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The strong Coulomb interactions and the small exciton radii in two-dimensional metal dichalco-
genides can result in very fast capture of electrons and holes of excitons by mid-gap defects from
Auger processes. In the Auger processes considered here, an exciton is annihilated at a defect site
with the capture of the electron (or the hole) by the defect and the hole (or the electron) is scat-
tered to a high energy. In the case of excitons, the probability of finding an electron and a hole near
each other is enhanced many folds compared to the case of free uncorrelated electrons and holes.
Consequently, the rate of carrier capture by defects from Auger scattering for excitons in metal
dichalcogenides can be 100-1000 times larger than for uncorrelated electrons and holes for carrier
densities in the 1011-1012 cm−2 range. We calculate the capture times of electrons and holes by
defects and show that the capture times can be in the sub-picosecond to a few picoseconds range.
The capture rates exhibit linear as well as quadratic dependence on the exciton density. These fast
time scales agree well with the recent experimental observations and point to the importance of
controlling defects in metal dichalcogenides for optoelectronic applications.

I. INTRODUCTION

Many body interactions play an important role in
determining the electronic and optoelectronic proper-
ties of two-dimensional (2D) transition metal dichalco-
genides (TMDs). The exciton binding energies in 2D
chalcogenides are almost an order of magnitude larger
compared to other bulk semiconductors1–5. The strong
Coulomb interactions and small exciton radii in 2D-
TMDs result in large optical oscillator strengths3,7,8 and
short radiative lifetimes10. In this paper we show that
the same factors also result in very fast capture of elec-
trons and holes of excitons by defects from Auger pro-
cesses leading to fast non-radiative recombination rates.
The basic idea can be understood as follows. Consider
the Auger process in which a hole (in the valence band)
scatters off an electron (in the conduction band) and is
captured by a mid-gap defect level and the electron (in
the conduction band) takes the energy released in the
hole capture process. In the case of uncorrelated elec-
trons and holes, the rate for this process is proportional
to the product of the hole density p and the probability of
finding an electron near the hole, which is proportional to
the electron density n. But in the case of tightly bound
excitons, an electron is present near the hole with a very
high probability proportional to |φ(~r = 0)|2, where φ(~r)
is related to the exciton wavefunction (see the discussion
below). Therefore, the rate for a hole (or an electron)
in a tightly bound exciton to get captured by a defect
is proportional to the exciton density times |φ(~r = 0)|2.
Generally speaking, Auger rates in semiconductors are
considered to be important only at large carrier densi-
ties11. But given the small exciton radii in 2D-TMDs
(in the 7-10Å range), |φ(~r = 0)|2, which is inversely pro-
portional to the square of the exciton radius, can be ex-
tremely large and, consequently, Auger capture rates in
2D-TMDs can be very fast. Compared to the rates for
direct electron-hole recombination via interband Auger

scattering, which can be limited by the orthogonality of
the conduction and valence band Bloch states, the rates
for the capture of electrons and holes of excitons by de-
fects can be very fast when the defect states have a good
overlap with the conduction or valence band Bloch states.
Quantum efficiencies of TMD light emitters and de-

tectors that have been reported are extremely poor; in
the .0001-.01 range25–29. Similar quantum efficiencies
for TMDs have been observed in photoluminescence ex-
periments1,23,30. Therefore, most of the electrons and
holes injected electrically or optically in TMDs recom-
bine non-radiatively. Given that the average radiative
lifetimes of excitons in TMDs are in the range of hun-
dreds of picoseconds to a few nanoseconds10, the non-
radiative recombination or capture times in TMDs are
expected to be of the order of a few picoseconds. Sev-
eral experimental results on the ultrafast carrier dynam-
ics in photoexcited monolayer MoS2 do indeed point to
non-radiative recombinaton and/or capture times in the
few picoseconds range13–15,23. The mechanisms by which
electrons and holes recombine non-radiatively and/or are
captured by defects, and the associated time scales, re-
main to be clarified. The results in this paper show that
electrons and holes of excitons in TMDs can get cap-
tured by defects on very short times scales that are in
the sub-picosecond to a few picoseconds range resulting
in exciton annihilation. The capture rates exhibit lin-
ear as well as quadratic dependence on the exciton den-
sity (defect-assisted exciton-exciton annihilation). The
quadratic dependence of the exciton annihilation rate on
the exciton density is generally considered to be an ex-
clusive characteristic of exciton-exciton annihilation pro-
cesses via direct interband Auger scattering. Although
the discussion in this paper focuses on monolayer MoS2,
the analysis and the results presented here are expected
to be relevant to all 2D-TMDs, and are expected to be
useful in designing metal dichalcogenide optoelectronic
devices as well as in helping to understand and interpret
experimental data13–15,23.
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II. THEORETICAL MODEL
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FIG. 1: Two basic Auger processes for the capture of an elec-
tron (a) or a hole (b) of an exciton by a defect state are
depicted11,12.

A. Introduction

The two basic Auger processes for the capture of an
electron (a) or a hole (b) of an exciton by a defect state
are depicted in Fig.1. Proper partitioning of the Hamil-
tonian is important in order to compute the rates of these
processes. We discuss the terms in the Hamiltonian de-
scribing various processes below.

