
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Multiphase phase field theory for temperature- and stress-
induced phase transformations

Valery I. Levitas and Arunabha M. Roy
Phys. Rev. B 91, 174109 — Published 21 May 2015

DOI: 10.1103/PhysRevB.91.174109

http://dx.doi.org/10.1103/PhysRevB.91.174109


1

Multiphase phase field theory for temperature- and stress-induced

phase transformations

Valery I. Levitas1 and Arunabha M. Roy2

1Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and

Material Science and Engineering, Ames, Iowa 50011, U.S.A.

2Iowa State University, Department of Aerospace Engineering, Ames, Iowa 50011, U.S.A.

Thermodynamic Ginzburg-Landau potential for temperature- and stress-induced phase

transformations (PTs) between n phases is developed. It describes each of the PTs with a

single order parameter without an explicit constraint equation, which allows one to use an an-

alytical solution to calibrate each interface energy, width, and mobility; reproduces the desired

PT criteria via instability conditions; introduces interface stresses, and allows for a controlling

presence of the third phase at the interface between the two other phases. A finite-element

approach is developed and utilized to solve the problem of nanostructure formation for mul-

tivariant martensitic PTs. Results are in a quantitative agreement with the experiment. The

developed approach is applicable to various PTs between multiple solid and liquid phases and

grain evolution and can be extended for diffusive, electric, and magnetic PTs.

I. INTRODUCTION

One of the unresolved problems of the phase field approach (PFA) for PTs is a non-contradictory

description of PTs between an arbitrary number of phases. One of the directions is related

to the description of PTs between the austenite (A) and any of the n martensitic variants

Mi and between martensitic variants [1]. It is described with the help of n independent order

parameters ηi, each for every A↔Mi. This approach was significantly elaborated in [2, 3] by im-

posing additional physical requirements to the Landau potential. In particular, the desired PT

conditions for A↔Mi and Mj ↔Mi PTs follow from the material instability conditions. Also,

the thermodynamically equilibrium transformation strain tensor is stress- and temperature-

independent, as in crystallographic theories. Each order parameter ηi encodes variation of

atomic configuration along A↔Mi transformation path; it is equal to 0 for A and 1 for Mi. In
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[2, 3] and here ηi is unambiguously related to transformation strain through some polynomial

(see Eqs. (3) and (8)).

This theory was generalized for large strain and lattice rotations [4, 5] and interface stresses

consistent with a sharp interface approach have been introduced for A-Mi interfaces [5, 6, 7].

However, the description of Mi-Mj is still not satisfactory. The A↔Mi PT is described by a

single order parameter ηi and analytic solutions for ηi for nonequilibrium interfaces [3, 5, 6,

7] allow one to calibrate interface energy, width, and mobility, as well as the temperature-

dependence of the stress-strain curve. At the same time, at a Mi-Mj interface ηi and ηj vary

independently along some transformation path in the ηi − ηj plane connecting Mi (ηi = 1 and

ηj = 0) and Mj (ηi = 0 and ηj = 1), see Fig. 1.

The interface energy, width, and mobility have an unrealistic dependence on temperature,

stresses, and a number of material parameters, which cannot be determined analytically. Con-

sequently, one cannot prescribe the desired Mi-Mj interface parameters, and also the expression

for Mi-Mj interface stresses cannot be strictly derived [5, 6].

Other n-phase approaches are based on introducing n + 1 order parameters ηi obeying

constraint
∑
ηi = 1, similar to concentrations [8, 10, 11]. The idea is that each of the PTs

should be described by a single order parameter; then interface parameters can be calibrated

with the help of the analytical solution. However, a single constraint cannot ensure this and,

in general, an undesired in this community third phase often appears at the interface between

two phases. PT criteria in terms of instability conditions are not considered. In [10] special

conditions are imposed for a three-phase system that guarantee that the third phase can never

appear at the interface between two phases. This created some artifacts in the theory (e.g.,

the necessity of equal kinetic coefficients for all PTs). All homogeneous phases are stable or

metastable independent of the driving force (temperature); i.e., thermodynamic instability,

which is the source of the PT criteria, is impossible. On the other hand, for different materials

and conditions, the third phase is observed in experiments [12] and conditions when it is present

or not are found within more advanced models [13]. Some drawbacks of imposing constraint

with the help of Lagrangian multipliers are presented and overcame in [11]. However, again,

instability conditions were not discussed in [11]. All of our attempts to formulate a theory

with constraint to find polynomials (up to the tenth degree) in order to reproduce the proper
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PT criteria (which are known from two-phase treatment) from the thermodynamic instability

conditions have been unsuccessful. This led us to the conclusion that utilizing constraint∑
ηi = 1 prevents a noncontradictory formulation of the PFA.

