving the
Landau-Lifshitz-Gilbert (LLG) equation28. By fitting
with the measurement data, we got four-fold magnetic
anisotropy field µ0H1 = 73 mT , the effective magne-
tization µ0Meff = 1.7 T (black solid line) and µ0H1 =
26mT , µ0Meff = 1.4 T (grey solid line) for two Fe layers.
By the Fe-thickness dependence of anisotropy in Fe/Mgo
(001) systems29,30, we can identify the dispersion curve
traced by the black solid line as originating from the 7
nm Fe layer and the curve traced by the grey solid line
as originating from the 3 nm Fe layer. These two disper-
sion curves cross at µ0H = ± 65 mT , the independence
of the two dispersion curves near the crossing indicates
the coupling between the two FM layers is ignorable for
the reasons discussed in the previous paragraph. Both
the ω -H dispersion curves have two branches, as shown
in Fig. 2(b). In branch I, the resonance field increases
with the frequency, here H is larger than the satura-
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tion field and thus M ‖ H; we define the resonance in
this situation as FMR‖ branch. In branch II, the reso-
nance field decreases as the frequency increases, here H

is smaller than the saturation field and thus M ∦ H; we
define the resonance in this situation as FMR∦ branch.
Fig. 2(c) shows some typical curves measured in this
configuration at various microwave frequencies between
7.5 GHz and 9.5 GHz. At resonance, the SRE curves can
be separated into the anti-symmetric Lorentz shape and
the Lorentz shape, but the overall curves are dominated
by the anti-symmetric Lorentz lineshape, which indicates
the relative phase Φ between the microwave field h and
microwave current j almost has the value of the integer
number of π14. In addition to the rectification voltage
observed at the FMR fields of the 3 nm Fe and 7 nm
Fe, a non-resonant rectification signal is observed around
µ0H=0, and this signal can be attributed to the spin
rotation while the magnetic field reverses, as discussed
in Ref.36. In this paper we shall focus our study only
on the resonance rectification voltage. From Fig. 2(c),
we summarize the main features of the SRE measured in
the in-plane configuration by the following Eqs. (1): (a)
all voltage signals change their polarity when the applied
magnetic field reverses; (b) the voltage polarity in the 7
nm Fe FMR‖ branch is opposite to the polarity in the 3
nm Fe FMR‖ branch; (c) the voltage polarity in FMR‖

branch is opposite to the polarity in FMR∦ branch.

At ϕH ≈ 45◦, ϑH = 0◦ :

V (H) = −V (−H) (1a)

VFe7

|VFe7 |
= −

VFe3

|VFe3 |
(1b)

VFMR‖

|VFMR‖
|
= −

VFMR∦

|VFMR∦
|

(1c)

Eq. (1a) is in agreement with the studies in the
literature10,14,20, and Eq. (1b) describes the polarity dif-
ference in the two Fe layers due to the phase shift of
the microwave field. Eq. (1c) indicates that in the in-
plane configuration the polarity of VSR changes its sign
for the case where M and H are non-collinear. Shown
in Fig. (2)(c), the resonance peaks in the FMR∦ branch
are much broader than those in the FMR‖ branch.
In addition to magneto-anisotropy, the shape

anisotropy is also able to affect the relative angle
between M and H. Fig. 3 shows the results when
H is applied almost perpendicular to the film plane,
with Fig. 3(a) showing a sketch of an out-of-plane
measurement configuration with ϕH = 0◦ and ϑH ≈ 90◦.
In this configuration, M ‖ H for H is larger than the
saturation field, and M ∦ H for H is smaller than the
saturation field. The relative angle between M and H

is determined by the competition between the Zeeman
energy and shape anisotropy energy. In our system,
the effective shape anisotropy field is µ0Meff = 1.7 T
for 7 nm Fe, and µ0Meff = 1.4 T for 3 nm Fe. Fig.
3(b) shows an ω-H dispersion plot, with normalized
rectification voltage amplitude mapped into a rainbow
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FIG. 3. VSR measurement with H pointing out of the film
plane. (a) The sketch of the out-of-plane configuration mea-
surement; (b) ω-H dispersion image plot, the grey solid line
is the fitting curve of 3 nm Fe, and the black solid line is
the fitting curve of 7 nm Fe; both dispersion curves have two
branches: branch I is FMR‖ branch, and branch II is FMR∦

branch. (c) Typical curves in out-of-plane configuration, solid
circles (•) indicate peaks belong to FMR‖ branch in 7 nm Fe,
solid triangles (H) indicate peaks belong to FMR∦ branch in
7 nm Fe, hollow circles (◦) indicate peaks belong to FMR‖

branch in 3 nm Fe, and hollow triangles (▽) indicate peaks
belong to FMR∦ branch in 3 nm Fe.