B. The Non-interacting Hamiltonian

The crystal structure of a monolayer of group-VI
dichalcogenidesMX2 (e.g. M=Mo,W and X=S,Se) con-
sist of X-M -X layers, and within each layer theM atoms
(or the X atoms) form a 2D hexagonal lattice. Each
M atoms is surrounded by 6 nearest neighbor X atoms
in a trigonal prismatic geometry with D1

3h symmetry.
The valence band maxima and conduction band min-
ima occur at the K and K ′ points in the Brillouin zone.
Most of the weight in the conduction and valence band
Bloch states near the K and K ′ points resides on the
d-orbitals of M atoms4,16,31. The spin up and down va-
lence bands are split near the K and K ′ points by 0.1-
0.2 eV due to the spin-orbit-coupling4,9,16,31. In com-
parison, the spin-orbit-coupling effects in the conduction
band are much smaller9. Assuming only d-orbitals for the
conduction and valence band states, and including spin-
orbit coupling, one obtains the following simple spin-
dependent tight-binding Hamiltonian (in matrix form)
near the K(K ′) points16,

[

∆/2 h̄vk−
h̄vk+ −∆/2 + λτσ

]

(1)

Here, ∆ is related to the material bandgap, σ = ±1
stands for the electron spin, τ = ±1 stands for the K
and K ′ valleys, 2λ is the splitting of the valence band

due to spin-orbit coupling, k± = τkx ± iky, and the ve-
locity parameter v is related to the coupling between the
orbitals on neighboring M atoms. From density func-
tional theories21,31, v ≈ 5−6×105 m/s. The wavevectors
are measured from the K(K ′) points. The d-orbital ba-
sis used in writing the above Hamiltonian are |dz2〉 and

(|dx2−y2〉+ iτ |dxy〉)/
√
216. We will use the symbol s for

the combined valley (τ) and spin (σ) degrees of freedom.
Defining ∆s as ∆−λτσ, the energies and eigenvectors of
the conduction and valence bands are6,16,

E c
v ,s

(~k) =
λτσ

2
+ γ

√

(∆s/2)2 + (h̄vk)2 (2)

|v c
v ,
~k,s〉 =

[

cos(θγ,~k,s/2)e
−iτφ~k

/2

τγ sin(θγ,~k,s/2)e
iτφ~k

/2

]

(3)

Here, γ = 1 (or −1) stands for the conduction (or the

valence) band, φ~k is the phase of the wavevector ~k, and,

cos(θγ,~k,s) = γ
∆s

2
√

(∆s/2)2 + (h̄vk)2
(4)

Near the conduction band minima and valence band max-
ima, the band energy dispersion is parabolic with well-
defined effective masses, me and mh, for electrons and
holes, respectively.
The Hamiltonian describing electron states in the con-

duction band, valence band, and a mid-gap defect state
is,

Ho =
∑

~k,s

Ec,s(~k)c
†
~k,s
c~k,s +

∑

~k,s

Ev,s(~k)b
†
~k,s
b~k,s

+
∑

σ

Edd
†
σdσ (5)

Here, c~k,s, b~k,s, and dσ are the destruction operators for

the conduction band, valence band, and defect states,

respectively. The bandgap is Egs,s′ = Ec,s(~k = 0) −
Ev,s′(~k = 0). Since only the smallest bandgap will be
relevant in the discussion that follows, we will drop the
spin/valley indices from Egs,s′ for simplicity.

C. Electron-Hole Interaction and Exciton States

The Coulomb interaction between the electrons and
holes can be included by adding the following term to
the Hamiltonian,

Heh =
1

A

∑

~k,~k′,~q,s,s′

V (~q)Fs,s′ (~k,~k
′, ~q)c†~k+~q,s

b†~k′−~q,s′
b~k′,s′c~k,s

(6)
V (~q) is the 2D Coulomb potential and equals e2/2ǫoǫ(~q)q.
The wavevector-dependent dielectric constant ǫ(~q) for
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monolayer MoS2 is given by Zhang et al.3 and Berkel-

bach et al.4. Fs,s′(~k,~k
′, ~q) is6,

Fs,s′(~k,~k
′, ~q) = 〈vc,~k+~q,s|vc,~k,s〉 〈vv,~k′−~q,s′ |vv,~k′,s′〉 (7)

Near the conduction band minima, where h̄vk << ∆s,
cos(θγ,~k,s) ≈ 1 and sin(θγ,~k,s) << 1. Similarly, near the

valence band maxima, sin(θγ,~k,s) ≈ 1 and cos(θγ,~k,s) <<

1. Therefore, for wavevectors near the band extrema one
can make the approximation6,

Fs,s′ (~k,~k
′, ~q) = ei(τφ~k+~q

−τφ~k
+τ ′φ~k′−τ ′φ~k′

−~q
)/2 (8)

Exciton states are approximate eigenstates of the Hamil-
tonian Ho +Heh. Assuming that the ground state of the
semiconductor is |ψo〉, which consists of a filled valence
band and an empty conduction band, an exciton state

with in-plane momentum ~Q can be constructed from the
ground state as follows3,6,

|ψs,s′,α( ~Q)〉 = 1√
A

∑

~k

ψα, ~Q(
~k)c†~k+ me

mex
~Q,s
b~k− mh

mex
~Q,s′ |ψo〉

(9)

The exciton wavefunction is ψα, ~Q(
~k). The electron and

hole effective masses are me and mh, respectively. The
exciton mass ismex = me+mh, and the reduced electron-
hole mass is mr. If one writes the exciton wavefunction
as,

ψα, ~Q(
~k) = φα(~k)e

i(τφ~k+(me/mex)~Q
+τ ′φ~k′

−(mh/mex)~Q
)/2

(10)

then the exciton wavefunction φα(~k) satisfies the stan-
dard exciton eigenvalue equation3,4,

[

Ēc(~k)− Ēv(~k)
]

φα(~k)−
1

A

∑

~q

V (~q)φα(~k − ~q)

= Eα( ~Q)φα(~k) (11)

with an eigenvalue Eα( ~Q) given by,

Eα( ~Q) = Eg − Eα +
h̄2Q2

2mex
(12)

where, Eα is the exciton binding energy. The energy

Eα( ~Q) is measured with respect to the energy of the
ground state |ψo〉. Note that the phase factors cancel

out and do not appear in the exciton eigenvalue equa-

tion. The exciton wavefunctions are orthonormal and
complete in the sense24,

∫

d2~k

(2π)2
φ∗α(

~k)φβ(~k) = δα,β (13)

