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Abstract

We demonstrate experimentally the possibility to reveal fluctuations in the eigenfrequency of

a resonator when the frequency noise is of the telegraph type. Using a resonantly driven mi-

cromechanical resonator, we show that the time-averaged vibration amplitude spectrum exhibits

two peaks. They merge with increasing rate of frequency switching and the spectrum displays an

analog of motional narrowing. We also show that the moments of the complex amplitude depend

strongly on the frequency noise characteristics. This dependence remains valid even when strong

thermal or detector noise is present.

PACS numbers: 05.40.Ca, 05.45.-a, 72.70.+m, 85.85.+j
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I. INTRODUCTION

The decay and loss of coherence of oscillations is of paramount importance in resonators1,

from Josephson junctions2,3 to nano- and opto-mechanical systems4–7. In the vast majority of

cases where the resonator is coupled to a thermal bath, the decay of vibrations is associated

with thermal fluctuations in both the amplitude and the phase of the vibrations. Phase noise

is particularly important because it directly determines the sensitivity of these devices to act

as resonant detectors8 and their stability to serve as precision clocks9. Apart from originating

thermally, phase fluctuations can also arise due to fluctuations in the eigenfrequency of the

resonator10. In mechanical systems, such frequency noise can be generated by a number

of sources, including the coupling of the vibration mode to two-level systems11,12, random

adsorption and desorption of molecules on the surface of the resonator13–15, as well as the

diffusion of adsorbed molecules along the resonator16.

There has been much interest in identifying frequency noise because study of its statistics

allows one to probe the underlying physics of mesoscopic systems15,17,18. Frequency noise

can be directly measured if the eigenfrequency varies slowly with time and thus can be

accurately measured by, for instance, fitting to a resonance peak. Rapid changes of the

eigenfrequency (faster than the inverse damping constant) may be detectable by observing

the ringdown of oscillations or driving the resonator into self oscillations with a phase locked

loop. However, due to the presence of detector noise and/or thermal noise, in practice it is

not straightforward to isolate frequency fluctuations from other sources of phase noise.

To characterize phase noise, a common method involves driving the resonator with a

sinusoidal excitation at a frequency close to the eigenfrequency and measuring the two

oscillation quadratures X and Y that are in phase and out of phase with the drive9,19,20.

For sufficiently large oscillation amplitudes, the anisotropy of the distribution in the X-Y

phase space due to frequency noise can exceed the broadening due to thermal and detector

noise. Using this method, the intrinsic frequency fluctuations of a silicon nitride resonator

was recently measured20. The feasibility of this approach relies on the resonator remaining

in the linear regime even in the presence of the strong periodic drive. For resonators with a

low threshold of onset of nonlinearity, including graphene and carbon nanotube mechanical

resonators13,21–23, such scheme may not be applicable. Recently, it is proposed that frequency

noise can be identified in the spectra of the higher moments of the complex amplitude24,25
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of vibrations. Furthermore, the higher moments also provide useful information about noise

characteristics.

In the present paper, we perform a comprehensive study of frequency noise of the tele-

graph type. The experiment is done with a micromechanical torsional resonator. When

the resonator is subjected to random telegraph frequency noise (RTFN), its eigenfrequency

jumps randomly between two values ω1,2 = ω0 ±∆/2. The separation between the two fre-

quencies ∆ and the jumping rate W are chosen to be much smaller than the eigenfrequency.

We record the complex amplitude of oscillations u in response to a sinusoidal driving force.

When ∆ is larger than the damping constant Γ, the amplitude spectrum |〈u〉| consists of two
distinct peaks for small W (〈. . .〉 stands for the time-averaged value). As W increases, the

two peaks merge into a single peak, displaying spectral broadening followed by narrowing

in a manner analogous to motional narrowing26,27. For ∆ ∼ max(Γ,W), the broadening is

small, making it difficult to identify the existence of frequency noise solely from the conven-

tional spectrum of the response to periodic drive. We demonstrate that the deviation of the

higher moments of the complex amplitude 〈un〉 from the powers of the averaged complex

amplitude 〈u〉n unambiguously indicates the presence of frequency noise. The shapes of

the spectra of |〈u2〉/〈u〉2| and |〈u3〉/〈u〉3| depend strongly on W and ∆ of the RTFN, in

good agreement with theory. Remarkably, this method of studying the characteristics of

the frequency noise remains valid even in the presence of strong thermal or detector noise,

when conventional schemes fail to reveal the existence of frequency noise. It does not require

driving the resonator to large vibrational amplitudes, and thus avoids the problems related

to the resonator nonlinearity.