color scale as the indicator marks. We can identify
the dispersion curve traced by the black solid line as
originating from the 7 nm Fe layer and the curve traced
by the grey solid line as originating from the 3 nm
Fe layer. Both dispersion curves also have a FMR‖

branch and a FMR∦ branch. Fig. 3(c) shows several
typical curves measured in this configuration at various
microwave frequencies between 3.8 GHz and 4.2 GHz.
All the resonance peaks are dominated by Lorentz line
shape, and we describe the key features by the following
Eqs. (2):
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At ϕH = 0◦, ϑH ≈ 90◦ :

V (H) = V (−H) (2a)

VFe7

|VFe7 |
=

VFe3

|VFe3 |
(2b)

VFMR‖

|VFMR‖
|
=

VFMR∦

|VFMR∦
|

(2c)

Equations (2) are quite different from Eqs. (1). Eq.
(2a) shows the voltage signal keeps the same polar-
ity when H reverses, which indicates that spin pump-
ing and the inverse spin hall effect are ignorable in our
measurement20. Eq. (2b) shows the signal polarity in the
two Fe layers are the same and Eq. (2c) shows the signal
polarity in the FMR∦ branch remains the same as in the
FMR‖ branch. From Fig. (3) (c), the resonance peaks
in the FMR∦ branch are also much broader than those
in the FMR‖ branch. Comparing Fig. (2) and (3), the
SRE signal in the FMR∦ branch has the same behavior
as in the FMR‖ branch when changing the measurement
configuration. The signal polarities in the two branches
are opposite in the in-plane configuration, but same in
the out-of-plane configuration.
So far, in the literature, the SRE has been systemati-

cally studied only in the configuration with M ‖ H, and
the rectification voltage is described by a formula as a
function of H10. Since M and H are non-collinear in
the FMR∦ branch, the conclusions in previous studies

are not suitable here any more. However, the M align-
ment is always parallel to the effective field Heff rather
than H. Thus, Heff instead of H should be taken into
account especially in ferromagnetic systems with strong
anisotropy. Heff could be determined by the free energy
F of the system. Considering the single crystal mag-
netic thin film in our case with Zeeman energy, magneto-
crystalline anisotropy, shape anisotropy, one can get F

and Heff as follows:

F = −µ0MH [cos θH cos θM cos(ϕM − ϕH) + sin θH sin θM ]

+
1

2
µ0Meff

2sin2θM +
1

4
K1

(

sin22θM + cos4θMsin22ϕM

)

(3a)

(µ0Heff )
2 =

(

ω

γ

)2

=
µ2
0

(µ0McosθM )
2

[

∂2F

∂θ2M

∂2F

∂ϕ2
M

−

(

∂2F

∂ϕM∂θM

)2
]
∣

∣

∣

∣

∣

(θM ,ϕM)

(3b)

Here µ0 is susceptibility in a vacuum, Meff is the ef-
fective moment, and K1 is the four-fold anisotropy con-
stant. ϕM , ϑM , ϕH and ϑH are the angles of M and H,
as defined in the insets of Fig. 4(a) and Fig. 5(a). In the
in-plane configuration, ϑM = ϑH = 0◦, so the effective
field is:

(µ0Heff )
2
= [µ0H cos (ϕH − ϕM ) + µ0Meff + µ0H1 −

1

2
µ0H1sin

22ϕM ] ∗ [µ0H cos (ϕH − ϕM ) + µ0H1 cos 4ϕM ] (4)

and in the out-of-plane configuration, ϑH = 90◦, ϕM = ϕH = 0◦, so the effective field is:

(µ0Heff )
2
= [µ0H sin θM + µ0Meff cos 2θM + µ0H1 cos 4θM ] ∗ [µ0H cos θH/ cos θM + µ0H1cos

2θM ] (5)

Here, and the four fold anisotropy µ0H1 = 2K1/M .
Putting the effective field calculated from Eq. (4)
and (5) together with the microwave field hX′Y ′Z′ =
(