PFA in [3] is based on a potential in hyperspherical order parameters, in which one of the

phases, O (e.g., A or melt), is at the center of the sphere, and all others, P i (e.g., Mi or solid

phases), are located at the sphere. Hyperspherical order parameters represent a radius Υ in the

order-parameter space and the angles between radius vector ΥΥΥ and the axes ηi corresponding

to P i.

Due to some problems found in [14], the nonlinear constraint for the hyperspherical order

parameters was substituted with the linear constraint of the type
∑
ηi = 1, which, however,

does not include A or melt [14, 13]. For three phases, when constraint is explicitly eliminated,

the theory in [3, 14, 13] is completely consistent with the two-phase theory and produces proper

PT criteria. However, due to the constraint, for more than three phases, these theories cannot

produce correct PT criteria. Thus, noncontradictory PFA for more than three phases or two

martensitic variants is currently lacking.

In the letter, we develop PFA, which with high and controllable accuracy satisfy all the

desired conditions for arbitrary n phases. We utilize the same order parameters ηi like for

martensitic PT and, instead of explicit constraints, include in the simplest potential the terms

that penalize the deviation of the trajectory in the order parameter space from the straight

lines connecting each two phases. These penalizing terms do not contribute to the instability

conditions and the correct PT criteria strictly follow from the instability conditions for O↔P i

PT only. However, when the magnitude of the penalizing term grows to infinity and imposes

the strict constraint ηi + ηj = 1 and ηk = 0 for all k 6= i, j, correct PT conditions for P i↔P j

PTs do follow from the instability conditions. Because for a finite magnitude such a constraint

is applied approximately only, there is some deviation from the ideal equilibrium phases and PT

conditions. However, numerical simulations for the almost worst cases demonstrate that these

deviations are indeed negligible. This PFA allows for an analytical solution for the interfaces

between each of the two phases, which can be used to calibrate interface width, energy, and

mobility; it allows for the first time for a multiphase system to include a consistent expression

for interface stresses for each interface; it includes or excludes the third phase within the
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interface between the two phases based on thermodynamic and kinetic consideration similar

to those in [13].

We designate contractions of tensors AAA = {Aij} and BBB = {Bji} over one and two indices

as AAA···BBB = {Aij Bjk} and AAA:::BBB = Aij Bji, respectively. The subscript s means symmetrization,

the superscript T designates transposition, the sub- and superscripts e, th, and t mean elastic,

thermal, and transformational strains, III is the unit tensor, and ∇∇∇ and ∇∇∇0 are the gradient

operators in the deformed and undefromed states.

II. GENERAL MODEL

Model for n order parameters. For simplicity and compactness, the small strains will be

considered but with some minimal geometric nonlinearities required to introduce interface

stresses [5, 6, 7]. Generalization for large strain is straightforward [4, 5] (see Appendix) and

the model problem will be solved in large strain formulation. The Helmholtz free energy ψ per

unit undeformed volume has the following form:

ψ =
ρ0
ρt
ψe(εεεe, ηi, θ) +

ρ0
ρ
ψ̆θ + ψ̃θ +

ρ0
ρ
ψ∇ + ψp; (1)

ψ̆θ =
∑

Ai(θ)η
2
i (1− ηi)2 +

∑
Āijη

2
i η

2
j ; (2)

ψ̃θ =
∑

∆Gθ
i (θ)q(ηi); q(ηi) = η2i (3− 2ηi); (3)

ψp =
∑

Kij (ηi + ηj − 1)2 ηliη
l
j +
∑

Kijkη
2
i η

2
j η

2
k; l ≥ 2; (4)

ψe = 0.5εεεe:::EEE(ηi):::εεεe; EEE(ηi) = EEE0 +
∑

(EEEi −EEE0)q(ηi); (5)

ψ∇ =
∑

0.5βij∇∇∇ηi · ∇∇∇ηj; (6)

εεε = (∇∇∇0uuu)s = εεεe + εεεt + εεεθ;
ρ0
ρ

= 1 + εv; εv = εεε:::III;
ρ0
ρt

= 1 + (εεεt + εεεθ):::III; (7)