II. MICROMECHANICAL TORSIONAL RESONATOR AND DETECTION CIR-

CUITRY

The torsional resonator in our experiment consists of a highly doped polycrystalline

silicon plate with dimensions 200 µm × 200 µm × 3.5 µm, suspended by two torsional rods

(36 µm × 4 µm × 2 µm) at the middle of opposite edges [Fig. 1(a)]. Two electrodes are

located underneath the plate, one on each side of the torsional rods. The gap between the

top plate and the electrodes is created by etching away a 2 µm sacrificial silicon oxide layer.

The rotation angle θ of the plate is measured by a capacitance bridge28 that detects the
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FIG. 1. (Color online) (a) Scanning electron micrograph of the micromechanical torsional oscillator.

(b) Cross-sectional schematic of the device and the measurement circuitry. (c) Typical telegraph

noise voltage that is applied to the left electrode. (d) The amplitude spectra of the resonator |〈u〉|

with eigenfrequency shifts ξ = ±∆/2 (right and left peak respectively). ∆ = 1.665 rad s−1 is

constant in time. The dash-dotted curve is an average of the two solid curves.

difference of the capacitance C1 and C2 between the top plate and the two bottom electrodes

[Fig. 1(b)]. Two 180◦ out-of-phase ac voltages (Vc1 and Vc2) at frequency ωcarrier (typically

2.5× 107 rad s−1 ≫ ω0) are applied to the two bottom electrodes respectively. As the plate

rotates, C1 increases and C2 decreases. For small rotations, the amplitude of the ac voltage

at ωcarrier on the top plate is proportional to C1 −C2, which is in turn proportional to θ. A

lockin amplifier referenced to ωcarrier measures the ac voltage on the top plate, yielding an

output that is proportional to θ(t). All measurements are performed at 77 K and < 10−5

torr.

The equation of motion of the top plate is given by:

θ̈ + 2Γθ̇ + [ω0 + ξ(t)]2θ = F cos(ωF t) + fth(t). (1)

The term F cos(ωF t) represents a periodic electrostatic torque generated by a sinusoidal

voltage VF (amplitude 100 µV) on top of a dc voltage (−0.1 V) applied to the electrode

on the right. ωF is chosen to be close to the eigenfrequency ω0 = 134024.383 rad s−1 in

the absence of frequency noise ξ(t). F is kept small so that the oscillations remain linear.

Γ = 0.35 rad s−1 is the damping constant and fth represents the thermal noise. To measure

the oscillation amplitude, the output of the first lockin amplfier (proportional to θ(t) as
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described earlier) is fed into a second lockin amplifier that is referenced to ωF . The output

of the second lockin amplifier X(t) and Y (t) give the oscillation amplitude in phase and out

of phase with the periodic driving torque respectively.

Changes in the resonant frequency ξ(t)(≪ ω0) are induced by a voltage Vξ applied to the

left electrode, by the spring softening effect associated with the electrostatic force gradient.

Figure 1(d) shows the oscillation amplitude as a function of δω = ωF −ω0. The blue and red

curves are measured when ξ remains constant with time, at values of ±∆/2 where ∆ = 1.665

rad s−1, corresponding to dc voltages of V1 = 0 V and V2 = −28 mV respectively applied to

the left electrode.

Next, we replace the constant dc voltages by a voltage signal that consists of telegraph

noise switching back and forth between the two voltages V1 and V2, so that the eigenfrequency

of the resonator jumps randomly between the two values ω0 ±∆/2. The telegraph voltage

signal is generated by a J-K flipflop, triggered by Gaussian noise that is created by amplifying

the Johnson noise of a 50 Ω resistor. Switching of the flipflop occurs when the Gaussian noise

exceeds a threshold. The rate of switching W is therefore controlled by the Gaussian noise

intensity. For all measurement presented here, W is chosen to be at least 296 times smaller

than the eigenfrequency. We checked that the time intervals between switching of the flipflop

are random and obey Poisson statistics. To eliminate ringing of the top plate, an RC filter

is used to increase the rise time of the voltage steps to τ = 0.011 ms (1/ω0 < τ ≪ 1/W ).