0, hY ′cos (δ) eiωt, 0
)

into the LLG equation, we can get
the dynamic magnetization m. Here δ is the phase of
h. In our system, we define δ = 0 in the 7 nm Fe and
δ = π in the 3 nm Fe. Spin rectification voltage can be
calculated by VSR = 〈j ∗∆R〉, here j is the microwave
current in the system, and ∆R ∝ Re(m) is the resis-
tance variation within the system due to AMR and spin
precession. Thus we can derive the SRE in the in-plane
configuration:

VSR = A ∗ Re(χT )hY ′cos (ϕM + δ) sin (2ϕM ) (6)

and the SRE in the out-of-plane configuration:

VSR = A ∗ Re (χL)hY ′ sin (2θM ) (7)

with

A = −
jx′∆R

2M

Re (χL) = −
ωMωHeff

(

ω2
Heff

− ω2
)

(

ω2
Heff

− ω2
)2

+ 4ω2
Heff

α2ω2

Re (χT ) =
2αω2ωMωHeff

(

ω2
Heff

− ω2
)2

+ 4ω2
Heff

α2ω2
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FIG. 4. Comparison of experiment and calculation results in
the in-plane configuration. (a) Experiment curve with mi-
crowave frequency of 10 GHz, the inset shows a non-collinear
configuration of M and H in the in-plane configuration. (b)
Calculation curve with microwave frequency fixed at 10 GHz,
the result agrees with Eqs. (1). Solid lines in (c) are the cal-
culated effective field as a function of the applied field of the
7 nm Fe layer and 3 nm Fe layer in the in-plane configuration
and the dashed line indicates the position of the effective field
which satisfies resonance conditions at a microwave frequency
of 10 GHz. The insets are the calculated spin resonance phase
ϕ in the FMR‖ and the FMR∦ branches in 7 nm Fe.

Here jx′ is the microwave current amplitude, Re (χL)
and Re (χT ) are respectively the real parts of the diagonal
and non-diagonal elements of the dynamic susceptibility
tensor, ω is the applied microwave frequency, ωM = γM ,
ωHeff

= γHeff , γ is the gyromagnetic ratio, and α is
the damping constant. The experiment data in Fig. 2
and 3 show that the relative phase Φ between h and j is
almost an integer of π. To simplify the situation, we fix
the relative phase Φ as an integer of π in our calculation,
thus only the real part of χ will contribute to the signal
voltage, as discussed by M. Harder et al.14. As shown
in Eq. (6) and (7), VSR depends on Heff instead of H,
and cannot directly calculated by a simple formula. To
analyze the SRE, we first get ϕM and ϑM as functions of
H by minimizing the system Free energy F in Eq. (3a),
then calculate Heff with Eq. (3b), and finally calculate
VSR using Eq. (6) and (7).

Figure 4 shows a comparison between calculation and
experimental results in the in-plane configuration. Fig.
4(a) is a typical experimental curve measured at a the
microwave frequency of 10 GHz, and (b) shows the cal-
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FIG. 5. Comparison of experiment and calculation results
in the out-of-plane configuration. (a) Experiment curve with
microwave frequency of 4 GHz, the inset shows a non-collinear
configuration of M and H in the out-of-plane configuration.
(b) Calculation curve with microwave frequency fixed at 4
GHz, the result agrees with Eqs. (2). Solid lines in (c) are
the calculated effective field as a function of the applied field
of the 7 nm Fe layer and 3 nm Fe layer in the out-of-plane
configuration and the dashed line indicates the position of
the effective field which satisfies resonance conditions at a
microwave frequency of 4 GHz. The insets are the calculated
spin resonance phase ϕ in the FMR‖ and the FMR∦ branches
in 7 nm Fe.