εεεt =
∑

εεεtiq(ηi); εεεθ = εεεθ0 +
∑

(εεεθi − εεεθ0)q(ηi). (8)
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Here θ is the temperature, uuu is the displacements, εεε is the strain tensor, ∆Gθ
i is the difference

in the thermal energy between P i and O, Ai and Āij are the double-well barriers between

P i and O and between P i and P j, ρ, ρ0, and ρt are the mass densities in the deformed,

undeformed, and stress-free states, respectively; βij are the gradient energy coefficients, each

coefficient, Kij, Āij, and Kijk, is equal to zero if two subscripts coincide. Despite small strain

approximation, we keep some geometrically nonlinear terms (ρ0/ρt, ρ0/ρ, and gradient ∇∇∇ with

respect to deformed state) in order to correctly reproduce interface and elastic stresses [5, 6, 7].

The application of the thermodynamic laws and linear kinetics (see, e.g. [5, 6, 7]) results

in

σσσ = σσσe + σσσst; σσσe =
ρ

ρ0

∂ψe

∂εεεe
; (9)

σσσst = (ψ∇ + ψ̆θ)III −
∑

βij∇∇∇ηi ⊗∇∇∇ηj. (10)

η̇i =
∑

LijXj =
∑

Lij

(
σσσe:::

∂(εεεt + εεεθ)

∂ηj
− ∂ψ

∂ηj
+
∑

βjk∇∇∇2ηk

)
; Lij = Lji, (11)

where Xi is the thermodynamic driving force to change ηi, Lij are the kinetic coefficients, and

σσσ is the true Cauchy stress tensor. We designate the set of the order parameters η̂0 = (0, ..., 0)

for O and η̂i = (0, ..., ηi = 1, ..., 0) for P i. It is easy to check that O and P i are homoge-

neous solutions of the Ginzburg-Landau equations (11) for arbitrary stresses and temperature;

consequently, the transformation strain and for any PT and elastic moduli are independent of

stresses and temperature [2, 3, 4].

Without the term ψp, the local part of free energy is much simpler than in [2, 3] and does

not contain complex interaction between phases. The terms with Kijk penalize the presence

of the three phases at the same material point. By increasing Kijk one can control and, in

particular, completely exclude the third phase within the interface between the two other

phases. For homogeneous states, this term always excludes the presence of the three phases at

the same point, because it increases energy compared with a two-phase state. The terms with

Kij penalize deviations from hyperplanes ηk = 0 and ηi + ηj = 1 and exponent l determines

relative weight of these penalties. In combination with the penalization of more than two

phases, this constraint penalizes deviation from the desirable transformation paths: along

coordinate lines ηi along which O↔P i PTs occur, and lines ηi +ηj = 1, ηk = 0 ∀k 6= i, j, along
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which P i ↔P j PTs occur. In such a way, we do not need to impose the explicit constraint∑
ηi = 1 and will be able to (approximately) satisfy all desired conditions, including instability

conditions. Note that there is no need for penalizing ηi = 0; however, for l = 0 the term with

Kij produces an undesired contribution to ψ for ηi = 0.

Thermodynamic instability conditions. For compactness, instability conditions will be pre-

sented for the case with the same elastic moduli of all phases and ρ0 ' ρ. Since ∂Xi(η̂k)/∂ηj =

0, instability conditions for thermodynamically equilibrium homogeneous phases result in the

following PT criteria:

O→ Pi : ∂Xi(η̂0)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≥ Ai(θ)/3; (12)

Pi → O : ∂Xi(η̂i)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≤ −Ai(θ)/3; (13)

Pj → Pi : ∂Xi(η̂j)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεθ0)−∆Gθ
i ≥ (Ai(θ) + Ā)/3 ⇒ wrong. (14)

While conditions for O↔P i PTs are logical (work of stress on jump in transformation and

thermal strains exceeds some threshold), condition for P j → P i does not contain information

about phase P j, which is contradictory even at zero stresses. Since first and second derivatives

of ψp are zero for O and P i, ψp does not change phase equilibrium and instability conditions

for homogeneous phases. However, as we will see below, it plays a key role in the development

of noncontradictory and flexible PFA.

O↔ P i phase transformations. If O↔ P i PT is considered only with all other ηj = 0, Eqs.