III. COMPLEX VIBRATION AMPLITUDE AND THE HIGHER MOMENTS IN

THE PRESENCE OF TELEGRAPH FREQUENCY NOISE

In the analysis, it is convenient to transform the resonator motion into the rotating frame

and introduce the complex vibrational amplitude u = X + iY that is given by:

θ(t) = u exp(iωF t) + u∗ exp(−iωF t),

dθ(t)

dt
= iωF [u exp(iωF t)− u∗ exp(−iωF t)]. (2)

In the experiment, X(t) and Y (t) are the oscillation amplitudes that are in phase and out of

phase with the periodic driving torque respectively, measured by the second lockin amplifier.

The effect of different types of frequency noise on the time averaged |〈u〉| and the higher

moments |〈un〉| (n = 1, 2, . . .) was described in detail in Ref. [25]. Here we apply this theory
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to the telegraph frequency noise used in our experiment. |〈un〉| can be obtained from a

vector U(n) with two components Ui(n)(i = 1, 2):

M(n)U(n) = −inF

4ωF

U(n− 1), (3)

where

M(n) = n(Γ + iδω)I− inσz∆

2
+W,

W =
1

2





W −W

−W W



 , U(0) =





1

1



 .

I, σz are the identity matrix and Pauli matrix respectively. The solution of Eq. (3) is

U(n) = n!(
−iF

4ωF

)n
1
∏

k=n

M−1(k)U(0). (4)

The averaged moments are given by 〈un〉 = (1 1) ·U(n)/2.

In the absence of frequency noise, |〈u〉| is the square root of a Lorentzian function

[Fig. 1(d)]. When the resonator is subjected to RTFN, the most intuitive case involves

W/∆ ≪ 1, where either the interval between the two frequencies is large or the switching

rate is small. In a simple picture, the resonator settles into one of the two oscillation states

with well-defined amplitude and phase between consecutive switching events. One expects

that the amplitude spectrum is the weighted summation of two independent amplitude spec-

tra, with the weights being proportional to the occupation probability of the two states (both

are 1/2 for the telegraph noise we used). In Fig. 1(d), the dash-dotted curve is the average

of the red and blue curves. Since ∆ ∼ 4.8Γ, two peaks can be clearly resolved. As W/∆

increases, the spectrum of |〈u〉| evolves according to Eq. (4) in a non-trivial manner.

IV. MEASURED COMPLEX VIBRATION AMPLITUDE: MERGING OF SPEC-

TRAL PEAKS WITH INCREASING SWITCHING RATE

Figure 2(a) shows the measured |〈u〉| vs driving frequency ωF when the resonator is

subjected to RTFN with a fixed ∆ but different switching rates W . The measurement time

for each frequency is chosen to be sufficiently long (involving more than 300 switches) to

accurately determine time-averaged values of u . At W/∆ = 0.05 rad−1, two peaks are

clearly resolved as expected [see the hollow triangles in Fig. 2(a)]. However, as W increases,
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FIG. 2. (Color online) (a) Measured spectra of the time-averaged complex amplitude |〈u〉| of the

resonator under RTFN with different W/∆. ∆ is kept constant at 1.665 rad s−1. For clarity, suc-

cessive curves are shifted by 10 µrad. (The symbols ⊲, ∗, ◦, �, ⋄, and • correspond to W/∆ = 0.05,

0.15, 0.45, 2.36, 43.26 rad−1 and no frequency noise applied respectively.) (b) The corresponding

ratios |〈u2〉/〈u〉2|, and (d) |〈u3〉/〈u〉3|. (c) The expanded views of the ratios |〈u2〉/〈u〉2|, and (e)

|〈u3〉/〈u〉3| around 1. In all panels, the lines are the calculated spectra.

the simple picture described above is no longer valid. For W/∆ = 2.36 rad−1, the two peaks

merge into a single peak with width smaller than ∆ (solid squares). As predicted in Refs.

