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Abstract 

There are ample experimental evidences indicating that the ferroelastic domain walls of incipient 

ferroelectrics, such as SrTiO3 and CaTiO3, are polar. The emergence of such interfacial polar order at a 

domain wall is exciting and believed to arise from the coupling between a primary order parameter, such 

as strain or antiferrodistortive order parameter, and polarization. There have been several mechanisms 

proposed to explain the emergence of interfacial polar order, including biquadratic coupling, 

antiferrodistortive-antiferroelectric (AFD-AFE) coupling, and flexoelectric coupling. Using CaTiO3 as an 

example, we demonstrate, using both asymptotic analytics and numerical calculation, that the 

flexoelectric coupling is likely the dominant mechanism leading to the interfacial polar order. 

Main text 

All ferroic transitions lead to the formation of domains separated by domain walls.  The overall responses 

of a ferroic solid are often strongly influenced by the behavior of domain walls. As a matter of fact, 

domain walls may possess more intriguing properties than the bulk domains, for instance, high electronic 

conductivity1–4, chirality5,6, and oxygen vacancy segregation7,8 in ferroelectric domain walls and polar 

domain wall arising from incipient ferroelectrics9–14. It was even suggested15 that the domain walls of 

ferroelectrics may be treated as new engineering elements of multifunctional materials.  

Domain walls have been extensively studied both experimentally2,10,16–23 and theoretically4,5,12,24–34. In 

particular, the classic continuum Landau-Ginzburg-Devonshire (LGD) theory has been extensively 

employed to analyze both ferroelectric properties of single domains and domain walls35,36. It has recently 

been extended to study the phenomena involving multiple order parameters at nanometer scale such as 

domain walls, and the results show good agreement with atomistic scale calculations6,37–39. Many ferroic 

oxides exhibit multiple instabilities described by different soft modes or order parameters, and it is the 

coupling among the order parameters that yields numerous interesting phenomena such as polar domain 

walls in incipient ferroelectrics, incommensurate domain patterns, improper ferroelectrics, etc. To account 

for the interactions among order parameters, several forms of couplings have been proposed in LGD 

theory including biquadratic, trilinear, and flexoelectric terms. For instance, the biquadratic coupling is a 



general symmetry-allowed term that describes competition between two order parameters5; the trilinear 

coupling leads to improper ferroelectrics40; and the flexoelectric coupling produces incommensurate 

domain patterns41. However, the relative contributions of these coupling to the structures and properties of 

domain walls remain unclear. In this letter, we study the domain walls of CaTiO3 as an example to discuss 

the roles of each aforementioned coupling term to the domain walls. In particular, we demonstrate that the 

polar domain wall in CaTiO3 is most likely to be induced by the flexoelectric coupling. 

At ambient temperature and pressure, CaTiO3 has an orthorhombic distorted-perovskite structure with 

space group Pbnm. Disregarding the minor distortion of TiO6 octahedra, the structure of CaTiO3 can be 

illustrated as a combination of two kinds of TiO6 octahedron tilts: two out-of-phase tilts along x1 and x2 

directions respectively, and one in-phase tilt around x3 direction (Glazer’s notation a−a−c+). (In this work, 

the coordinate system is chosen along the crystallographic directions of pseudocubic lattice.) These two 

kinds of tilts can also be used as order parameters to characterize the antiferrodistortive (AFD) transitions 

in CaTiO3.42 CaTiO3 may form several kinds of twin walls, or ferroelastic domain walls, among which the 

(110) twined structures, as schematically plotted in Figure 1, are the most common and intensively 

studied. It is shown both experimentally and theoretically that the twin wall is polar. With aberration-

corrected transmission electron microscopy, the displacement pattern of Ca and Ti at the domain wall is 

observed which indicates nonzero polarization along x2 direction.11 A recent confocal second harmonic 

generation experiment also confirms the polar nature of the CaTiO3 twin walls.13 Theoretical calculations 

showed similar predictions as well. From molecular dynamics14 and first-principles calculations12, it is 

found the polarization direction is associated with the twin wall angle as indicated by the red arrows in 

Figure 1. In addition to the x2 direction polarization, it is shown that there exists additional 

antiferroelectric (AFE)-like polarization distribution along x1 direction by the molecular dynamics14, first-

principles calculations12 and the LGD theory4. Such a complicated polarization configuration inside the 

twin wall has been attributed to the improper AFD-AFE coupling12, flexoelectric coupling4, or the 

biquadratic coupling5 by different research groups.  

 



Figure 1. The schematic of the simulation system. There are three domains, I, II and III with two twin 

walls. The corresponding order parameters are shown for each domain. The coordinate system is chosen 

along crystallographic directions of the pseudocubic lattice. 