∑

α

φα(~k)φ
∗
α(
~k′) = (2π)2δ2(~k − ~k′) (14)

The sum over α above includes all the discrete bound
exciton states as well as the continuum of ionized exciton
states.
Finally, the probability of finding an electron and a

hole at a distance ~r in the exciton state |ψα, ~Q(
~k)〉 can

be computed by destroying an electron and a hole using
the real-space field destruction operators and then taking
the overlap of the resulting state with the ground state
|ψo〉. The result is |φα(~r)|2 where φα(~r) is the Fourier

transform of φα(~k). Note that φα(~r) is not the Fourier

transform of ψα, ~Q(
~k), which also includes extra phase

factors (see (10).

D. Exciton Basis

In what follows, we will use the exciton basis. The

exciton creation operator B†
s,s′,α(

~Q) can be defined as,

B†
s,s′,α(

~Q) =
1√
A

∑

~k

ψα, ~Q(
~k)c†~k+ me

mex
~Q,s
b~k− mh

mex
~Q,s′

(15)
Using the completeness and the orthogonality of the ex-
citon wavefunctions given in (14) and (13), we get,

c†~k,s
b~k′,s′ =

1√
A

∑

α

ψ∗

α, ~Q
(~kr)B

†
s,s′,α(

~Q) (16)

Here, ~kr and ~Q equal (mh/mex)~k+(me/mex)~k
′ and ~k−~k′

on the left hand side, respectively. Products of electron
and hole creation and destruction operators can thus be
expressed in terms of the exciton operators.

a) b)

A1 E
Mo

S

FIG. 2: The computed orbitals of the defect states in a MoS2

monolayer corresponding to a sulfur vacancy are shown (from
Noh et al.37). (a) and (b) show A1 state and the two degen-
erate E states, respectively.

E. Defect States

TMDs (MX2), and in particular Monolayer MoS2,
are known to have several different kinds of point de-
fects, such as M and X vacancies and interstitials, im-
purity atoms, in addition to grain boundaries and dis-
locations32–40. The goal in this Section is not to give a
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detailed description of different defect states in TMDs,
something well beyond the scope of this paper, but to
capture the essential physics in a way that would enable
us to obtain capture rates for electrons and holes and
present the main ideas associated with the capture pro-
cesses.

Since the Bloch states form a complete set, the wave-
function ψd(~r) of the electron in the defect state can
be expanded in terms of the Bloch states from all the
bands11. In most cases of practical interest, only Bloch

states in the vicinity of certain points, ~Ks, in the Bril-
louin zone, such as Γ, M , K and K ′ in the case of 2D-
TMDs, need to be included in the expansion and there-
fore one may write,

ψd(~r) =
1√
A

∑

n,~k,s

cn,s(~k)
ei(

~Ks+~k).~r

√
A

un,~k,s(~r) (17)

In the expression above, un,~k,s(~r) are the periodic parts

of the Bloch functions. The sum over n runs over all the
energy bands. Whereas shallow defect levels can usually
be described well by limiting the summation above to
a single band, deep mid-gap defect levels generally have
contributions from multiple bands11,12. The above ex-
pression can usually be cast in much simpler forms for
specific defect states.

As an example, we consider the case of the deep point
defect in MoS2 due to a sulfur atom vacancy. A sul-
fur atom vacancy is a common defect in MoS2 mono-
layers and can have a small formation energy36–38. The
three states within the bandgap associated with a sulfur
vacancy have been obtained previously using ab-initio
techniques36–38. These defect states consist of: (i) a sin-
gle A1 state, made up of mostly the dxz and dyz orbitals
of the Mo atoms adjacent to the missing S atom, with
an energy few tenths of an eV above the valence band
maxima, and (ii) two degenerate E states, made up of
mostly the dz2 , dx2−y2 , and dxy orbitals of the Mo atoms
adjacent to the missing S atom, with an energy 1.4-1.6
eV above the valence band maxima. All the defect states
are spin-degenerate and correspond to the one (A1) and
two dimensional (E) representations of the trigonal sym-
metry group C3v. The computed orbitals of these states
are shown in Fig.2 (from Noh et al.37). A defect state
can be an efficient center for non-radiative recombination
due to Auger scattering only if it has good overlaps with
the Bloch states of both the conduction and the valence
bands. The E states fit this criterion. The E states
can be described well by limiting the summation in the
expression above to the Bloch states of the conduction
and the valence band extrema at the K and K ′ points.
Since all the orbitals forming the E states have weights
almost entirely on the Mo atoms adjacent to the miss-

ing S atom, one may write c c
v ,s

(~k) ≈ χd(~k)e
iγτφ~k

/2b c
v ,s

.

Since eiγτφ~k
/2u c

v ,~k,s(~r) does not vary much with ~k near

the band extrema, the sum in (17) can be rearranged to

give,

ψd(~r) = χd(~r)
∑

n=c,v
s

bn,se
i ~Ks.~re

iγτφ~k
/2
un,~k,s(~r) (18)

Here, the line under ~k means that any wavevector near
the band extrema can be chosen. The function χd(~r)
is expected to be localized at the defect, becoming very
small at the second nearest Mo atom near the defect site.

F. Hamiltonian for the Capture of Holes and

Electrons

Consider process (b) in Fig.1 in which a hole scatters
off an electron and is captured by a defect and the elec-
tron is scattered to a higher energy. The relevant term in
the Coulomb interaction Hamiltonian that describes the
hole capture process in Fig.1(b) can be written as,

Hhc =
1

A

∑

~k,~k′,~q,s,s′

V (~q)Ms,s′(~k,~k
′, ~q)c†~k+~q,s

b†~k′,s′
dσ′c~k,s+h.c.

