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The formation of a pair of dark solitons from a single nonlinear black spin-wave pulse was 

observed for the first time.  The experiments were carried out with a long and narrow magnetic 

yttrium iron garnet film strip in a surface-spin-wave configuration.  The black spin-wave pulses 

were excited by the use of microwave black pulses – large-amplitude microwaves with narrow 

square-like dips.  Pairs of black solitons were observed in certain input power and input black 

pulse width ranges.  For each pair, the two solitons show opposite π phase jumps and an overall 

phase change of zero. Beyond those power and width ranges, one also observed pairs of gray 

solitons that also showed opposite phase jumps and a zero total phase change.  The formation of 

a single black soliton was also observed, but only for an input black pulse that was very narrow.  

The experimental observations were re-produced by numerical simulations based on the 

complex Ginzburg-Landau equation. 
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Due to dispersion, a narrow dip on a continuous wave broadens as the wave propagates.  If the wave amplitude is 

large, the dip broadening can be further enhanced by the nonlinearity.  This is true for waves that have an attractive 

nonlinearity.  For waves with a repulsive nonlinearity, however, the nonlinearity can give rise to a self-narrowing 

effect which can cancel the dispersion-produced broadening of the dip.  When a fine balance is achieved between 

the two effects, the dip on the continuous wave can evolve into a stable localized excitation – an envelope dark 

soliton.1,2,3,4,5  There are two types of dark solitons, black and gray.  When the dip amplitude at the soliton center 

goes to zero, one has a black soliton.  When the amplitude at the dip is nonzero, one has a gray soliton.  Both the 

black and gray solitons have a jump in the carrier wave phase at their centers.  For black solitons, such a phase jump 

is exactly equal to π.  For gray solitons, the jump is between 0 and π.   

From a physical point of view, a straightforward way to excite a dark envelope soliton is to use a dark input 

pulse – a narrow dip in the amplitude or intensity of a continuous wave background.  This approach has indeed been 

previously used to excite black envelope solitons, for example, for surface spin waves in magnetic yttrium iron 

garnet (YIG) thin film strips6 and for lasers in photorefractive crystals.7  Theoretically, however, an initial dark 

signal should not evolve into a single dark soliton.  Rather, it should develop into a pair of dark solitons that have 

opposite phase jumps and an overall phase change of zero.8,9,10,11  This phase condition is needed because of 

symmetry conservation, namely, that the initial experimental signal has no phase difference across the dark region, 

and the zero-phase-change property should be conserved, as analyzed in detail in Ref. [8].  Experimentally, the 

formation of such a dark soliton pair from a single dark input signal has been observed not only for temporal 

solitons in optical fibers,12,13 but also for spatial optical solitons in Kerr-like media,14 photovoltaic media,15  and 

photorefractive crystals,7 but the phase signature of the solitons, namely, opposite phase jumps, has never been 

demonstrated so far.            

This paper reports the first unambiguous experimental evidence for opposite phase jumps of dark soliton pairs.    

As in Ref. [6], the experiments were carried out with a YIG film strip in a surface-spin-wave configuration16,17  and 

used as an input signal a single black spin-wave pulse with no phase change.  A pair of black solitons with opposite 

π phase jumps was observed in certain input power and input pulse width ranges.  Beyond those ranges, one also 

observed pairs of gray solitons that also showed opposite phase jumps and an overall phase change of zero.  The 

formation of a single black soliton from a dark pulse, similar to that reported previously in Ref. [6], was also 

observed, but only for an initial black pulse that was very narrow.  The experimental results were supported by 
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numerical simulations which made use of the complex Ginzburg-Landau equation 18 , 19  and the experimental 

parameters.  

Figure 1(a) shows a schematic diagram of the experimental setup. The core components include a long and 

narrow YIG thin film strip and two microstrip line transducers placed on the top the YIG strip for the excitation and 

detection of spin waves.  The YIG film strip is magnetized to saturation by an external magnetic field which is in the 

plane and perpendicular to the length of the YIG film strip. This film/field configuration supports the propagation of 

surface spin waves16,17 which show a repulsive nonlinearity.5,20  The microwave switch is fed by a continuous 

microwave source and is controlled by a fast pulse generator.  It generates black microwave pulses for the excitation 

transducer.  The signals from the detection transducer are analyzed directly by a fast oscilloscope and a spectrum 

analyzer, without using any microwave amplifiers or diodes.   