(2)-(6) simplify:

ψ̆θ = Ai(θ)η
2
i (1− ηi)2; ψ̃θ = ∆Gθ

i (θ)q(ηi); ψp = 0; ψ∇ = 0.5βii∇∇∇ηi · ∇∇∇ηi. (15)

EEE(ηi) = EEE0 + (EEEi −EEE0)q(ηi); εεεt = εεεtiq(ηi); εεεθ = εεεθ0 + (εεεθi − εεεθ0)q(ηi). (16)

σσσst = (ψ∇ + ψ̆θ)III − βii∇∇∇ηi ⊗∇∇∇ηi. (17)

η̇i = Lii

(
σσσe:::(εεεti + εεεθi − εεεθ0)

dq

dηi
− ∂ψ

∂ηi
+ βii∇∇∇2ηi

)
. (18)

These equations possess all desired properties [2, 3, 4] of two-phase models.
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P j↔ P i phase transformations. Next, we consider how to make the description of P j →

P i PTs completely similar to that of O↔ P i PTs. Let us increase parameters Kij and Kijk to

very high values so that they impose constraints ηi + ηj = 1 and ηk = 0 ∀k 6= i, j. Substituting

these constraints in Eq. (1) and taking into account the following properties of function q,

q (1− ηi) = 1−q (ηi) (which is crucial for our PFA), we reduce all equations to the single order

parameter:

ψ̆θ = Aij(θ)η
2
i (1− ηi)2; Aij = Ai + Aj + Āij; (19)

ψ̃θ = ∆Gθ
j + ∆Gθ

ij(θ)q(ηi); ∆Gθ
ij = ∆Gθ

i −∆Gθ
j ; (20)

EEE = EEEj + (EEEi −EEEj)q(ηi); (21)

ψ∇ = 0.5bij∇∇∇ηi · ∇∇∇ηi; bij = βii + βjj − 2βij; (22)

εεεt = εεεtj + (εεεti − εεεtj)q(ηi); εεεθ = εεεθj + (εεεθi − εεεθj)q(ηi); (23)

σσσst = (ψ∇ + ψ̆θ)III − bij∇∇∇ηi ⊗∇∇∇ηi; lij = (LiiLjj − L2
ij)/(Ljj + Lij); (24)

η̇i = lij

(
σσσe:::(εεεti + εεεθi − εεεtj − εεεθj)

dq

dηi
− ∂ψ

∂ηi
+ bij∇∇∇2ηi

)
. (25)

Pj → Pi : ∂Xi(η̂j)/∂ηi ≥ 0→ σσσe:::(εεεti + εεεθi − εεεtj − εεεθj)−∆Gθ
ij ≥ Aij(θ)/3. (26)

It is evident that Eqs.(19)-(26) for P j → P i PTs are non-contradictory (i.e., contain an ex-

pected combination of parameters of P j and P i) and coincide to within constants and desig-

nations with Eqs.(15)-(18) for O↔ P i PTs, i.e., they are as good as the equations for O↔ P i

PTs. Thus, our goal is achieved.

Energy landscape and Pj↔ Pi instability conditions for finite Kij. Note that instability

condition (26) works in the limit Kij → ∞; for finite Kij it is imposed approximately only.

To better understand the interaction between instability conditions (14) and (26), we consider

some examples. We consider the case when PT conditions for O↔ P i PTs (12), (13) and for

P j → P i PT (26) are not met, but when the wrong condition (14) is fulfilled with quite large
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deviation from the stability region. Under such conditions, P j loses its stability, but instead

of transforming to P i, the local energy minimum slightly shifts from η1 = 1; η2 = 0 to a close

point η1 = 0.989; η2 = 0.019 (Fig. 1). There is an energy barrier (saddle point) between P j

and P i and until it disappears (i.e., correct condition (26) for P j → P i PT is met), P j →

P i PT is impossible. Thus, an approximate character of the imposed constraint through the

penalty term exhibits itself in a slight shift of the local minimum from P j to some very close

point, which should essentially not affect the accuracy of the simulations. If PT conditions for

   

a) 

 

b) 

 

Figure 1: Energy level plot of the free energy at zero stresses for A1 + 3∆Gθ
1 = 1000, A1 −

3∆Gθ
1 = 400, A2 + 3∆Gθ

2 = 230, A2 − 3∆Gθ
2 = 2570, Ā + A1(θ) + 3∆Gθ

1 = −250 and
A21(θ)− 3Gθ

21 = 150, all in J/m3. Gi are the points of the local minimaxes. (b) The zoomed
part of the plot near P1.