(19)

The overlap factor Ms,s′(~k,~k
′, ~q) equals,

Ms,s′(~k,~k
′, ~q) = 〈vc,~k+~q,s|vc,~k,s〉

×
∑

n=c,v

bn,s′e
iγτ ′φ~k

/2〈vv,~k′,s′ |vn,~k,s′〉

× 1√
A

∫

d2~r χd(~r) e
−i(~k′+~q).~r

≈ ei(τφ~k+~q
−τφ~k

−τ ′φ~k′)/2 bv,s′√
A
χd(~k

′ + ~q) (20)

Similarly, the electron capture process (Fig.1(a)) is de-
scribed by the Hamiltonian,

Hec =
1

A

∑

~k,~k′,~q,s,s′

V (~q)Ls,s′(~k,~k
′, ~q)d†σb

†
~k′,s′

b~k′+~q,s′c~k,s+h.c.

(21)

where overlap factor Ls,s′(~k,~k
′, ~q) equals,

Ls,s′(~k,~k
′, ~q) ≈ ei(τ

′φ~k′+~q
−τ ′φ~k′−τφ~k

)/2 b
∗
c,s√
A
χ∗
d(
~k + ~q)

(22)
The potential of the defect does not appear in the Hamil-
tonian above. The reason for this is that it has already
been taken into account in defining the non-interacting
Hamiltonian, and its eigenstates, in Section (II B).

III. ELECTRON AND HOLE CAPTURE RATES

FOR EXCITONS

We assume an initial state described by the density

operator ρi in which the exciton occupation ns,s′,α( ~Q),
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defect occupation fd, and conduction and valence band
occupations are given by,

〈d†σdσ′〉 = fd δσ,σ′

〈c†~k,sc~k′,s′〉 = fc,s(~k)δs,s′δ~k,~k′

〈b†~k,sb~k′,s′〉 = fv,s(~k)δs,s′δ~k,~k′

〈B†
s,s′,α(

~Q)Bs,s′,α( ~Q)〉 = ns,s′,α( ~Q) +

1

A

∑

~k

|φα(~k)|2fc,s(~k +
me

mex

~Q)

[

1− fv,s′(~k −
mh

mex

~Q)

]

(23)

The angled brackets stand for ensemble averaging
with respect to the the density operator ρi. Since
the excitons are not exact bosons, the value of

〈B†
s,s′,α(

~Q)Bs,s′,α( ~Q)〉 is not just equal to the exciton

occupation ns,s′,α( ~Q). Using the cluster expansion to

evaluate 〈B†
s,s′,α(

~Q)Bs,s′,α( ~Q)〉 results in the additional

Hartree-Fock term shown above19,20. The same extra
term also shows up in the luminescence spectra of ex-
citons24, and, as discussed below, this term results in a
quadratic dependence of the capture rate on the exciton
density at large exciton densities.
We assume that the electron and hole densities for

different spins/valleys (including both free carriers and
bound excitons) are ns and ps′ , respectively, and the de-
fect density is nd. The initial ensemble consists of states
that are approximate eigenstates of Ho +Heh but not of
Ho +Heh +Hhc +Hec. Therefore, we consider Hhc and
Hec as perturbations.

A. Electron Capture Rate

We first consider process (a) in Fig.1 in which the elec-
tron is captured by a defect. The average electron cap-
ture rate Rec (units: per unit area per second) can be
calculated from the first order perturbation theory using
the exciton basis described in Section IID and the aver-
age values given in (23). The details of the calculations
are given in the Appendix. The final result is,

Rec ≈
2π

h̄
nd(1− fd)

∑

s,s′,α

Dv,s′(qα)|χd(qα)|2|bc,s|2

×

∣

∣

∣

∣

∣

∣

1

A

∑

~kr

V (qαx̂− ~kr)φα(~kr)

∣

∣

∣

∣

∣

∣

2

[ns,s′,α

+
1

A2

∑

~k, ~Q

|φα(~k)|2fc,s(~k +
me

mex

~Q)

[

1− fv,s′(~k −
mh

mex

~Q)

]





(24)

Here, Dv,s′ is the valence band density of states (per
valley per spin) evaluated at the energy of the scattered

hole whose wavevector is qα. qα is approximately given
by the relation, Ev,s′ (0) − Ev,s′(qα) = Eg − Eα − Ed.
Note that none of the phase factors appear in the above
result. The exciton density ns,s′,α is,

ns,s′,α =

∫

d2 ~Q

(2π)2
ns,s′,α( ~Q) (25)

If qα >> kr for all values of kr for which φα(~kr) is sig-
nificant, then the above expression reduces to,

Rec =
2π

h̄
nd (1− fd)

∑

s,s′,α

Dv,s′(qα)|V (qα)|2|χd(qα)|2

×|bc,s|2
[

|φα(~r = 0)|2ns,s′,α +Gαnsps′
]

(26)

Expression for Gα is given in the Appendix. Gα is sig-
nificant for only the lowest few exciton states.