[24] and [25], the partial spectra are strongly coupled and interference occurs. An intuitive

understanding is that in order to resolve two peaks separated by ∆ by sweeping the driving

frequency, one needs to measure for a duration longer than 1/∆. When W ≫ ∆,Γ, the

resident time in one state is not long enough for the resonator to discriminate between the

two states and the spectrum becomes a single peak centered at ω0 whose width is broadened

from the linewidth Γ in the absence of frequency noise. As a result, the frequency noise

leads to diffusion of the oscillator phase. As W/∆ is further increased to 43.26 rad−1, the

single peak continues to narrow [hollow diamonds in Fig. 2(a)]. In this limit, the resonator

can no longer respond to the rapid changes in the resonant frequency. Vibrations occur as if

the resonant frequency is held at a constant, time-averaged value. The scenario is analogous

to motional narrowing in nuclear magnetic resonance where atoms undergo diffusion in

liquids26,27. When the spectral modulation amplitude is much smaller than the inverse of

the modulation correlation time, the atoms experience an averaged magnetic field and the

resonance linewidth is smaller compared to the case when the atoms are stationary. In
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Fig. 2(a), the lines are the calculated amplitude spectrum based on Eqs. (3) and (4) with no

fitting parameters. There is good agreement between measurement and theory for all values

of W/∆.

V. MEASURED HIGHER MOMENTS OF THE COMPLEX VIBRATION AM-

PLITUDE

Next, we study the effect of the RTFN on the averaged second and third moments.

Figures 2(b) and 2(d) plot the ratios |〈u2〉/〈u〉2| and |〈u3〉/〈u〉3| respectively, corresponding
to the same parameter values in Fig. 2(a). Figures 2(c) and 2(e) zoom into the regions

where the ratios are close to 1. As shown by the solid circles, in the absence of external

frequency noise, both ratios are equal to 1 within experimental uncertainty. In the presence

of RTFN, they deviate from 1. The shape of the spectra is determined by ∆ and W . At

W/∆ = 0.05 rad−1, the spectrum of |〈u2〉/〈u〉2| displays a single peak centered at ω0 while

the entire curve is above 1 (hollow triangles). As W increases, the spectrum dips below 1

with two maxima on its sides. When W increases beyond ∆ and Γ, the ratio approaches 1.

The spectra of |〈u3〉/〈u〉3| evolve in a qualitatively similar fashion. There is good agreement

with theory (solid lines) in Figs. 2(b-e).

VI. EFFECTS OF THERMAL/DETECTORNOISE AND MEASUREMENT TIME

For several parameter values in Fig. 2, the spectrum of |〈u〉| exhibits a single peak in the

presence of RTFN while |〈u2〉/〈u〉2| and |〈u3〉/〈u〉3| deviates significantly from 1. In such

cases, the analysis of the high moments of u allows unambiguous identification the existence

of frequency noise even when the thermal or detector noise is strong. Figure 3(a) plots the

averaged amplitude spectrum of the resonator for relatively weak frequency noise (∆ = 0.5Γ

and W/∆ = 1.76 rad−1). The spectrum is slightly broadened but is still well-fitted by the

square root of a Lorentzian, yielding a width that is 4.6% larger than the intrinsic damping

constant Γ. By examining the width of the amplitude spectrum alone, it is not possible to

separate the effects of frequency noise from damping. To reveal the existence of frequency

noise, the conventional method involves examining the complex amplitude distribution in

the X-Y phase space. Figure 3(b) shows three different distributions when ωF is set to be
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FIG. 3. (Color online) (a) Measured amplitude spectrum under weak frequency noise (∆ = 0.5Γ,