O↔ P i and P j↔ P i PTs (13) and (14) are not fulfilled but the correct condition (26) for

P j → P i PT is met, then these equations result in Ā < 0. It is easy to show that in this case

the wrong P j → P i PT condition (14) should be also fulfilled. Thus, if the correct P j → P i

PT condition is met, this PT will occur.

III. PARAMETER IDENTIFICATION

Due to equivalence of all equations for O↔ P i and P j → P i PTs, the analytical solution

for a propagating with velocity c interface is [8]:

η = 0.5 tanh [3(x− ct)/δ] + 0.5; δ =
√

18β/Ai(θ); c = Lδ∆Gθ(θ); γ = β/δ, (27)
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where δ and γ are the interface width and energy. In contrast to solutions for other interpolating

functions q [6, 7, 5], interface width and energy are independent of ∆Gθ(θ). That is why ψ̆θ

and interface stresses σσσst are also independent of ∆Gθ(θ). All material parameters for each

bulk phase can be determined based on thermodynamic, experimental, and atomistic data as

it was done, e.g., in [2, 3] for NiAl. Eqs.(27) allow calibration for each pair of phases the three

interface-related parameters Ai(θ), β, and L when width, energy, and mobility of interfaces

between each pair of phases are known.

The obtained system of equations has been solved with the help of the finite element code

COMSOL for various problems. Here we solved exactly the same problem on the evolution

of two-variant nanostructure in a NiAl alloy during martensitic PT including tip bending and

splitting in martensitic variants as in [14]. Note that the theory in [14] for two variants satisfies

all required conditions exactly but cannot be generalized for more than two variants. Some

material parameters (like EEE,εεεti, ∆Gθ(θ), θe, ∆s) here have been chosen the same as in [14];

other (Aij(θ), βij(θ), Lij, θc) are chosen to get the temperature dependence of the energy,

width, and mobility of all interfaces, and temperature for the loss of stability of P like in [14].

Note that all thermodynamic properties of martensitic variants M1 and M2 are the same; they

differ by the transformation strain only.

We have the following definition of parameters: ∆Gθ
1 = ∆Gθ

2 = −∆s(θ − θe), where ∆s =

si−s0 is the jump in entropy between phases Mi and A, and θe is the thermodynamic equilibrium

temperature for phases Ti and A. We express the coefficients A1(θ) = A2(θ) = A∗(θ−θ∗). Here

parameter A∗ and the characteristic temperature θ∗ are related to the critical temperatures for

barrierless A→ Pi (θ0ic ) and Pi → A (θi0c ) PTs by the equations θ01c := (A∗θ∗ − 3∆sθe)/(A∗ −

3∆s) and θ10c := (A∗θ∗+ 3∆sθe)/(A∗+ 3∆s), which follow from the thermodynamic instability

conditions.

In the current simulation we used the following values: ∆s = −1.467MPaK−1, θe = 215 K,

θ01c = −183 K, θ10c = −331.65 K, θ∗ = −245.75 K, A∗ = 28MPaK−1 β01 = β02 = 5.31× 10−10

N, β12 = 5.64 × 10−10 N, L0i = L12 = 2596.5m2/Ns. These parameters correspond to a twin

interface energy EP1P2
= 0.543J/m2 and width ∆P1P2

= 0.645nm. Isotropic linear elasticity

was utilized for simplicity; bulk modulus K = 112.8GPa and shear modulus µ = 65.1GPa.

In the 2D plane stress problems, only P1 and P2 are considered. The components of the trans-
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formation strains were UUU t1 = (k1, k2, k2) and UUU t2 = (k2, k1, k2) with k1 = 1.15 and k2 = 0.93

corresponding to the NiAl alloy in [15]. In addition, Kijk = 0 and two values of K12 = 1.5×1012

and K12 = 7.25× 1013 J/m3 have been used. All lengths, stresses, and times are given in units

of nm, GPa, and ps, respectively. All external stresses are normal to the deformed surface.

IV. EVOLUTION OF MARTENSITIC NANOSTRUCTURE

Numerical procedure. We used Lagrange quadratic triangular elements with 5-6 elements

per interface width to achieve a mesh-independent solution, see [16]. This resulted in 165601

mesh points and 329760 elements with 1982883 degrees of freedom. Adaptive mesh generation

was utilized. The time-dependent equations were solved using the segregated time-dependent

solver and backward Euler integration technique [17] for 250 ps. Integration time steps were

chosen automatically such that a relative tolerance of 0.001 and absolute tolerance of 0.0001

are held.