B. Hole Capture Rate

The rate for process (b) in Fig.1 in which the hole is
captured by a defect can be calculated in the same way.
The result is,

Rhc ≈
2π

h̄
ndfd

∑

s,s′,α

Dc,s(qα)|χd(qα)|2|bv,s′ |2

×

∣

∣

∣

∣

∣

∣

1

A

∑

~kr

V (qαx̂− ~kr)φα(~kr)

∣

∣

∣

∣

∣

∣

2

[ns,s′,α

+
1

A2

∑

~k, ~Q

|φα(~k)|2fc,s(~k +
me

mex

~Q)

[

1− fv,s′(~k −
mh

mex

~Q)

]





(27)

where now qα is approximately given by the relation,
Ec,s(qα)−Ec,s(0) = Ed−Eα. And, as before, if qα >> kr
for all values of kr for which φα(~kr) is significant, then
the above expression reduces to,

Rhc =
2π

h̄
ndfd

∑

s,s′,α

Dc,s(qα)|V (qα)|2|χd(qα)|2

×|bv,s′ |2
[

|φα(~r = 0)|2ns,s′,α +Gαnsps′
]

(28)

C. Coulomb Correlations and Enhancement of the

Auger Capture Rates

Equation (26) for the electron capture rate can also be
written as,

Rec =
2π

h̄
nd (1− fd)

∑

s,s′,α

Dv,s′(qα)|V (qα)|2|χd(qα)|2

×|bc,s|2nsps′ [Gα + gs,s′,α(~r = 0)] (29)
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where, gs,s′,α(~r = 0) = |φα(~r = 0)|2ns,s′,α/(nsps′).
The quantity inside the square brackets in (29), Gα +
gs,s′,α(~r = 0), describes the enhancement in the prob-
ability of finding an electron and a hole close to each
other as a result of the attractive Coulomb interactions.
It is interesting to compare the electron capture rate in
(29) with the result obtained assuming no electron-hole
attractive interaction (i.e. Heh = 0),

Rec =
2π

h̄
nd (1− fd)

×
∑

s,s′

Dv,s′(qo)|V (qo)|2|χd(qo)|2|bc,s|2nsps′ (30)

where qo is approximately given by the relation,
Ev,s′(0) − Ev,s′(qo) = Eg − Ed. It can be seen that the
capture rate in (29) is larger by the same enhancement
factor. Assuming all the electrons and holes are in the
lowest (α = 1) bound exciton state, values of Dv,s′ and
|bc,s| are independent of the valley/spin indices, and the
exciton density is nex =

∑

s,s′ ns,s′,α=1, the comparison

between (29) and (30) shows that the enhancement of the
electron capture rate in the case of excitons is roughly
proportional to Gα=1 + |φα=1(~r = 0)|2/nex. Given that
the radius of the lowest exciton state in monolayer MoS2
is in the 7-10 Å range3, the enhancement, assuming an
exciton density of 1012 cm−2, is in the 72-138 range, and
in the 644-1308 range if the exciton density is assumed
to be 1011 cm−2. Therefore, the correlations in the po-
sitions of the electrons and the holes as a result of the
attractive Coulomb interaction make electrons and holes
in tightly bound excitons in TMDs far more susceptible
to capture by defects compared to uncorrelated free car-
riers. Interestingly, even when the exciton density ns,s′,α

is zero the capture rate in (29) is enhanced by the fac-
tors Gα compared to the rate in (30) for uncorrelated
electrons and holes. Therefore, Coulomb correlations in
the positions of electrons and holes due to the attractive
interaction between them enhances the Auger scattering
rates even at the Hartree-Fock level.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Carrier Capture Times at Low Exciton

Densities

For numerical computations, we consider monolayer
MoS2 on a quartz substrate, as is the case in many ex-
periments. We first assume that the exciton density is
small enough (≤1012 cm−2) to allow one to ignore phase-
space filling effects3. We use the wavevector-dependent
dielectric constant ǫ(~q) for monolayer MoS2 on quartz
given by Zhang et al.3. The defect state wavefunction
is given in (18). The values of |bc,s|2 and |bv,s|2 are
assumed to be independent of the valley/spin indices.
This is a good approximation for many important cases.
For example, in the case of the sulfur vacancy in MoS2

discussed earlier, the E states have a total weight of
∼0.25 on the dz2 orbitals of the Mo atoms adjacent to
the missing sulfur atom17. Since the conduction band
Bloch states of both K and K ′ valleys are made up of
mostly the dz2 orbitals of Mo atoms, |bc,s|2 is the same for
both the valleys. We approximate the envelope, χd(~r),
of the defect state wavefunction in (18) by a Gaussian,

χd(~r) =
√

2/(πa2d)e
−r2/a2

d , where ad ≈ 3 Å (see Fig.2).
Note that the in-plane S-Mo bound length in MoS2 is
∼1.83 Å. Fig.3 plots the computed capture times of elec-
trons (τec) and holes (τhc) of excitons assuming that all
the excitons are in the lowest state (α = 1). In the low
exciton density limit considered here these capture times
are independent of the exciton density. The defect den-
sity nd is assumed to be 2×1011 cm−2. The capture times
for electrons and holes shown in Fig.3 have been normal-
ized by multiplying them by |bc|2 and |bv|2, respectively,
given the uncertainty in the exact values of these param-
eters. In the calculation of the electron capture times the
defect state is assumed to be empty (fd = 0), and in the
calculation of the hole capture times the defect state is
assumed to be full (fd = 1).

FIG. 3: The capture times of electrons (τec) and holes (τhc) of
excitons by defects in monolayer MoS2 on quartz are plotted
as a function of the defect energy within the bandgap. The
exciton binding energy is Eα=1 is 0.4 eV and the material
bandgap is 2.3 eV3. The plotted capture times for electrons
and holes have been normalized by multiplying them by |bc|

2

and |bv|
2, respectively. The defect density nd is 2×1011 cm−2.

The curves shown in Fig.3 can provide results in differ-
ent situations. For example, in the case of the E states
associated with a sulfur vacancy, if |bc|2 is assumed to be
∼0.2517, then the electron capture time curve in Fig.3
would need to be multiplied by 4 in order to get the actual
electron capture times. If the E state energy is assumed
to ∼1.5 eV above the valence band edge37, then the elec-
tron capture time comes out to be ∼2.4 ps. Since the
capture times decrease inversely with the defect density
nd, the capture times shown in Fig.3 can be interpolated
for different values of the defect density. For example, a
defect density of 8 × 1011 cm−2 would result in an elec-
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tron capture time of 0.6 ps for the E state of a sulfur
vacancy (under the same assumptions as stated above).