For the experimental data presented below, the YIG film strip was 5.6 μm thick, 2 mm wide, and 50 mm long.  It 

was cut from a larger single-crystal YIG wafer grown on a gadolinium gallium garnet substrate by liquid phase 

epitaxy.  The magnetic field was set to 909 Oe.  The microstrip line transducers were 50 μm wide and 2 mm long 

and were end-shorted.  The separation of the two transducers was set to 6.8 mm.  The input pulses applied to the 

excitation transducer were square-like dips on a continuous microwave signal, with the amplitude at the dips less 

than 5% of the amplitude of the microwave background.  The power level of the microwave background was 

        
FIG. 1.  (a) Schematic of the experimental configuration. (b) Transmission responses of the transducer/YIG/transducer structure 
measured at two different input power levels (Pin), as indicated. 
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controlled by a microwave amplifier and a tunable microwave attenuator inserted between the microwave switch 

and the excitation transducer.  The amplifier had a 30 dB dynamic range, a peak output power of 2 W, and a linear 

response from 2 to 8 GHz. These characteristics ensured that the nonlinear response of the system was determined 

solely by the YIG film.    

Figure 1(b) shows the transmission responses (S21) of the transducer/YIG/transducer structure measured at two 

different input power levels (Pin), as indicated.  One can see three results from the data in Fig. 1(b).  (1) The spin-

wave frequency range is about 4.5-5.0 GHz.  For the data presented below, the carrier wave frequencies of the input 

signals all fell within this frequency range.  (2) The transmission profiles are relatively smooth.  This indicates that 

the spins on the film surfaces are unpinned and a repulsive nonlinearity is expected for the entire 4.5-5.0 GHz 

frequency range.  In films with strongly pinned surface spins, one has a repulsive nonlinearity only in narrow 

frequency ranges.21,22  (3) The transmission for Pin=10.8 dBm is notably smaller than that for Pin=-4.2 dBm.  This 

difference results from nonlinear damping,23 which was considered in the numerical simulations presented below.  

Figures 2 and 3 present representative experimental data for the formation of dark solitons.  Figure 2 shows the 

output signals measured for a fixed input black pulse width τin=29 ns and different Pin levels, as indicated.  Here Pin 

denotes the power level of the microwave background of the signals applied to the excitation transducer.  In contrast 

-50 0 50 100
-0.05

0.00

0.05

GGG

BBBB

(f) Pin=27.4 dBm(e) Pin=18.3 dBm

(d) Pin=13.3 dBm(c) Pin=8.3 dBm

(b) Pin=3.3 dBm

P
ha

se
 (d

eg
re

e)
P

ha
se

 (d
eg

re
e)

P
ha

se
 (d

eg
re

e)

Time (ns)Time (ns)

A
m

pl
itu

de
 (V

)
A

m
pl

itu
de

 (V
)

A
m

pl
itu

de
 (V

)

(a) Pin=-1.7 dBm

-180

-90

0

90

180

 

-100 -50 0 50
-0.06

0.00

0.06

-100 -50 0 50
-0.1

0.0

0.1

-100 -50 0 50
-0.1

0.0

0.1

G

-50 0 50
-0.15

0.00

0.15

-50 0 50 100 150
-0.15

0.00

0.15

-180

-90

0

90

180

-180

-90

0

90

180

-180

-90

0

90

180

-180

-90

0

90

180

-180

-90

0

90

180

 
FIG. 2.  Output signals obtained for a fixed input pulse width of 29 ns and different input power levels (Pin), as indicated.  The
voltage wave signals are shown in light blue, while the wave phase profiles are shown in light red.  The black and gray solitons
are marked by “B” and “G”, respectively. 
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to Fig. 2, Figure 3 shows the output signals obtained for a fixed input power Pin =8.3 dBm and different pulse widths, 

as indicated.  In both the figures, the voltage waves are shown in light blue, while the corresponding phase profiles 

are shown in light red.  The black and gray solitons are marked with “B” and “G”, respectively.  Note that all the 

data were obtained with an input carrier wave frequency of 4.609 GHz, and the phase profiles show the phase data 

of the output signals relative to the phase of a reference continuous wave with the same frequency as the input 

carrier waves.24 

The data in Figs. 2(a) and (b) show the key results of this work – the demonstration of a pair of black solitons.  