W/∆ = 1.76 rad−1). The solid line is a fit of the square root of a Lorentzian, yielding a width that

is 4.6% larger than Γ. (b) The distribution of the measured complex amplitudes in the X-Y phase

diagram. With the external frequency noise removed, thermal motion of the resonator leads to

isotropic distributions centered at the origin (no periodic drive, red) and at the bottom (periodic

drive at ωF = ω0, orange). The dashed line represents the calculated X and Y when the driving

frequency is swept through ω0. When the resonator is subjected to frequency noise as in (a), the

distribution (blue) elongates along the dashed line. (c) The bandwidth of the lock-in is increased

by about 1, 000 so that detector noise makes it more difficult to identify frequency fluctuations.

equal to ω0. For the red points, the driving amplitude F is turned to zero and external

frequency noise is absent. Readings of the lock-in amplifier are recorded every 33 ms with a

time constant of 300 ms. The finite width of the distribution is associated with the thermal

mechanical fluctuations (∼ 0.2 µrad) of our resonator at 77 K. When F is turned back on,

the distribution is displaced along the vertical axis so that it is centered at a negative Y

value, because the average oscillation phase lags behind the drive by π/2 at resonance. Both

distributions are circular in shape due to the phase-random nature of thermal noise. When

the RTFN is introduced, the distribution becomes elongated along the X direction. Such

anisotropic broadening is distinct from that associated with thermal noise. In general, it

serves as a signature for the presence of frequency noise.

The aforementioned method of isolating the contributions of frequency noise becomes

inapplicable when the thermal noise of the resonator or detector noise in the electronic

circuit is large. In Fig. 3(c), we repeat the measurement with the detection bandwidth

increased by about a factor of 1, 000 while the external frequency noise remains unchanged.

The phase-random detector noise leads to additional isotropic broadening in the X-Y phase

space, beyond that induced by thermal noise. For the distribution in Fig.3(c) in the presence

of frequency noise and periodic driving, the elongation in the distribution due to frequency
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noise is largely masked by the detector noise. Figure 3(c) shows that it becomes significantly

more difficult to identify frequency noise by inspecting the distribution in the X-Y phase

space when either the thermal noise or the detector noise is large.
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FIG. 4. Spectra of the ratios (a) |〈u2〉/〈u〉2|, and (b) |〈u3〉/〈u〉3| for the same experimental con-

ditions and under the same frequency noise as in Fig. 3. The open and solid circles correspond to

lockin time constants of 300 ms and 300 µs respectively. They correspond to panels (b) and (c) of

Fig.3 respectively. The solid line is the theoretical prediction using Eq. (4). The dashed line shows

the calculated values when the telegraph frequency noise is replaced by white Gaussian frequency

noise with the intensity D = ∆/2
√
2.

Figure 4(a) plots, for the same experimental conditions and under the same frequency

noise as in Fig. 3, the spectra of the ratio |〈u2〉/〈u〉2|. The solid circles and hollow circles in

Fig.4(a) correspond to the measured values for large [Fig.3(c)] and small [Fig.3(b)] detector

noise respectively. To make the statistical error comparable, the time of averaging for the

solid circles is chosen to be 4 times longer than the hollow circles. Both the solid circles and

the hollow circles are in good agreement with the prediction of Eq. (4), shown as the solid

line. Provided that the resonator and the detection circuit remain in the linear regime, the

predicted values are independent of the presence of thermal and detector noise because both

are phase random relative to the periodic driving. Figure 4(b) shows a similar plot for the

ratio |〈u3〉/〈u〉3|. Our measurements support the notion that the deviations of the higher

moment ratios |〈un〉/〈u〉n| from one remain a robust indicator of the presence of frequency

noise, even when the thermal noise and/or detector noise is strong.

For all the data presented in this paper, the measurement time is chosen to be much longer

than the inverse switching rate, so that the time-averaged values of u and the higher moments

are associated with many frequency jumps to reduce the measurement uncertainty. In this

limit, the predicted lineshapes of the spectra of |〈u2〉/〈u〉2| and |〈u3〉/〈u〉3| are independent

of the measurement time. In experiments where thermal or detector noise are present, the
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measurement time may need to be further increased for accurate measurement of these

ratios.