Fig.3 shows that shallower traps have much shorter
capture times than deeper traps. This can be under-
stood as follows. Energy conservation requires that the
scattered electron (hole), in a hole (electron) capture pro-
cess, takes away most of the energy. The deeper the trap
the more the final energy of the scattered particle. Also,
momentum conservation requires that the momentum of
the scattered particle be provided by the relevant Fourier
component of the defect state wavefunction. Therefore,
the deeper the trap the larger the momentum transfer.
Since in Fourier space the defect state wavefunction is

χd(~q) =
√

2πa2de
−q2a2

d/4, larger momentum transfers re-
sult in smaller capture rates. Note that this result is
largely independent of the exact assumed form of the de-
fect state wavefunction. In addition, the Coulomb poten-
tial V (~q) also decreases for larger momentum transfers.
Although the final density of states available to the scat-
tered particle increases with the particle energy (for non-
parabolic energy band dispersions in 2D), this increase
is not enough to offset the reduction in the capture rates
due to the factors mentioned above.

Since the energy width of the valence and conduction
bands in MoS2 are less than 1.2 eV and 0.6 eV21,22, re-
spectively, the limited horizontal extents of the curves in
Fig.3 ensure that the electron (hole) scattered to a high
energy in the hole (electron) capture process is scattered
within the same band consistent with the assumptions
made in this work. It is, however, possible for the scat-
tered particle to go into a different band. For example,
slightly away from the K (K ′) points, the next higher
conduction band has Bloch states with a large weight on
the dz2 orbitals of Mo atoms and these Bloch states will
have large overlap with the Bloch states near the con-
duction band bottom18. It should also be noted that the
weights |bc|2 and |bv|2 for defects could be very small or
zero. For example, in the case of sulfur vacancy A1 states
both |bc|2 and |bv|2 are expected to be very small17,37,38.

B. Carrier Capture Times at High Exciton

Densities

At large exciton densities (typically larger than 1012

cm−2, but smaller than 1013 cm−2, for 2D-TMDs3),
phase-space filling effects cannot be ignored in the de-
scription of the exciton states. We use the formalism
developed by Kira and Koch19,24. When phase-space fill-
ing is taken into account, exciton eigenvalue equation
in the relative co-ordinates becomes non-Hermitian (see
the Appendix) and its solutions are expressed in terms

of the left and the right eigenfunctions, φLα,s,s′ (
~k, ~Q) and

φRα,s,s′(
~k, ~Q), respectively. These eigenfunctions are a

also a function of the center of mass momentum ~Q, and

FIG. 4: The inverse capture time (τ−1
ec ) for the electron of an

exciton in monolayer MoS2 on quartz is plotted as a function
of the exciton density. The plotted capture time has been
normalized by multiplying it by |bc|

2. The defect density nd

is 2 × 1011 cm−2 and the defect energy Ed is assumed to be
1.5 eV above the valence band edge. The inverse capture
time increases with the exciton density nex roughly as, τ−1

ec ∼
A+Bnex (A and B are constants).

are related as follows19,24,

φRs,s′,α(
~k, ~Q) = φLs,s′,α(

~k, ~Q)

[

fv,s′(~k −
mh

mex

~Q)

−fc,s(~k +
me

mex

~Q)

]

(31)

and obey the orthogonality relation,
∫

d2~k

(2π)2
[φLs,s′,α(

~k, ~Q)]∗φRs,s′,β(
~k, ~Q) = δα,β (32)

In terms of these eigenfunctions, the expression for the
electron capture rate becomes,

Rec ≈
2π

h̄
nd(1 − fd)

1

A

∑

s,s′,α, ~Q

Dv,s′(qα)|χd(qα)|2|bc,s|2

×

∣

∣

∣

∣

∣

∣

1

A

∑

~kr

V (qαx̂− ~kr)φ
R
s,s′,α(

~kr, ~Q)

∣

∣

∣

∣

∣

∣

2
[

ns,s′,α( ~Q)

+
1

A

∑

~k

|φLs,s′,α(~k, ~Q)|2fc,s(~k +
me

mex

~Q)

×
[

1− fv,s′(~k −
mh

mex

~Q)

]]

(33)

The expression for the capture rate of holes in the high
exciton density case follows similarly from (27). When
all electrons and holes exist as excitons, self-consistency
requires that the distribution functions are given by24,

fc,s(~k) =
1

A

∑

s′,α, ~Q

[φLs,s′,α(
~k, ~Q)]∗φRs,s′,α(

~k, ~Q)ns,s′,α( ~Q)
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1− fv,s′(~k) =
1

A

∑

s,α, ~Q

[φLs,s′,α(
~k, ~Q)]∗φRs,s′,α(

~k, ~Q)ns,s′,α( ~Q)

(34)

Equations (33) and (34) show that the capture rate
Rec has terms that go linearly as well as quadratically
with the exciton density. The quadratic dependence
comes from the Hartree-Fock term in the evaluation of
〈B†

s,s′,α(
~Q)Bs,s′,α( ~Q)〉 (see Equation (23)). It can be un-

derstood as coming from the Auger scattering between
the electron of one exciton and the hole of another ex-
citon (defect-assisted exciton-exciton annihilation). Re-
call from the discussion in Section III C that even at the
Hartree-Fock level Auger scattering between electrons
and holes is enhanced due to the Coulomb correlations
compared to uncorrelated electrons and holes.