In this work, we first employ the LGD theory in combination with phase-field method to elucidate the 

underlying thermodynamic driving forces leading to the formation of polar domain walls in CaTiO3.  We 

solve the state equations of LGD theory and thus get the equilibrium values of order parameters using the 

phase-field method43. The domain structure in the phase-field model is described by the spatial 

distribution of order parameters (Qi) that include spontaneous electric polarization (Pi), out-of-phase tilt 

(φi), and in-phase tilt (θi) in the case of CaTiO3. The temporal evolution of the order parameters is 

described by time-dependent Ginzburg-Landau equations 
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where L is the kinetic coefficient related to the mobility of domain walls. F is the volume integral of free 

energy density, which includes bulk free energy, gradient energy, elastic energy and electrostatic energy. 

With biquadratic coupling, the free energy density is  

( , , , , )

1
2

i i i ij i ij i j ijkl i j k l ijklmn i j k l m n ijkl i j k l

ij i j ijkl i j k l ijklmn i j k l m n ijkl i j k l

ij i j ijkl i j k l ijklmn i j k l m n ijkl i j k l

i
ijkl

j

f P E PP PP P P PP P PP P

PP

t PP

P
x

ϕ θ ε α α α μ ϕ ϕ θ θ
β ϕ ϕ β ϕ ϕ ϕ ϕ β ϕ ϕ ϕ ϕ ϕ ϕ κ θ θ
γ θ θ γ θ θ θ θ γ θ θ θ θ θ θ ϕ ϕ

ξ

= + + −

+ + + −

+ + + −

∂+
∂

0

1 1
2 2

1
2

1
2

k i k i k
ijkl ijkl

l j l j l

ijkl ij kl ijkl ij k l ijkl ij k l ijkl ij k l

b
i j ij i j

P v
x x x x x

s Q P P R G

PE E E

ϕ ϕ θ θω

σ σ σ σ ϕ ϕ σ θ θ

ε κ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ − − −

− −

                  (2) 

where α, β, and γ are Landau-Devonshire coefficients (only the coefficients of the second order terms are 

temperature dependent), ξijkl, vijkl and ωijkl are the anisotropic gradient energy coefficients of polarization, 

out-of-phase tilt and in-phase tilt respectively, tijkl, κijkl, gijkl, μijkl, λijkl, and ςijkl are coupling coefficients, sijkl 

is the elastic compliance tensor, σij is the stress, Ei is the external electric field, ε0 is the dielectric 

permittivity of vacuum, and b
ijκ is the background dielectric constant. All the coefficients can be found in 

Ref 42.  



Phase-field simulation using the free energy expression (2) is performed to examine the effect of 

biquadratic coupling between the structural order parameters (φ and θ) and its possible role in the 

generation of polar domain walls. The simulation system setup also follows Figure 1. It includes three 

domains and two domain walls. The domain walls lie in the x2-x3 plane and perpendicular to the x1 

direction. To compare with the existing results of CaTiO3 domain walls, we choose the same twin 

structure as in previous works11,12,14. The order parameters in domain I, II and III are therefore (φ1, φ2, θ3), 

(-φ1, φ2, θ3) and (φ1, φ2, θ3), respectively. The system is then simplified to a one-dimensional problem 

with the simulation size 4096Δx × 1Δx × 1Δx using the three-dimensional phase-field model. The grid 

size Δx is chosen to be 0.25 nm. Periodical boundary condition is imposed along each direction. The 

stress field  is calculated using Kachaturyan’s microelastic theory 44, and the electric depolarization field 

is obtained by solving Poisson’s equation 45. To get the designed twin structures, we start our simulation 

with the preassigned order parameter values (P1 = P2 = 0.1 C/m2, and φ1 = φ2= -θ3 = -5 pm), and then let 

the system relax to equlibrium. The calculated equilibrium values for the structural order parameters are 

5.64 pm and 5.89 pm for out-of-phase tilt components and in-phase tilt component, respectively. These 

values agree well with literature 12,46,47. The calculated angle between the two domains is 178.8˚, which is 

identical to experimental observations11. However, no polarization is observed at the domain wall and 

throughout the whole simulation system.  

Since the phase-field numerics above may be sensitive to the coefficients of the free energy, a generalized 

near-interface asymptotic analysis48 of the phase-field model with biquadratic coupling is also carried out 

here to support our conclusion. First, to simplify analytics, electrostatic contribution is ignored. The total 

free energy with up to fourth order terms is then  
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where the two non-zero stress components are given by 
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with 2 2 2 2
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mentioned that these two stress components are zero inside the domain, while nonzero near the wall. Bulk 

equilibrium values of the order parameters in the domains are 1
eϕ , 2

eϕ  and 3
eθ . Minimizing the total free 

energy with respect to polarization P1 and P2, one can easily get 
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Near the domain wall, one can write order parameters in terms of their deviation from bulk value

1 1 1
eϕ ϕ δϕ= + , 1 1P Pδ=  and 2 2P Pδ= . Assuming all the deviations are at the same order, expanding Eq. 