For each soliton, the dip almost goes to zero and the phase shows a π jump at its center.  For each pair, the phase 

jumps of the two solitons are opposite, and the overall phase change is zero.  With an increase in Pin, from 3.3 dBm 

to 8.3 dBm, the black soliton pair evolves into a pair of gray solitons, as shown in Fig. 2(c).  For each gray soliton, 

the dip amplitude is nonzero and the phase jump is less than π (about 0.92π).  Nevertheless, the two solitons have 

opposite phase jumps and the total phase change is almost zero, the same as the black soliton pairs in Figs. 2(a) and 

(b).  When Pin is increased to 13.3 dBm and then to 18.3 dBm, one observes only a single gray soliton, as shown in 

Figs. 2(d) and (e). With a further increase in Pin, one observes non-solitonic waveforms only, as shown in Fig. 2(f).  

Note that, independent of the value of Pin, the zero-phase-change condition is always satisfied.   

The data in Fig. 3 show that the formation of dark soliton pairs also depends on the width of the initial black 
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FIG. 3.  Output signals obtained for a fixed input power of 8.3 dBm and different input pulse widths (τin), as indicated.  The
voltage wave signals are shown in light blue, while the wave phase profiles are shown in light red.  The black and gray solitons
are marked by “B” and “G”, respectively. 
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pulse. Figure 3(b) shows a pair of black solitons obtained at τin=29 ns.  It is essentially the same as the pairs shown 

in Figs. 2(a) and (b).  For a narrower initial black pulse with τin=23 ns, however, one observes only a single black 

soliton, as shown in Fig. 3(a).  As discussed shortly, this single black soliton is similar to the one reported previously 

in Ref. [6].  In contrast, for broader initial pulses, one observes multiple gray solitons or non-solitonic dips, as 

shown in Figs. 3(c)-(f).  At τin=71 ns, for example, the signal consists of three gray solitons and two non-solitonic 

dips, as shown in Figs. 3(e).  It should be noted that the overall phase change is always zero for all the data shown in 

Fig. 3, the same as for the data in Fig. 2.  

The above-presented experimental results can be reproduced by numerical simulations using the so-called 

complex Ginzburg-Landau equation18,19  

( )
2 3

2
g 2 32 3

1 1i i 0
2 6

u u u uv u D D N u u
t x x x

η ν∂ ∂ ∂ ∂⎡ ⎤+ + − − + + =⎢ ⎥∂ ∂⎣ ⎦ ∂ ∂
            (1) 

where u is the spin-wave amplitude, x is the spatial coordinate, t is the temporal coordinate, vg is the group velocity, 

η is the damping coefficient, D2 is the dispersion coefficient, D3 is the third-order dispersion coefficient, N is the 

nonlinearity coefficient, and ν is the nonlinear damping coefficient.  In comparison with the standard nonlinear 

Schrödinger equation,3 equation (1) incorporates three additional terms – one describes the third-order dispersion 

and the other two describe the linear and nonlinear damping of the spin waves.  These additional terms are required 

in order to re-produce the experimental responses.   

The simulations used the split-step method to solve the derivative terms with respect to x and used the Runge-

Kutta method to solve the equation with the rest of the terms.25,26  The split-step method uses Fourier transformation 

to convert the space domain (x) of the equation into the wave-number domain (k), turning the differential parts of the 

equation into simpler linear algebra.  A high-order Gaussian-type dip, instead of a square black pulse, was used in 

simulations as the initial black pulse.  The use of a square pulse as an initial black pulse gave rise to numerical noise 

due to the discontinuities at the pulse edges.  Though it is also possible to use the fundamental Gaussian function, a 

high-order Gaussian dip better resembles the experimental situation.   