culated curve with the microwave frequency fixed at 10
GHz, the effective field Heff as a function of H in the
in-plane configuration is shown in (c). In the calculation,
we use ϕH = 44.6◦ and ϑH = 0◦ for the in-plane configu-
ration, µ0H1 = 73 mT , µ0Meff = 1.7 T for 7 nm Fe, and
µ0H1 = 26 mT , µ0Meff = 1.4 T for 3 nm Fe. All these
parameters are determined from the dispersion curves in
Fig. 2(b). We use α = 0.006 determined from the ex-
perimental linewidth of the resonance, and set AFe7 =
5 × AFe3 to best represent the experimental conditions.
The calculation results agree well with the experimental
results. From Eq. (6), VSR is determined by the real
part of the diagonal elements of the dynamic susceptibil-
ity tensor Re (χL) which has an anti-symmetric Lorentz
lineshape, so VSR has anti-symmetric Lorentz lineshape
as shown in Fig. 4(b), in good agreement with experi-
mental result. Since VSR ∝ cos (ϕM + δ) sin (2ϕM ), and
when H reverses, the Heff and M will reverse, which
corresponds to ϕM + π and ϑM + π, VSR will change
its polarity when H reverses as shown in Fig. 4(b) and
agrees with Eq. (1a). VSR has the opposite polarity in
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the 7 nm Fe layer and the 3 nm Fe layer, as shown in Fig.
4(b) and confines with Eq. (1b), because the phase δ of
the rf field h in these two Fe layers has a difference of π.
Near the resonance field as indicated by the dashed line
in Fig. 4(c), (H −H0) / (Heff −H0) > 0 in the FMR‖

branch, while (H −H0) / (Heff −H0) < 0 in the FMR∦

branch, here H0 is the resonance field. Since the sign

of VSR is determined by
(

ω2
Heff

− ω2
)

, the VSR H curve

has the opposite polarity in the FMR‖ and the FMR∦

branch, in good agreement with the experiment in Fig.
4(b) as well as with Eq. (1c). Thus, the agreement be-
tween experiment and calculation in our system verifies
that the approximation of the relative phase Φ as an inte-
ger of π is reasonable. If the relative phase Φ shifts from
an integer of π, the imaginary part of the dynamic sus-
ceptibility χ will contribute to the voltage signal and con-
tribute a Lorentz component to the curve, as discussed
by M. Harder et al.14. Moreover, if the Lorentz com-
ponent is much larger than the anti-symmetric Lorentz
component, the overall lineshape will be Lorentz, and the
signal polarity will be similar to that in the out-of-plane
configuration we will discuss in the following.
In the out-of-plane configuration, our theory also works

well. Fig. 5 shows a comparison between calculation
and experimental results in the out-of-plane configura-
tion. Fig. 5(a) is a typical experimental curve measured
at a microwave frequency of 4 GHz, and (b) shows the
calculated curve with the microwave frequency of 4 GHz.
Fig. 5(c) shows the calculated effective field Heff as
a function of H . In our calculation, we use ϕH = 0◦

and ϑH = 89.4◦ for the out-of-plane configuration, and
keep the other parameters the same as those used in the
in-plane configuration. Eq. (7) shows that VSR is de-
termined by the real part of the non-diagonal elements
of the dynamic susceptibility tensor Re (χT ) and has a
Lorentz line shape, which can be proved by the calcu-
lated curve in Fig. (5)(b), and agrees with experimental
results. Since VSR ∝ sin (2θM ), VSR keeps the same po-
larity when H reverses (agrees with Eq. (2a)), and keeps
the same polarity in the 7 nm Fe and the 3 nm Fe layer
(agrees with Eq. (2b)). Eq. (7) shows that the sign of
VSR is determined by ωHeff

, so the VSR polarity remains
the same in the FMR‖ branch and the FMR∦ branch.
We further calculated the spin resonance phase ϕ in

both in-plane and out-of-plane configuration, and the cal-
culated ϕ in the 7 nm Fe are shown in insets in Fig.
4(c) and 5(c) respectively. The spin resonance phase ϕ
describes the phase lag between the precessing magneti-
zation and the driving microwave field, and can be de-
termined by cosϕ = Re(χ)/|χ|10,14,37. Shown in insets
in Fig. 4(c) and 5(c), in collinear configuration, ϕ = π
when H < H0, which is called a driving force out of
phase, and ϕ = 0 when H > H0 which is called a driving
force in phase. ϕ will change from π to 0 as H increases
around FMR and ϕ = π/2 at FMR, here we define such
a phase jump as a negative phase jump. While in non-
collinear configuration, ϕ = 0 (driving force in phase)
when H < H0, and ϕ = π (driving force out of phase)
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the 7 nm Fe in the FMR‖ branch and the FMR∦ branch as
a function of H − H0 in in-plane configuration, and (c) the
rectification voltage and (d) the linewidth in the out-of-plane
configuration. The black lines are guide lines for the eyes.