VII. COMPARISON OF THE EFFECTS OF TELEGRAPH NOISE AND GAUS-

SIAN NOISE

The analysis of the spectra of the higher moments of the complex amplitude is not only

limited to telegraph frequency noise. In Figs. 4(a) and 4(b), the dashed line shows the

predicted ratios of |〈u2〉/〈u〉2| and |〈u3〉/〈u〉3| when the frequency noise ξ(t) follows a white

Gaussian distribution, instead of jumping randomly between two levels25. Here, the intensity

D of the Gaussian frequency noise is chosen to be ∆/2
√
2, where 〈ξ(t)ξ(t′)〉 = 2Dδ(t−t′), so

that the telegraph noise and Gaussian noise have the same variance. In both Figs. 4(a) and

4(b), the ratios for Gaussian noise deviate from one, but in a manner different from telegraph

noise. They remain smaller than one over the entire range of δω, attaining a minimum at

δω = 0. In contrast, for the measurements with telegraph noise [Figs. 2(b), 2(d), 4(a) and

4(b)], there exists a certain range of δω where the ratios exceed 1. It is possible that in

addition to determining the existence of frequency noise, the analysis of the higher moments

of u might prove useful in the study of noise characteristics. Based on the current study, we

cannot conclude if the aforementioned differences in the spectra are specific to the ranges of

parameters in our experiment or universal features of telegraph and Gaussian noise. This is

an important topic that warrants further theoretical analysis.

VIII. CONCLUSIONS

We have demonstrated that the presence of RTFN can be identified by the moments of the

complex amplitude u of an underdamped driven micromechanical oscillator. When either

the interval between the two frequencies is large or the switching rate is small, the time-

averaged vibration amplitude spectrum exhibits two peaks. They merge with increasing rate

of frequency switching and the spectrum displays an analog of motional narrowing. We also

show that the moments of the complex amplitude depend strongly on the frequency noise

characteristics. Such analysis of the higher moments of u are particularly useful in revealing

the existence of frequency noise when thermal or detector noise is strong. Moreover, this
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method is directly applicable to other linear resonators with high quality factors, such as

Josephson junctions3,29 and optical cavities.
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X. APPENDIX: INDEPENDENCEOF THE HIGHER MOMENTS OF COMPLEX

VIBRATIONAL AMPLITUDE ON THERMAL/DETECTOR NOISE

Thermal motion of the resonator and/or detector noise in the measurement circuitry often

prevents one from identifying the existence of frequency noise using conventional methods

such as measurement of the ringdown of oscillations. In the main text, we demonstrated

experimentally that by measuring the ratios of the higher moments |〈u2〉/〈u〉2| or |〈u3〉/〈u〉3|,
it is possible to detect the existence of frequency noise even when detector noise is strong,

provided that sufficient averaging is performed. Here, we provide an explanation to why

such an analysis is immune to thermal/detector noise.

In the experimental measurement of u, the recorded signal can be written as:

u = (X +∆X) + i(Y +∆Y ). (5)

∆X and ∆Y originates from thermal or detector noise. They have zero mean and are

uncorrelated with each other and also with X and Y if the resonator and detection circuit

both remain linear. Provided that sufficient averaging is done, |〈u〉n| equals |〈X + iY 〉n|.
The numerator of the ratio considered in the main text, |〈un〉|, contains cross terms between

∆X , ∆Y , X and Y . For example, consider the case of n = 2 measured in our experiment:

〈[(X +∆X) + i(Y +∆Y )]2〉 = 〈X2〉 − 〈Y 2〉

+2(〈X〉〈∆X〉 − 〈Y 〉〈∆Y 〉) + (〈(∆X)2〉 − 〈(∆Y )2〉)

+ i(〈X〉〈Y 〉+ 〈∆X〉〈Y 〉+ 〈∆Y 〉〈X〉+ 〈∆X〉〈∆Y 〉) (6)

All the terms with 〈∆X〉 or 〈∆Y 〉 average to zero. Because ∆X and ∆Y due to ther-

mal/detector noise follow the same distribution, 〈(∆X)2〉 = 〈(∆Y )2〉. Therefore |〈u2〉| is

12



identical to the case when thermal/detector noise are absent. In general, phase noise is

incorporated into the higher moments while additive noise such as thermal or detector noise

are not. As a result, with sufficient averaging the higher moments can be used to reveal the

existence of frequency noise.
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