(5) to the first order of small deviation leads to  
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where stress relation Eq. (4) is used since all the stress components are also small quantities (propotional 

to 1δϕ ) near the domain wall. Assuming 11 44 gξ ξ= =  for simplicity, general solution for this coupled 

linear equation set is  

1 1 1 1 2 2 1

2 1 1 1 2 2 1

2 cosh( ) 2 sinh( )
2 cosh( ) 2 sinh( )

P C A x C A x
P C A x C A x

δ
δ

= +⎧
⎨ = −⎩

                                                 (7) 

2 11 3 12 3 11 2 12
22 332 2 2 2

11 12 11 12

,     U s U s U s U s
s s s s

σ σ− −= =
− −



with constants C1 and C2,
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Figure1, parameters in different domains are labeled with super-script I, II or III. Since structural 

parameters satisfy 1 2
e eϕ ϕ= , 1 1
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I IA AP C e C eδ Δ Δ= + . However, no nonzero coefficients 1C  and 2C  can be found to simultaneously 

satisfy the anti-symmetric profile of 1Pδ together with the symmetric profile of 2Pδ  observed in 

experiments. Also, without additional coupling terms, free energy (3) can only generate kink-like or 

breather-like profiles as discussed by Ref 5 (also shown in Figure 2) but not the AFE-like odd polarization 

distribution. 

 

Figure 2. The schematics of the domain wall profiles for the biquadratic coupling. The profile can be 

either kink-like or breather-like. 

We then perform the phase-field simulation by including the effect of flexoelectric coupling. All the 

simulation settings remain unchanged except that the flexoelectric contribution is added to free energy 

(2). The contribution of flexoelectricity to the total free energy density can be expressed as  
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where fijkl is the flexoelectric coupling coefficient. Due to lack of existing flexoelectric coupling 

coefficients, we simply pick the typical values49 for ferroelectric peroskites, i.e. f11 = f12 = -10 C/m and f44 

= 0. The gradient energy coefficients of polarization is renormalized accordingly due to the incorporation 

of the flexoelectricity50. The profiles of order parameters obtained from the simulation are plotted in 

Figure 3. The calculated equilibrium values for the structural order parameters are the same as the 

previous simulation. In addtion, both walls show AFE-like P1 component at the wall and a ferroelectric P2 

component, which agrees with the previous numerical calculation based on LGD theory 4. The wall of 

polarization is around four pseudocubic unit cell thick, which is wider than the wall of octahedra tilts. 

Comparing Figure 3 (a) and (b), it is found that the P1 component is invariant with the domain wall 

structure, while the sign of P2 is locked with the domain wall angle. This feature can be explained by 
2

1 1 1( )P xϕ∝ ∂ ∂ and 2 1 2 1( )P xϕ ϕ∝ ∂ ∂ 37. All the above mentioned characteristics of polar domain walls 

agree qualitatively well with both previous atomistic calculations12,14 and experimental observations11, 

although the agreement is not quantitative due to the lack of flexoelectric coupling coefficients and the 

gradient energy coeffiecients. Thus, the flexoelectric coupling can be regarded as, at least, a likely origin 

of the induced interfacial polar order.  

 

Figure 3. The calculated domain wall profiles from phase-field simulation with flexoelectric contribution. 

(a) and (b) correspond to the left and right wall in Figure 1. The P1 component shows an AFE-like profile 

which is identical in two walls, while the P2 component changes sign. The profiles of oxygen octahedra 

tilt are identical to the phase-field simulation results without including flexoelectric effect. 



To better undertand the effect of flexoelectric coupling, we carry out an analysis similar to the biquadratic 

case [Eq. (3) to Eq. (6)]. With the flexoelectric coupling term, an additional term 
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is added to Eq. (3). Here Fij = sik fkj, with i, j, and k running from 1 to 3. Expressions for the two non-zero 

stress components in Eq. (4) still holds with 2 2 2 2 1
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same result Eq. (5b) is reached for P2. From here, we take a different approach in analyzing the solution 

by looking at the linear order expansion of small deviations 1Pδ  and 2Pδ  at both sides of the domain wall. 