when H > H0. ϕ will change from 0 to π as H increases
around FMR and ϕ = π/2 at FMR, here we define such a
phase jump as a positive phase jump. Considering the ef-
fective field as shown in Fig. 4(c) and 5(c) rather than the
applied field, in both collinear and non-collinear configu-
ration, the phase ϕ is π when Heff < H0, and is 0 when
Heff > H0. And ϕ changes from π to 0 asHeff increases
around FMR and ϕ = π/2 at FMR, which means the
phase jump is negative in both collinear and non-collinear
configuration by considering the effective field. So in both
in-plane and out-of-plane configurations, as H increases,
the phase ϕ between the spin precession and the driv-
ing microwave magnetic field decreases in the collinear
configuration and increases in the non-collinear configu-
rations at FMR, and the difference is due to the different
H-dependence effective field in collinear and non-collinear
configuration.
The calculation and the experimental results of the

SRE in the 7 nm Fe layer are listed in Table I. Our
theory well describes the line shape and polarity of the
SRE in the general configuration of M and H. Also
our calculation qualitatively confirms the broadening of
the linewidth ∆H for non-collinear alignment of M and
H. However, the experimental value of the linewidth
is much broader than the calculated results, and the
linewidth broadening in the non-collinear configuration
in the experiment is also much larger than that in the-
ory. In our theory, the effect of the interface on FMR
hasn’t been taken into account, however, it is known that
some interfacial effects, such as spin pumping, magnon
scattering10,26,27,38, will enhance the linewidth.
Fig. 6 directly compares the linewidth in the collinear

and non-collinear configuration. The rectification voltage
in the FMR‖ branch and the FMR∦ branch are plotted
against their resonance field H −H0 in the in-plane con-
figuration as shown in Fig. 6(a). The full width at half
maximum δH of FMR at different microwave frequen-
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Measurement Configuration Line shape polarity µ0H0 (T ) µ0∆H (mT )

M ‖ H
ϕH = 44.6◦, ϑH = 0◦, f = 10 GHz

Anti-Lorentz(Exp) −(Exp) 0.14(Exp) 5.3(Exp)

Anti-Lorentz(Cal) −(Cal) 0.14(Cal) 2.4(Cal)

ϕH = 0◦, ϑH = 89.4◦, f = 4 GHz
Lorentz(Exp) +(Exp) 1.96(Exp) 9.5(Exp)

Lorentz(Cal) +(Cal) 1.97(Cal) 7.2(Cal)

M ∦ H
ϕH = 44.6◦, ϑH = 0◦, f = 10 GHz

Anti-Lorentz(Exp) +(Exp) 0.027(Exp) 10(Exp)

Anti-Lorentz(Cal) +(Cal) 0.026(Cal) 3.6(Cal)

ϕH = 0◦, ϑH = 89.4◦, f = 4 GHz
Lorentz(Exp) +(Exp) 1.79(Exp) 54(Exp)

Lorentz(Cal) +(Cal) 1.80(Cal) 13(Cal)

TABLE I. The calculation and the experimental results of the SRE in the M ‖ H and the M ∦ H configuration in 7 nm
Fe layer with different measurement geometry. The positive polarity of the SRE is defined as VSR/|VSR| > 0 when H < H0.
The subscript Exp indicates the result is extracted from the experimental data, and the subscript Cal indicates the result is
extracted from the calculation data.

cies are plotted in Fig. 6(b), which clearly shows the
broadening of linewidth in the non-collinear configura-
tion. Besides the in-plane configuration, the linewidth
in the out-of-plane configuration is also analyzed, and
shown in Fig. 6 (c) and (d). The linewidth of non-
conllinear resonance is much broader than that of con-
llinear resonance for the out-of-plane configuration. In

our theory, the Fe layers are only treated as a single do-
main, but in the non-collinear configuration, the mag-
netization is not saturated and might form the multi-
domain, which may cause magnetization inhomogeneous
and lead to an additional damping39. Nevertheless, this
is still an open question for further study.

In conclusion, we studied the spin rectification effect in
an epitaxial Fe/Au/Fe tri-layer system with strong mag-
neto anisotropy and shape anisotropy. In addition to the
SRE when M and H are collinear, we study VSR for the
case where M and H are non-collinear. The different be-
havior of VSR in different configurations of M and H are
due to the relationship between Heff and H. By con-
sidering Heff instead of H in ferromagnetic systems, we
extend the SRE theory for all M and H configurations.
These equations will help further the understanding of

spin transport in ferromagnetic systems, especially for
M not parallel to H.
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