Nanostructure. Because numerous alternative solutions exist, one has to carefully choose

the initial conditions. We did this using the following steps. An initial random distribution

of the order parameters η1 and η2 in the range [0.4; 0.8] were prescribed in a square sample

sized 50 × 50 with the austenite lattice rotated by α = 45o. The roller support was used

for one horizontal and one vertical surface, i.e., the normal displacements and shear stresses

are zero. Homogeneous normal displacements at two other surfaces were prescribed and kept

constant during simulations, which resulted in a biaxial normal strain of 0.01. Shear stresses

were kept zero at external surfaces. A two-dimensional problem under plane stress condition

and temperature θ = 100K was solved. The stationary solution for θ = 100K shown in Fig.

2a (which is practically the same as presented in [14]) was taken as an initial condition for

the next stage of simulation with the following modifications: temperature was reduced to

θ = 0K; parameter β12 was reduced to β12 = 5.64×10−11N , which led to twin interface energy

EP1P2
= 0.371J/m2 and width ∆P1P2

= 0.363nm. The final solution evolution of η1 − η2 is

presented in Fig. 2b.

Results of the current simulations for both K12 practically coincide with those in [14] (Fig.

2c); they resemble the experimental nanostructure from [15] and quantitatively reproduce the

bending angle (Fig. 2d). Thus, we proved that for two variants our theory does not work
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worse than the theory [14], which strictly satisfies all desired conditions for two variants.

However, in contrast to [14], the current theory can be applied for an arbitrary number of

variants. Since our theory splits the general n−phase case into a set of independent three-

phase formulations, this means that it will work equally well for arbitrary n as well. An

important point also is that such a complicated nanostructure was obtained from a completely

different initial nanostructure (Fig. 2a). For example, the splitting and bending of the tips

were also reproduced in [18] utilizing strain-based phase-field formulation. However, the initial

conditions in [18] were very close to the final solution, because probably otherwise the solution

converges to the primitive alternating twins. Note that the strain based order parameters are

not as universal as ηi (e.g., they cannot be used for melting or grain evolution) and as was

written in [2, 3], they do not allow one to satisfy the required conditions even for a single order

parameter. Interface stresses also were not introduced for strain-based order parameters.

Stresses. Components of the stress fields, including interface stresses, are shown in Fig. 3.

They are seldom presented in literature because of large artificial oscillations. Here, oscillations

are absent, and stress concentration has a regular character, which underlines the advantages

of the current simulations. Since twin boundaries represent invariant plane, it is generally

assumed in a sharp interface approach that they are stress-free and do not generate elastic

energy. Here, we unexpectedly observe large shear stress σxy, which changes the sign across

the twin interface. Shear stress appears due to the accommodation of large alternating shears

across a finite-width interface in a constraint sample.

                                                                                                  

          

θ=76.9o 

θ=77.1o 

P1 

P2 
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Figure 2: Initial conditions (a) and stationary solution for two-variant martensitic nanostruc-
ture exhibiting bending and splitting martensitic tips based on the current theory (b) and
theory in [14] (c); experimental nanostructure from [15] (d). Green color is for austenite, blue
and red are for martensitic variants P1 and P2.
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a) 
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Figure 3: Stationary stress fields (in GPa) for K12 = 1.5× 1012 J/m3.

V. CONCLUDING REMARKS

To summarize, as a solution of a critical outstanding problem, we developed PFA for multi-

phase materials, which with high and controllable accuracy satisfy all the desired conditions

for arbitrary n phases. Instead of explicit constraints, we included in the simplest potential

the terms that penalize the deviation of the trajectory in the order parameter space from the

straight lines connecting each of the two phases. It describes each of the PTs with the sin-

gle order parameter, which allows us to use an analytical solution to calibrate each interface

energy, width, and mobility. It reproduces the desired PT criteria via instability conditions;

introduces interface stresses, and allows us to control the presence of the third phase at the

interface between the two other phases. Finite-element simulations exhibit very good corre-

spondence with results based on the exact three-phase model in [14] (which, however, cannot

be generalized for n > 3) and with nontrivial experimental nanostructure. The developed

approach unifies and integrates approaches developed in different communities (in particular,

solidification and martensitic PTs) and is applicable to various PTs between multiple solid and

liquid phases and grain evolution, and can be extended for diffusive, electric, and magnetic PTs.
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