For numerical computations, we again consider mono-
layer MoS2 on a quartz substrate, as in Section IVA.
We solve the exciton eigenvalue equation for different ex-
citon densities and obtain the exciton radii and the ex-
citon binding energies3. For simplicity, we consider the
case when all the electrons and holes are in the lowest
(α = 1) bound exciton state. Fig.4 plots the inverse
capture time (τ−1

ec ) of the electron of an exciton in mono-
layer MoS2 on quartz as a function of the exciton density.
The plotted capture time has been normalized by mul-
tiplying it by |bc|2. The defect density nd is 2 × 1011

cm−2 and the defect energy Ed is assumed to be 1.5
eV above the valence band edge. The inverse capture
time increases with the exciton density nex roughly as,
τ−1
ec ∼ A + Bnex (A and B are constants), indicating
that the capture rate Rec has both linear and quadratic
dependence on the exciton density (Rec ∼ Anex+Bn

2
ex).

The term quadratic in the exciton density in Rec becomes
significant at exciton densities higher than ∼1012 cm−2.
When interpreting experimental data, this quadratic in-
crease of the carrier capture rate with the exciton density
can make exciton annihilation via carrier capture by de-
fects (defect-assisted exciton-exciton annihilation) indis-
tinguishable from exciton-exciton annihilation via direct
interband Auger scattering, the rate of which is also ex-
pected to go quadratically with the exciton density.

V. COMMENTS AND CONCLUSION

The results presented in this paper show that the cap-
ture times for electrons and holes of excitons in TMDs
can be very short - from less than a picosecond to a
few picoseconds. These numbers agree well with the
recently reported experimental results on the ultrafast
carrier dynamics in photoexcited monolayer MoS2 where
fast relaxation times in the few picoseconds range were
observed13–15,23. In addition, the results in Fig.3 and
Fig.4 are largely independent of the carrier temperature
which is also consistent with the experimental observa-
tions14,23.

The expressions given in this work could overestimate
(underestimate) the capture rates (times). The reasons
are as follows. The magnitude of the intraband overlap
integrals for Bloch states were assumed to equal unity in
Section II F and only phase differences were taken into
account. At energies much different from the band edge
energies, the Bloch states are different from the band
edge Bloch states, and consequently the magnitude of
the overlap integrals are smaller than unity. For exam-
ple, the two-band k.p model in Section II B shows that

at wavevector ~k the conduction (valence) band Bloch
states have contributions from the valence (conduction)

band Bloch states at ~k = 0 with a weight given by
0.5−0.5(∆s/2)/

√

(∆s/2)2 + (h̄vk)2. This implies a 15%
weight at energies in the band that are ∼0.5 eV away
from the band edge. In addition, both the conduction
and valence band Bloch states are expected to get con-
tributions from other lower and higher bands at large
wavevectors31. However, we don’t expect the essential
physics to change significantly or the rates to change by
more than a factor of unity when these sources of error
are removed. We should also point out that the rates
for carrier capture by defects in 2D-TMDs can vary from
sample to sample as the nature of defects is expected to
depend on the method of sample preparation.
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VII. APPENDICES

A. Details on the Electron Capture Rate

In this Section, we derive the expression for the elec-
tron capture rate given in (24). The derivation of the
hole capture rate is similar. We assume an initial state
described by the density matrix ρi in which the exciton

occupation is ns,s′,α( ~Q), the defect density is nd, the de-
fect occupation is fd, and the electron and hole densities
(including both free carriers and bound excitons) are ns

and ps′ , respectively. The average values of various op-
erators are as given in (23). The rate of change of the
total electron density is,

ṅ =
dn

dt
=

d

dt





1

A

∑

s,~k

c†~k,s
c~k,s



 (35)

Defining the interaction representation for the time de-
velopment of operators as,

OI(t) = e
i
h̄ (Ho+Heh)tOe−

i
h̄ (Ho+Heh)t (36)
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the rate Rec for the electron capture by the defect can be
found by picking the appropriate term from the expres-
sion obtained using the first order perturbation theory,

〈dn
dt

〉 = lim
η→0

i

h̄
And

∫ t

−∞

dt′ eηt
′

Tr
{

ρi
[

HI
ec(t

′), ṅI(t)
]}

(37)

Since the exciton states are approximate eigenstates of
the Hamiltonian Ho +Heh we have,

e
i
h̄ (Ho+Heh)tBs,s′,α( ~Q)e−

i
h̄ (Ho+Heh)t ≈ Bs,s′,α( ~Q)e−i

Eα(~Q)
h̄ t

(38)
It is therefore convenient to express the conduction and
valence band creation and destruction operators appear-
ing in Hec using the exciton basis described in Sec-
tion IID. We also point out here that the ensemble av-
erage of a product of operators of the form,

〈e i
h̄ (Ho+Heh)tc†~k1,s1

b~k′

1,s
′

1
b†~k′

2,s
′

2

c~k2,s2
e−

i
h̄ (Ho+Heh)t〉 (39)

needs to be evaluated using the cluster expansion and
keeping the correlation terms as well as the Hartree-Fock
term19,20. The final result is,

Rec =
2π

h̄
nd(1− fd)

1

A4

∑

s,s′,~kr,~k′

r

~Q,~q,α

|bc,s|2V ∗(~q − ~k′r)V (~q − ~kr)

×|χd(~q + (me/mex) ~Q)|2φ∗α(~k′r)φα(~kr)
[

ns,s′,α( ~Q)

+
1

A

∑

~k

|φα(~k)|2fc,s(~k +
me

mex

~Q)

[

1− fv,s′(~k −
mh

mex

~Q)

]





×δ
(

Eg − Eα +
h̄2Q2

2mex
− Ed

−Ev,s′(0) + Ev,s′(~q −
mh

mex

~Q)

)