Figure 4 shows representative simulation results.  In each row, the gray dashed curves show the envelope and 

phase profiles of the signal measured at certain Pin and τin values, as indicated, while the light blue and light red 

curves show the simulated envelope and phase profiles, respectively.  The simulations presented in Figs. 4(a), (b), 

and (c) were carried out with “uin=7×10-5 and τin=29 ns”, “uin=8×10-4 and τin=29 ns”, and “uin=8×10-4 and τin=23 ns”, 
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respectively, where uin denotes the background amplitude of the initial spin-wave signal.  The other parameters used 

are as follows: vg=3.6×106 cm/s, η=5.28×106 rad/s, D2=-3×103 rad·cm2/s, D3=1 rad·cm3/s, N=-1×1010 rad/s, and ν 

=6.28×109 rad/s.  Among these parameters, uin is the only fitting parameter, while all others were calculated based 

on the properties of the YIG film sample.  Note that the experimental and numerical results in Fig. 4 are normalized 

in amplitude and shifted in time for the purpose of easy comparisons. 

One can see from the data in Fig. 4 that the experimental responses can be well reproduced by numerical 

simulations.  Furthermore, the simulations presented in Fig. 4 together with additional simulations indicate two 

important results as follows.  First, a black spin-wave pulse genetically evolves into a pair of black solitons, as in 

Figs. 2(a) and (b) and Fig. 3(b), or a pair of gray solitons, as in Figs. 2(c), for a certain initial power range and a 

certain initial pulse width range.  All of the soliton pairs show an overall phase change of zero.  These results agree 

with theoretical expectations.8,10,11  Second, when the initial black pulse is too narrow to evolve into a soliton pair, it 

may develop into a single black soliton-like object as shown in Fig. 4(c).  This is similar to that reported previously 

in Ref. [6] and is consistent with the standard nonlinear Schrödinger equation model.3,5  The existence of a single 
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“uin=8×10-4 and τin=29 ns”, and “uin=8×10-4  and τin=23 ns”, respectively.  For easy comparisons, all the profiles were normalized
in amplitude and shifted in time. 
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black soliton, however, does not break the zero-phase-change condition.  This is clearly shown by the two phase 

profiles shown in Fig. 4(c).  The simulated profile shows a phase jump of -π at the soliton center, a gradual increase 

in the phase for the waveforms both leading and following the soliton, and an overall phase change of zero.  The 

experimental profile shows a slightly different feature - the phase undergoes a jump of -π at the soliton’s center and 

a gradual phase increase of π for the waveform following the soliton.  Besides, the simulations also indicated that 

the slight asymmetry of the experimental amplitude and phase profiles was associated with the third-order dispersion.  

Several important points should be noted.  First, in addition to providing the first experimental evidence for the 

intrinsic phase characteristic of dark solitons pairs, this work also demonstrates that dark soliton pairs not only exist 

in optical systems,7,12,13,14,15 but also take place in spin-wave systems, thereby indicating the universal feature of the 

dark soliton pair phenomenon.  Second, previous work on spatial solitons has also indicated that an initial dark 

signal could also develop into a sequence of dark solitons whose number is more than two and is even.7,10  Future 

work is of importance that demonstrates such development for temporal dark solitons and studies the phase features 

of the solitons.  Third, the numerical simulations in this work indicate that the complex Ginzburg-Landau 

equation18,19 appears to be a more accurate model for nonlinear spin waves in magnetic thin films than the standard 

nonlinear Schrödinger equation, although the latter has been proved to be a generally good model for many different 

types of nonlinear waves.3,5  Finally, the simulations in this work also revealed the existence of a soliton triplet that 

consists of a bright soliton embraced by two black solitons.  The data in Fig. 2(c) presents a similar effect.  Future 

study, both experimental and theoretical, on such soliton triplets is of great interest.   

In summary, this paper reported on the formation of black soliton pairs from nonlinear black spin-wave pulses.  