For the configuration demonstrated in Figure 3, the linear order equation is a good approximation at both 

sides of the wall as long as Pδ is small (for example at 0.75nm± ). For 1Pδ , equations are 
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with superscript "+" and "-" for different side of the wall, and 2 2 2
1 11 1 12 2 12 3( ) ( ) ( )e e eA t tα ϕ ϕ κ θ= − − − . To 

focus on the effect of flexoelectric coupling, we ignore the biquadratic coupling in deriving Eq. (10) (i.e.

44 0t = ). In this case, polarization 1Pδ ± is determined by the changing rate of stress along 1x . A similar 

equation for 1δϕ  can be written as  

                                       

(11)

 



with 1δϕ measures the deviation from bulk value (i.e. 1 1 1
eϕ ϕ δϕ += − + at the "+" side and 1 1 1

eϕ ϕ δϕ −= −  

at the "-" side for the setup in Figure 3a) and . Since 

1ϕ is a known even function, Eq. (11) should give 1 1δϕ δϕ+ −= which requires the stress term satisfies 

22 33 22 33σ σ σ σ+ + − −+ = + .  Back to Eq. (10), the right-hand-sides of Eq. (10a) and (10b) have opposite signs 

because the derivative of an even stress function is an odd function. This indicates that the polarization 

given by Eq. (10) should satisfy 1 1P Pδ δ+ −= − i.e. an odd polarization profile. These simple observations 

on the asymptotic polarization behavior near the bulk provides an insight into the effect of flexoelectric 

coupling and attributes the commonly observed odd polarization profile (or AFE-like) across the domain 

wall directly to the stress variation and flexoelectric coupling in the system.       

 As discussed in Ref. 10, the major difference in flexoelectric coupling and the biquadratic coupling is 

whether the stress or the stress gradient at the domain wall dominates. As shown above, the width of a 

domain wall is on the magnitude of nanometers, which give rise to a strain gradient on the magnitude of 

107 m-1. Such a huge strain gradient makes the flexoelectric effect dominant. For example, it is 

demonstrated that the additional polarization component to the conventional-believed Ising-like 180˚ 

ferroelectric domian walls are driven by the flexoelctric effect6,39.  

Another possible explanation for the origin of polar domain walls is the so-called improper AFD-AFE 

coupling12, which is demonstrated universal in perovskite with AFD 51. The coupled AFE modes include 

5X + mode (Ca and O atoms at Wyckoff 4c moving along [110]) and 5R+  mode (Ca atoms moving along 

[110]). To consider the AFD-AFE coupling in CaTiO3, the total free energy needs to include 1 1 3X ϕ θ , 

2 2 3X ϕ θ , 2
1 1 3R ϕ θ , 2

2 2 3R ϕ θ 51, and some more terms by symmetry52. The total free energy with the two 

AFE modes ( 5X +  and 5R+ ) can be written as12,52,53 
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Since the coefficients of AFD-AFE coupling are not available, we cannot perform numerical simulations. 

But by a similar asymptotic analysis as we did for biquadratic coupling, we find that the signs of X1 and 

R1 are locked with 1
eϕ . It simply suggests that the AFE-AFD coupling may capture the polar domain wall 

features. However, this hypothesis cannot explain the similar AFE-like polarizations at the 180˚ domain 

walls of AFD-free tetragonal BaTiO3
6,39 or PbTiO3

29,54, which can be well resolved by the flexoelectric 

effect. The essential difference between the flexoelectric coupling and the improper AFD-AFE coupling 

is that the former describes the interaction between the optical mode (polarization) and the acoustic mode 

(AFD); while the latter describes the competition between two acoustic modes (AFE and AFD). As 

demonstrated by first-principles calculations55, the optical mode is inherently unstable in CaTiO3. Simply 

by manipulating the epitaxial strain, the AFD can be suppressed and thus give rise to polarization42,55.  

Therefore, it is reasonable to conclude that the emergence of AFE-like polarization at the domain wall is 

due to the inherent instability of the optical mode. But more experimental and theoretical studies are 

needed to further clarify the mechanism. 

To summarize, employing the phase-field modeling and asymptotic analysis we investigated the origin of 

the polar domain walls in incipient ferroelectrics CaTiO3 by including several coupling terms in the GLD 

theory.  It is shown that the biquadratic coupling of AFD and polarization alone is unable to produce all 

the key features of the polarization at the domain walls, while the domain wall structures generated by 

flexoelectric coupling agree qualitatively with both previous calculations and experimental observations.  

The improper AFD-AFE coupling may also give rise to the complex polarization distribution at the 

domain wall, but it ignores the instability of the optical mode (polarization) and cannot explain the similar 



polarization profiles of the pure ferroelectric domain walls. However, further studies are still needed to 

exclude this possibility. 
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