(40)

Note that all the phase factors have canceled out. The
exciton center of mass kinetic energy, h̄2Q2/2mex, is ex-
pected to be much smaller than the energy difference
Eg − Eα − Ed. The former is expected to be in the
few tens of meV range and the latter in the hundreds
of meV range. The energy conserving delta function
then enforces q to the value determined by the condition
Ev,s′(0)−Ev,s′(qα) = Eg−Eα−Ed. Once the magnitude
of ~q has been fixed in this way, it is easy to see that Rec

does not depend on the angle of ~q. So one may assume
q ≈ qαx̂ and obtain,

Rec ≈
2π

h̄
nd(1− fd)

∑

s,s′,α

Dv,s′(qα)|χd(qα)|2|bc,s|2

×

∣

∣

∣

∣

∣

∣

1

A

∑

~kr

V (qαx̂− ~kr)φα(~kr)

∣

∣

∣

∣

∣

∣

2

[ns,s′,α

+
1

A2

∑

~k, ~Q

|φα(~k)|2fc,s(~k +
me

mex

~Q)

[

1− fv,s′(~k −
mh

mex

~Q)

]





(41)

Here, Dv,s′ is the valence band density of states (per
valley per spin) evaluated at the energy of the scattered
hole whose wavevector is qα. The exciton density ns,s′,α

is,

ns,s′,α =

∫

d2 ~Q

(2π)2
ns,s′,α( ~Q) (42)

If qα >> kr for all values of kr for which φα(~kr) is sig-
nificant, then the above expression reduces to,

Rec =
2π

h̄
nd (1− fd)

∑

s,s′,α

Dv,s′(qα)|V (qα)|2|χd(qα)|2

×|bc,s|2
[

|φα(~r = 0)|2ns,s′,α +Gαnsps′
]

(43)

Equation (43) contains the exciton density ns,s′,α as well
as the electron and hole densities (including both free car-
riers and bound excitons) ns and ps′ , respectively. The
latter appear as a result of the Hartree-Fock term in the
cluster expansion19,20. Gα is,

Gα =
|φα(~r = 0)|2
nsps′ A2

∑

~k, ~Q

|φα(~k)|2fc,s(~k +
me

mex

~Q)

×
[

1− fv,s′(~k −
mh

mex

~Q)

]

(44)

Gα is expected to be significant for only the lowest few
exciton states.
If all the electrons and holes are assumed to be in the

lowest (α = 1) bound exciton state then self-consistency
requires that the distribution functions are given by24,

fc,s(~k) = |φα=1(~k)|2ns

1− fv,s′(~k) = |φα=1(~k)|2ps′ (45)

Here, ns =
∑

s′ ns,s′,α=1 and ps′ =
∑

s ns,s′,α=1. One
then obtains,

G1 = |φα=1(~r = 0)|2 1

A2

∑

~k, ~Q

|φα=1(~k +
me

mex

~Q)|2

×|φα=1(~k)|2|φα=1(~k −
mh

mex

~Q)|2 (46)

Assuming the standard 2D exciton wavefunction3, G1

equals 128/(5π) ≈ 8.15.

B. Description of Excitons States in the High

Exciton Density Limit

In the high exciton density case, phase filling ef-
fects cannot be ignored in the description of the exciton



10

states3,24. The exciton wavefunctions, φLα,s,s′(
~k, ~Q) and

φRα,s,s′(
~k, ~Q) satisfy the eigenvalue equations24,

[

Ec,s(~k + (me/mex) ~Q)− Ev,s′(~k − (mh/mex) ~Q)
]

×φLα,s,s′(~k, ~Q)−
1

A

∑

~k′

V (~k − ~k′)φLα,s,s′(
~k′, ~Q)

×
[

fv,s′(~k
′ − mh

mex

~Q)− fc,s(~k
′ +

me

mex

~Q)

]

= Es,s′,α( ~Q)φLs,s′,α(
~k, ~Q) (47)

[

Ec,s(~k + (me/mex) ~Q)− Ev,s′(~k − (mh/mex) ~Q)
]

×φRα,s,s′(~k, ~Q)−
[

fv,s′(~k −
mh

mex

~Q)

−fc,s(~k +
me

mex

~Q)

]

1

A

∑

~k′

V (~k − ~k′)φRα,s,s′(
~k′, ~Q)

= Es,s′,α( ~Q)φRs,s′,α(
~k, ~Q) (48)

The exciton wavefunctions satisfy the orthogonality and
completeness relations,

∫

d2~k

(2π)2
[φLs,s′,α(

~k, ~Q)]∗φRs,s′,β(
~k, ~Q) = δα,β (49)

∑

α

φLs,s′,α(
~k, ~Q)[φRs,s′,α(

~k′, ~Q)]∗ = (2π)2δ2(~k − ~k′) (50)

We also define,

ψ
L/R
s,s′,α(

~k, ~Q) = φ
L/R
s,s′,α(

~k, ~Q)

× e
i(τφ~k+(me/mex)~Q

+τ ′φ~k′
−(mh/mex)~Q

)/2
(51)

The exciton creation operator B†
s,s′,α(

~Q) is defined as,

B†
s,s′,α(

~Q) =
1√
A

∑

~k

ψL
s,s′,α(

~k, ~Q)c†~k+ me
mex

~Q,s
b~k− mh

mex
~Q,s′

(52)
Using the completeness and the orthogonality of the ex-
citon wavefunctions given in (50) and (49), we get,

c†~k,s
b~k′,s′ =

1√
A

∑

α

ψR
s,s′,α(

~kr, ~Q)B†
s,s′,α(

~Q) (53)

where, ~kr and ~Q equal (mh/mex)~k + (me/mex)~k
′ and

~k − ~k′ on the left hand side, respectively.
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