For each soliton, the dip almost goes to zero and the phase shows a π jump at its center.  For each pair, the phase 

jumps of the two solitons have opposite signs, and the overall phase change is zero.  The formation of such black 

soliton pairs requires the initial black pulses to have appropriate power and widths.  Beyond them, the formation of a 

gray soliton pair is also possible, which also shows opposite phase jumps and a zero overall phase change as the 

black soliton pairs.  When the initial pulses are too narrow to support black or gray soliton pairs, they can evolve 

into single black solitons.  This is consistent with the standard nonlinear Schrödinger equation3,5 and the previous 

experimental observation.6 

This work was supported in part by U. S. National Science Foundation (DMR-1407962 and ECCS-1231598), the 

Russian Science Foundation (14-12-01296), and the Russian Ministry of Education and Science (074-U01). 



 

 9

 

*Corresponding author. 

  E-mail: mwu@lamar.colostate.edu 

                                                           
1 A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford, New York, 1995). 

2 Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998). 

3 M. Remoissenet, Waves Called Solitons: Concepts and Experiments (Springer-Verlag, Berlin, 1999). 

4 A. N. Slavin, Y. S. Kivshar, E.A. Ostrovskaya, and H. Benner, Phys. Rev. Lett. 82, 2583 (1999). 

5 C. Sulem and P.-L. Sulem, “The nonlinear Schrödinger equation: self-focusing and wave collapse.” Applied 

Mathematical Sciences 139 (Springer, New York, 1999). 

6 M. Chen, M. A. Tsankov, J. M. Nash, and C. E. Patton, Phys. Rev. Lett. 70, 1707 (1993). 

7 Z. Chen, M. Mitchell, and M. Segev, Opt. Lett. 21, 716 (1996). 

8 K. J. Blow and N. J. Doran, Phys. Lett. 107A, 55 (1985). 

9 A. N. Slavin, IEEE Trans. Magn. 31, 3479 (1995). 

10 Z. Chen, M. Segev, S. R. Singh, T. H. Coskun, and D. N. Christodoulides, J. Opt. Soc. Am. B 14, 1407 (1997).  

11 Y. H. Zhang, K. Q. Lu, J. B. Guo, K. H. Li, and B. Y. Liu, Eur. Phys. J. D 66, 65 (2012). 

12 D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988). 

13 A. M. Weiner, J. P. Heritage, R. J. Kawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, 

Phys. Rev. Lett. 61, 2445 (1988).  

14 B. Luther-Davies and X. Yang, Opt. Lett. 17, 496 (1992). 

15 M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, Opt. Lett. 21, 943 (1996). 

16 P. Kabos and V. S. Stalmachov, Magnetostatic Waves and Their Applications (Chapman and Hall, London, 1994). 

17 D. D. Stancil and A. Prabhakar, Spin Waves – Theory and Applications (Springer, New York, 2009). 

18 A. S. Kovalev and A. M. Kosevich. Fiz. Nizk. Temp. 2, 913 (1976). 

19 I. V. Barashenkov and V. G. Makhankov, Phys. Lett. A 128, 52 (1988). 

20 Mingzhong Wu, “Nonlinear Spin Waves in Magnetic Film Feedback Rings,” in Solid State Physics Vol. 62, 

Edited by Robert Camley and Robert Stamps (Academic Press, Burlington, 2011), pp. 163-224. 

21 B. A. Kalinikos and A. N. Slavin, J. Phys. C: Solid State Phys. 19, 7013 (1986). 

22 B. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, Zh. Eksp. Teor. Fiz. 94, 159 (1988). 



 

 10

                                                                                                                                                                                           
23 M. M. Scott, C. E. Patton, M. P. Kostylev, and B. A. Kalinikos, J. Appl. Phys. 95, 6294 (2004) 

24 J. M. Nash, P. Kabos, R. Staudinger, and C. E. Patton, J. Appl. Phys. 83, 2689 (1998). 

25 J. A. C. Weideman and B. M. Herbst, SIAM Journal on Numerical Analysis 23, 485 (1986). 

26 D. Pathria and J. L. Morris, J. Comp. Phys. 87, 108 (1990). 


